src/HOLCF/explicit_domains/Coind.ML
author paulson
Wed, 13 Nov 1996 10:47:08 +0100
changeset 2183 8d42a7bccf0b
parent 2033 639de962ded4
permissions -rw-r--r--
Updated version and date
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
     1
(*  Title:      HOLCF/Coind.ML
1274
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
     2
    ID:         $Id$
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
     3
    Author:     Franz Regensburger
1274
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
     4
    Copyright   1993 Technische Universitaet Muenchen
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
     5
*)
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
     6
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
     7
open Coind;
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
     8
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
     9
(* ------------------------------------------------------------------------- *)
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    10
(* expand fixed point properties                                             *)
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    11
(* ------------------------------------------------------------------------- *)
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    12
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    13
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    14
val nats_def2 = fix_prover2 Coind.thy nats_def 
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    15
        "nats = scons`dzero`(smap`dsucc`nats)";
1274
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    16
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    17
val from_def2 = fix_prover2 Coind.thy from_def 
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    18
        "from = (LAM n.scons`n`(from`(dsucc`n)))";
1274
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    19
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    20
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    21
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    22
(* ------------------------------------------------------------------------- *)
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    23
(* recursive  properties                                                     *)
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    24
(* ------------------------------------------------------------------------- *)
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    25
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    26
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    27
val from = prove_goal Coind.thy "from`n = scons`n`(from`(dsucc`n))"
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    28
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    29
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    30
        (rtac trans 1),
2033
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1675
diff changeset
    31
        (stac from_def2 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    32
        (Simp_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    33
        (rtac refl 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    34
        ]);
1274
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    35
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    36
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    37
val from1 = prove_goal Coind.thy "from`UU = UU"
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    38
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    39
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    40
        (rtac trans 1),
2033
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1675
diff changeset
    41
        (stac from 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    42
        (resolve_tac  stream_constrdef 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    43
        (rtac refl 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    44
        ]);
1274
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    45
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    46
val coind_rews = 
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    47
        [iterator1, iterator2, iterator3, smap1, smap2,from1];
1274
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    48
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    49
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    50
(* ------------------------------------------------------------------------- *)
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    51
(* the example                                                               *)
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    52
(* prove:        nats = from`dzero                                           *)
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    53
(* ------------------------------------------------------------------------- *)
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    54
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    55
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    56
val coind_lemma1 = prove_goal Coind.thy "iterator`n`(smap`dsucc)`nats =\
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    57
\                scons`n`(iterator`(dsucc`n)`(smap`dsucc)`nats)"
1274
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    58
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    59
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    60
        (res_inst_tac [("s","n")] dnat_ind 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    61
        (simp_tac (!simpset addsimps (coind_rews @ stream_rews)) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    62
        (simp_tac (!simpset addsimps (coind_rews @ stream_rews)) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    63
        (rtac trans 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    64
        (rtac nats_def2 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    65
        (simp_tac (!simpset addsimps (coind_rews @ dnat_rews)) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    66
        (rtac trans 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    67
        (etac iterator3 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    68
        (rtac trans 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    69
        (Asm_simp_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    70
        (rtac trans 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    71
        (etac smap2 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    72
        (rtac cfun_arg_cong 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    73
        (asm_simp_tac (!simpset addsimps ([iterator3 RS sym] @ dnat_rews)) 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    74
        ]);
1274
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    75
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    76
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    77
val nats_eq_from = prove_goal Coind.thy "nats = from`dzero"
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    78
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    79
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    80
        (res_inst_tac [("R",
1274
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
    81
"% p q.? n. p = iterator`n`(smap`dsucc)`nats & q = from`n")] stream_coind 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    82
        (res_inst_tac [("x","dzero")] exI 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    83
        (asm_simp_tac (!simpset addsimps coind_rews) 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    84
        (rewtac stream_bisim_def),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    85
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    86
        (etac exE 1),
1675
36ba4da350c3 adapted several proofs
oheimb
parents: 1461
diff changeset
    87
        (case_tac "n=UU" 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    88
        (rtac disjI1 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    89
        (asm_simp_tac (!simpset addsimps coind_rews) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    90
        (rtac disjI2 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    91
        (etac conjE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    92
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    93
        (res_inst_tac [("x","n")] exI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    94
        (res_inst_tac [("x","iterator`(dsucc`n)`(smap`dsucc)`nats")] exI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    95
        (res_inst_tac [("x","from`(dsucc`n)")] exI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    96
        (etac conjI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    97
        (rtac conjI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    98
        (rtac coind_lemma1 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
    99
        (rtac conjI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   100
        (rtac from 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   101
        (res_inst_tac [("x","dsucc`n")] exI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   102
        (fast_tac HOL_cs 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   103
        ]);
1274
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
   104
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
   105
(* another proof using stream_coind_lemma2 *)
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
   106
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
   107
val nats_eq_from = prove_goal Coind.thy "nats = from`dzero"
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
   108
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   109
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   110
        (res_inst_tac [("R","% p q.? n. p = \
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   111
\       iterator`n`(smap`dsucc)`nats & q = from`n")] stream_coind 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   112
        (rtac stream_coind_lemma2 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   113
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   114
        (etac exE 1),
1675
36ba4da350c3 adapted several proofs
oheimb
parents: 1461
diff changeset
   115
        (case_tac "n=UU" 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   116
        (asm_simp_tac (!simpset addsimps coind_rews) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   117
        (res_inst_tac [("x","UU::dnat")] exI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   118
        (simp_tac (!simpset addsimps coind_rews addsimps stream_rews) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   119
        (etac conjE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   120
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   121
        (rtac conjI 1),
2033
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1675
diff changeset
   122
        (stac coind_lemma1 1),
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1675
diff changeset
   123
        (stac from 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   124
        (asm_simp_tac (!simpset addsimps stream_rews) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   125
        (res_inst_tac [("x","dsucc`n")] exI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   126
        (rtac conjI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   127
        (rtac trans 1),
2033
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1675
diff changeset
   128
        (stac coind_lemma1 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   129
        (asm_simp_tac (!simpset addsimps stream_rews) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   130
        (rtac refl 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   131
        (rtac trans 1),
2033
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1675
diff changeset
   132
        (stac from 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   133
        (asm_simp_tac (!simpset addsimps stream_rews) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   134
        (rtac refl 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   135
        (res_inst_tac [("x","dzero")] exI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   136
        (asm_simp_tac (!simpset addsimps coind_rews) 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1274
diff changeset
   137
        ]);
1274
ea0668a1c0ba added 8bit pragmas
regensbu
parents:
diff changeset
   138