484
|
1 |
(* Title: ZF/Cardinal_AC.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1994 University of Cambridge
|
|
5 |
|
|
6 |
Cardinal arithmetic WITH the Axiom of Choice
|
|
7 |
*)
|
|
8 |
|
|
9 |
open Cardinal_AC;
|
|
10 |
|
|
11 |
(*** Strengthened versions of existing theorems about cardinals ***)
|
|
12 |
|
|
13 |
goal Cardinal_AC.thy "|A| eqpoll A";
|
|
14 |
by (resolve_tac [AC_well_ord RS exE] 1);
|
|
15 |
by (eresolve_tac [well_ord_cardinal_eqpoll] 1);
|
|
16 |
val cardinal_eqpoll = result();
|
|
17 |
|
|
18 |
val cardinal_idem = cardinal_eqpoll RS cardinal_cong;
|
|
19 |
|
|
20 |
goal Cardinal_AC.thy "!!X Y. |X| = |Y| ==> X eqpoll Y";
|
|
21 |
by (resolve_tac [AC_well_ord RS exE] 1);
|
|
22 |
by (resolve_tac [AC_well_ord RS exE] 1);
|
|
23 |
by (resolve_tac [well_ord_cardinal_eqE] 1);
|
|
24 |
by (REPEAT_SOME assume_tac);
|
|
25 |
val cardinal_eqE = result();
|
|
26 |
|
|
27 |
goal Cardinal_AC.thy "!!A B. A lepoll B ==> |A| le |B|";
|
|
28 |
by (resolve_tac [AC_well_ord RS exE] 1);
|
|
29 |
by (eresolve_tac [well_ord_lepoll_imp_le] 1);
|
|
30 |
by (assume_tac 1);
|
|
31 |
val lepoll_imp_le = result();
|
|
32 |
|
|
33 |
goal Cardinal_AC.thy "(i |+| j) |+| k = i |+| (j |+| k)";
|
|
34 |
by (resolve_tac [AC_well_ord RS exE] 1);
|
|
35 |
by (resolve_tac [AC_well_ord RS exE] 1);
|
|
36 |
by (resolve_tac [AC_well_ord RS exE] 1);
|
|
37 |
by (resolve_tac [well_ord_cadd_assoc] 1);
|
|
38 |
by (REPEAT_SOME assume_tac);
|
|
39 |
val cadd_assoc = result();
|
|
40 |
|
|
41 |
goal Cardinal_AC.thy "(i |*| j) |*| k = i |*| (j |*| k)";
|
|
42 |
by (resolve_tac [AC_well_ord RS exE] 1);
|
|
43 |
by (resolve_tac [AC_well_ord RS exE] 1);
|
|
44 |
by (resolve_tac [AC_well_ord RS exE] 1);
|
|
45 |
by (resolve_tac [well_ord_cmult_assoc] 1);
|
|
46 |
by (REPEAT_SOME assume_tac);
|
|
47 |
val cmult_assoc = result();
|
|
48 |
|
|
49 |
goal Cardinal_AC.thy "!!A. InfCard(|A|) ==> A*A eqpoll A";
|
|
50 |
by (resolve_tac [AC_well_ord RS exE] 1);
|
|
51 |
by (eresolve_tac [well_ord_InfCard_square_eq] 1);
|
|
52 |
by (assume_tac 1);
|
|
53 |
val InfCard_square_eq = result();
|
|
54 |
|
|
55 |
|
|
56 |
(*** Other applications of AC ***)
|
|
57 |
|
|
58 |
goal Cardinal_AC.thy "!!A B. |A| le |B| ==> A lepoll B";
|
|
59 |
by (resolve_tac [cardinal_eqpoll RS eqpoll_sym RS eqpoll_imp_lepoll RS
|
|
60 |
lepoll_trans] 1);
|
|
61 |
by (eresolve_tac [le_imp_subset RS subset_imp_lepoll RS lepoll_trans] 1);
|
|
62 |
by (resolve_tac [cardinal_eqpoll RS eqpoll_imp_lepoll] 1);
|
|
63 |
val le_imp_lepoll = result();
|
|
64 |
|
|
65 |
goal Cardinal_AC.thy "!!A K. Card(K) ==> |A| le K <-> A lepoll K";
|
|
66 |
by (eresolve_tac [Card_cardinal_eq RS subst] 1 THEN
|
|
67 |
rtac iffI 1 THEN
|
|
68 |
DEPTH_SOLVE (eresolve_tac [le_imp_lepoll,lepoll_imp_le] 1));
|
|
69 |
val le_Card_iff = result();
|
|
70 |
|
|
71 |
goalw Cardinal_AC.thy [surj_def] "!!f. f: surj(X,Y) ==> EX g. g: inj(Y,X)";
|
|
72 |
by (etac CollectE 1);
|
|
73 |
by (res_inst_tac [("A1", "Y"), ("B1", "%y. f-``{y}")] (AC_Pi RS exE) 1);
|
|
74 |
by (fast_tac (ZF_cs addSEs [apply_Pair]) 1);
