author | wenzelm |
Fri, 06 Oct 2000 17:35:58 +0200 | |
changeset 10168 | 50be659d4222 |
parent 9508 | 4d01dbf6ded7 |
child 11049 | 7eef34adb852 |
permissions | -rw-r--r-- |
9508
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
1 |
(* Title: WilsonBij.thy |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
2 |
ID: $Id$ |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
3 |
Author: Thomas M. Rasmussen |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
4 |
Copyright 2000 University of Cambridge |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
5 |
*) |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
6 |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
7 |
WilsonBij = BijectionRel + IntFact + |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
8 |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
9 |
consts |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
10 |
reciR :: "int => [int,int] => bool" |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
11 |
inv :: "[int,int] => int" |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
12 |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
13 |
defs |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
14 |
reciR_def "reciR p == (%a b. zcong (a*b) #1 p & |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
15 |
#1<a & a<p-#1 & #1<b & b<p-#1)" |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
16 |
inv_def "inv p a == (if p:zprime & #0<a & a<p then |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
17 |
(@x. #0<=x & x<p & zcong (a*x) #1 p) |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
18 |
else #0)" |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
19 |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
20 |
end |