9015
|
1 |
(* untyped functional language, with call by value semantics *)
|
|
2 |
|
|
3 |
Func = HOHH +
|
|
4 |
|
|
5 |
types tm
|
|
6 |
|
|
7 |
arities tm :: term
|
|
8 |
|
|
9 |
consts abs :: (tm => tm) => tm
|
|
10 |
app :: tm => tm => tm
|
|
11 |
|
|
12 |
cond :: tm => tm => tm => tm
|
|
13 |
fix :: (tm => tm) => tm
|
|
14 |
|
|
15 |
true,
|
|
16 |
false :: tm
|
|
17 |
"and" :: tm => tm => tm (infixr 999)
|
|
18 |
"eq" :: tm => tm => tm (infixr 999)
|
|
19 |
|
|
20 |
"0" :: tm ("Z")
|
|
21 |
S :: tm => tm
|
|
22 |
(*
|
|
23 |
"++", "--",
|
|
24 |
"**" :: tm => tm => tm (infixr 999)
|
|
25 |
*)
|
|
26 |
eval :: [tm, tm] => bool
|
|
27 |
|
|
28 |
arities tm :: plus
|
|
29 |
arities tm :: minus
|
|
30 |
arities tm :: times
|
|
31 |
|
|
32 |
rules eval "
|
|
33 |
|
|
34 |
eval (abs RR) (abs RR)..
|
|
35 |
eval (app F X) V :- eval F (abs R) & eval X U & eval (R U) V..
|
|
36 |
|
|
37 |
eval (cond P L1 R1) D1 :- eval P true & eval L1 D1..
|
|
38 |
eval (cond P L2 R2) D2 :- eval P false & eval R2 D2..
|
|
39 |
eval (fix G) W :- eval (G (fix G)) W..
|
|
40 |
|
|
41 |
eval true true ..
|
|
42 |
eval false false..
|
|
43 |
eval (P and Q) true :- eval P true & eval Q true ..
|
|
44 |
eval (P and Q) false :- eval P false | eval Q false..
|
|
45 |
eval (A1 eq B1) true :- eval A1 C1 & eval B1 C1..
|
|
46 |
eval (A2 eq B2) false :- True..
|
|
47 |
|
|
48 |
eval Z Z..
|
|
49 |
eval (S N) (S M) :- eval N M..
|
|
50 |
eval ( Z + M) K :- eval M K..
|
|
51 |
eval ((S N) + M) (S K) :- eval (N + M) K..
|
|
52 |
eval (N - Z) K :- eval N K..
|
|
53 |
eval ((S N) - (S M)) K :- eval (N- M) K..
|
|
54 |
eval ( Z * M) Z..
|
|
55 |
eval ((S N) * M) K :- eval (N * M) L & eval (L + M) K"
|
|
56 |
|
|
57 |
end
|