|
|
75 |
by (resolve_tac [exI] 1);
|
|
76 |
by (rtac f_imp_injective 1);
|
|
77 |
by (resolve_tac [Pi_type] 1 THEN assume_tac 1);
|
|
78 |
by (fast_tac (ZF_cs addDs [apply_type] addEs [memberPiE]) 1);
|
|
79 |
by (fast_tac (ZF_cs addDs [apply_type] addEs [apply_equality]) 1);
|
|
80 |
val surj_implies_inj = result();
|
|
81 |
|
|
82 |
(*Kunen's Lemma 10.20*)
|
|
83 |
goal Cardinal_AC.thy "!!f. f: surj(X,Y) ==> |Y| le |X|";
|
|
84 |
by (resolve_tac [lepoll_imp_le] 1);
|
|
85 |
by (eresolve_tac [surj_implies_inj RS exE] 1);
|
|
86 |
by (rewtac lepoll_def);
|
|
87 |
by (eresolve_tac [exI] 1);
|
|
88 |
val surj_implies_cardinal_le = result();
|
|
89 |
|
|
90 |
(*Kunen's Lemma 10.21*)
|
|
91 |
goal Cardinal_AC.thy
|
|
92 |
"!!K. [| InfCard(K); ALL i:K. |X(i)| le K |] ==> |UN i:K. X(i)| le K";
|
|
93 |
by (asm_full_simp_tac (ZF_ss addsimps [InfCard_is_Card, le_Card_iff]) 1);
|
|
94 |
by (resolve_tac [lepoll_trans] 1);
|
|
95 |
by (resolve_tac [InfCard_square_eq RS eqpoll_imp_lepoll] 2);
|
|
96 |
by (asm_simp_tac (ZF_ss addsimps [InfCard_is_Card, Card_cardinal_eq]) 2);
|
|
97 |
by (rewrite_goals_tac [lepoll_def]);
|
|
98 |
by (forward_tac [InfCard_is_Card RS Card_is_Ord] 1);
|
|
99 |
by (etac (AC_ball_Pi RS exE) 1);
|
|
100 |
by (resolve_tac [exI] 1);
|
|
101 |
(*Lemma needed in both subgoals, for a fixed z*)
|
|
102 |
by (subgoal_tac
|
|
103 |
"ALL z: (UN i:K. X(i)). z: X(LEAST i. z:X(i)) & (LEAST i. z:X(i)) : K" 1);
|
|
104 |
by (fast_tac (ZF_cs addSIs [Least_le RS lt_trans1 RS ltD, ltI]
|
|
105 |
addSEs [LeastI, Ord_in_Ord]) 2);
|
|
106 |
by (res_inst_tac [("c", "%z. <LEAST i. z:X(i), f ` (LEAST i. z:X(i)) ` z>"),
|
|
107 |
("d", "split(%i j. converse(f`i) ` j)")]
|
|
108 |
lam_injective 1);
|
|
109 |
(*Instantiate the lemma proved above*)
|
|
110 |
by (ALLGOALS ball_tac);
|
|
111 |
by (fast_tac (ZF_cs addEs [inj_is_fun RS apply_type]
|
|
112 |
addDs [apply_type]) 1);
|
|
113 |
by (dresolve_tac [apply_type] 1);
|
|
114 |
by (eresolve_tac [conjunct2] 1);
|
|
115 |
by (asm_simp_tac (ZF_ss addsimps [left_inverse]) 1);
|
|
116 |
val cardinal_UN_le = result();
|
|
117 |
|
488
|
118 |
(*The same again, using csucc*)
|
484
|
119 |
goal Cardinal_AC.thy
|
|
120 |
"!!K. [| InfCard(K); ALL i:K. |X(i)| < csucc(K) |] ==> \
|
|
121 |
\ |UN i:K. X(i)| < csucc(K)";
|
|
122 |
by (asm_full_simp_tac
|
|
123 |
(ZF_ss addsimps [Card_lt_csucc_iff, cardinal_UN_le,
|
|
124 |
InfCard_is_Card, Card_cardinal]) 1);
|
|
125 |
val cardinal_UN_lt_csucc = result();
|
488
|
126 |
|
|
127 |
(*The same again, for a union of ordinals*)
|
|
128 |
goal Cardinal_AC.thy
|
|
129 |
"!!K. [| InfCard(K); ALL i:K. j(i) < csucc(K) |] ==> \
|
|
130 |
\ (UN i:K. j(i)) < csucc(K)";
|
|
131 |
by (resolve_tac [cardinal_UN_lt_csucc RS Card_lt_imp_lt] 1);
|
|
132 |
by (assume_tac 1);
|
|
133 |
by (fast_tac (ZF_cs addIs [Ord_cardinal_le RS lt_trans1] addEs [ltE]) 1);
|
|
134 |
by (fast_tac (ZF_cs addSIs [Ord_UN] addEs [ltE]) 1);
|
|
135 |
by (eresolve_tac [InfCard_is_Card RS Card_is_Ord RS Card_csucc] 1);
|
|
136 |
val cardinal_UN_Ord_lt_csucc = result();
|
|
137 |
|