9944
|
1 |
(* Title: HOL/ex/Fib
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson
|
|
4 |
Copyright 1997 University of Cambridge
|
|
5 |
|
|
6 |
Fibonacci numbers: proofs of laws taken from
|
|
7 |
|
|
8 |
R. L. Graham, D. E. Knuth, O. Patashnik.
|
|
9 |
Concrete Mathematics.
|
|
10 |
(Addison-Wesley, 1989)
|
|
11 |
*)
|
|
12 |
|
|
13 |
|
|
14 |
(** The difficulty in these proofs is to ensure that the induction hypotheses
|
|
15 |
are applied before the definition of "fib". Towards this end, the
|
|
16 |
"fib" equations are not added to the simpset and are applied very
|
|
17 |
selectively at first.
|
|
18 |
**)
|
|
19 |
|
|
20 |
Delsimps fib.Suc_Suc;
|
|
21 |
|
|
22 |
val [fib_Suc_Suc] = fib.Suc_Suc;
|
|
23 |
val fib_Suc3 = read_instantiate [("x", "(Suc ?n)")] fib_Suc_Suc;
|
|
24 |
|
|
25 |
(*Concrete Mathematics, page 280*)
|
|
26 |
Goal "fib (Suc (n + k)) = fib(Suc k) * fib(Suc n) + fib k * fib n";
|
|
27 |
by (induct_thm_tac fib.induct "n" 1);
|
|
28 |
(*Simplify the LHS just enough to apply the induction hypotheses*)
|
|
29 |
by (asm_full_simp_tac
|
|
30 |
(simpset() addsimps [inst "x" "Suc(?m+?n)" fib_Suc_Suc]) 3);
|
|
31 |
by (ALLGOALS
|
|
32 |
(asm_simp_tac (simpset() addsimps
|
|
33 |
([fib_Suc_Suc, add_mult_distrib, add_mult_distrib2]))));
|
|
34 |
qed "fib_add";
|
|
35 |
|
|
36 |
|
|
37 |
Goal "fib (Suc n) ~= 0";
|
|
38 |
by (induct_thm_tac fib.induct "n" 1);
|
|
39 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps [fib_Suc_Suc])));
|
|
40 |
qed "fib_Suc_neq_0";
|
|
41 |
|
|
42 |
(* Also add 0 < fib (Suc n) *)
|
|
43 |
Addsimps [fib_Suc_neq_0, [neq0_conv, fib_Suc_neq_0] MRS iffD1];
|
|
44 |
|
|
45 |
Goal "0<n ==> 0 < fib n";
|
|
46 |
by (rtac (not0_implies_Suc RS exE) 1);
|
|
47 |
by Auto_tac;
|
|
48 |
qed "fib_gr_0";
|
|
49 |
|
|
50 |
(*Concrete Mathematics, page 278: Cassini's identity.
|
|
51 |
It is much easier to prove using integers!*)
|
|
52 |
Goal "int (fib (Suc (Suc n)) * fib n) = \
|
|
53 |
\ (if n mod 2 = 0 then int (fib(Suc n) * fib(Suc n)) - #1 \
|
|
54 |
\ else int (fib(Suc n) * fib(Suc n)) + #1)";
|
|
55 |
by (induct_thm_tac fib.induct "n" 1);
|
|
56 |
by (simp_tac (simpset() addsimps [fib_Suc_Suc, mod_Suc]) 2);
|
|
57 |
by (simp_tac (simpset() addsimps [fib_Suc_Suc]) 1);
|
|
58 |
by (asm_full_simp_tac
|
|
59 |
(simpset() addsimps [fib_Suc_Suc, add_mult_distrib, add_mult_distrib2,
|
|
60 |
mod_Suc, zmult_int RS sym] @ zmult_ac) 1);
|
|
61 |
qed "fib_Cassini";
|
|
62 |
|
|
63 |
|
|
64 |
|
|
65 |
(** Towards Law 6.111 of Concrete Mathematics **)
|
|
66 |
|
|
67 |
val gcd_induct = thm "gcd_induct";
|
|
68 |
val gcd_commute = thm "gcd_commute";
|
|
69 |
val gcd_add2 = thm "gcd_add2";
|
|
70 |
val gcd_non_0 = thm "gcd_non_0";
|
|
71 |
val gcd_mult_cancel = thm "gcd_mult_cancel";
|
|
72 |
|
|
73 |
|
|
74 |
Goal "gcd(fib n, fib (Suc n)) = 1";
|
|
75 |
by (induct_thm_tac fib.induct "n" 1);
|
|
76 |
by (asm_simp_tac (simpset() addsimps [gcd_commute, fib_Suc3]) 3);
|
|
77 |
by (ALLGOALS (simp_tac (simpset() addsimps [fib_Suc_Suc])));
|
|
78 |
qed "gcd_fib_Suc_eq_1";
|
|
79 |
|
|
80 |
val gcd_fib_commute =
|
|
81 |
read_instantiate_sg (sign_of thy) [("m", "fib m")] gcd_commute;
|
|
82 |
|
|
83 |
Goal "gcd(fib m, fib (n+m)) = gcd(fib m, fib n)";
|
|
84 |
by (simp_tac (simpset() addsimps [gcd_fib_commute]) 1);
|
|
85 |
by (case_tac "m=0" 1);
|
|
86 |
by (Asm_simp_tac 1);
|
|
87 |
by (clarify_tac (claset() addSDs [not0_implies_Suc]) 1);
|
|
88 |
by (simp_tac (simpset() addsimps [fib_add]) 1);
|
|
89 |
by (asm_simp_tac (simpset() addsimps [add_commute, gcd_non_0]) 1);
|
|
90 |
by (asm_simp_tac (simpset() addsimps [gcd_non_0 RS sym]) 1);
|
|
91 |
by (asm_simp_tac (simpset() addsimps [gcd_fib_Suc_eq_1, gcd_mult_cancel]) 1);
|
|
92 |
qed "gcd_fib_add";
|
|
93 |
|
|
94 |
Goal "m <= n ==> gcd(fib m, fib (n-m)) = gcd(fib m, fib n)";
|
|
95 |
by (rtac (gcd_fib_add RS sym RS trans) 1);
|
|
96 |
by (Asm_simp_tac 1);
|
|
97 |
qed "gcd_fib_diff";
|
|
98 |
|
|
99 |
Goal "0<m ==> gcd (fib m, fib (n mod m)) = gcd (fib m, fib n)";
|
|
100 |
by (induct_thm_tac nat_less_induct "n" 1);
|
|
101 |
by (stac mod_if 1);
|
|
102 |
by (Asm_simp_tac 1);
|
|
103 |
by (asm_simp_tac (simpset() addsimps [gcd_fib_diff, mod_geq,
|
|
104 |
not_less_iff_le, diff_less]) 1);
|
|
105 |
qed "gcd_fib_mod";
|
|
106 |
|
|
107 |
(*Law 6.111*)
|
|
108 |
Goal "fib(gcd(m,n)) = gcd(fib m, fib n)";
|
|
109 |
by (induct_thm_tac gcd_induct "m n" 1);
|
|
110 |
by (Asm_simp_tac 1);
|
|
111 |
by (asm_full_simp_tac (simpset() addsimps [gcd_non_0]) 1);
|
|
112 |
by (asm_full_simp_tac (simpset() addsimps [gcd_commute, gcd_fib_mod]) 1);
|
|
113 |
qed "fib_gcd";
|