0
|
1 |
(* Title: ZF/subset
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1991 University of Cambridge
|
|
5 |
|
|
6 |
Derived rules involving subsets
|
|
7 |
Union and Intersection as lattice operations
|
|
8 |
*)
|
|
9 |
|
|
10 |
(*** cons ***)
|
|
11 |
|
|
12 |
val cons_subsetI = prove_goal ZF.thy "[| a:C; B<=C |] ==> cons(a,B) <= C"
|
|
13 |
(fn prems=>
|
|
14 |
[ (cut_facts_tac prems 1),
|
|
15 |
(REPEAT (ares_tac [subsetI] 1
|
|
16 |
ORELSE eresolve_tac [consE,ssubst,subsetD] 1)) ]);
|
|
17 |
|
|
18 |
val subset_consI = prove_goal ZF.thy "B <= cons(a,B)"
|
|
19 |
(fn _=> [ (rtac subsetI 1), (etac consI2 1) ]);
|
|
20 |
|
|
21 |
(*Useful for rewriting!*)
|
|
22 |
val cons_subset_iff = prove_goal ZF.thy "cons(a,B)<=C <-> a:C & B<=C"
|
|
23 |
(fn _=> [ (fast_tac upair_cs 1) ]);
|
|
24 |
|
|
25 |
(*A safe special case of subset elimination, adding no new variables
|
|
26 |
[| cons(a,B) <= C; [| a : C; B <= C |] ==> R |] ==> R *)
|
|
27 |
val cons_subsetE = standard (cons_subset_iff RS iffD1 RS conjE);
|
|
28 |
|
|
29 |
val subset_empty_iff = prove_goal ZF.thy "A<=0 <-> A=0"
|
|
30 |
(fn _=> [ (fast_tac (upair_cs addIs [equalityI]) 1) ]);
|
|
31 |
|
|
32 |
val subset_cons_iff = prove_goal ZF.thy
|
|
33 |
"C<=cons(a,B) <-> C<=B | (a:C & C-{a} <= B)"
|
|
34 |
(fn _=> [ (fast_tac upair_cs 1) ]);
|
|
35 |
|
|
36 |
(*** succ ***)
|
|
37 |
|
|
38 |
val subset_succI = prove_goal ZF.thy "i <= succ(i)"
|
|
39 |
(fn _=> [ (rtac subsetI 1), (etac succI2 1) ]);
|
|
40 |
|
|
41 |
(*But if j is an ordinal or is transitive, then i:j implies i<=j!
|
|
42 |
See ordinal/Ord_succ_subsetI*)
|
|
43 |
val succ_subsetI = prove_goalw ZF.thy [succ_def]
|
|
44 |
"[| i:j; i<=j |] ==> succ(i)<=j"
|
|
45 |
(fn prems=>
|
|
46 |
[ (REPEAT (ares_tac (prems@[cons_subsetI]) 1)) ]);
|
|
47 |
|
|
48 |
val succ_subsetE = prove_goalw ZF.thy [succ_def]
|
|
49 |
"[| succ(i) <= j; [| i:j; i<=j |] ==> P \
|
|
50 |
\ |] ==> P"
|
|
51 |
(fn major::prems=>
|
|
52 |
[ (rtac (major RS cons_subsetE) 1),
|
|
53 |
(REPEAT (ares_tac prems 1)) ]);
|
|
54 |
|
|
55 |
(*** singletons ***)
|
|
56 |
|
|
57 |
val singleton_subsetI = prove_goal ZF.thy
|
|
58 |
"a:C ==> {a} <= C"
|
|
59 |
(fn prems=>
|
|
60 |
[ (REPEAT (resolve_tac (prems@[cons_subsetI,empty_subsetI]) 1)) ]);
|
|
61 |
|
|
62 |
val singleton_subsetD = prove_goal ZF.thy
|
|
63 |
"{a} <= C ==> a:C"
|
|
64 |
(fn prems=> [ (REPEAT (ares_tac (prems@[cons_subsetE]) 1)) ]);
|
|
65 |
|
|
66 |
(*** Big Union -- least upper bound of a set ***)
|
|
67 |
|
|
68 |
val Union_subset_iff = prove_goal ZF.thy "Union(A) <= C <-> (ALL x:A. x <= C)"
|
|
69 |
(fn _ => [ fast_tac upair_cs 1 ]);
|
|
70 |
|
|
71 |
val Union_upper = prove_goal ZF.thy
|
|
72 |
"B:A ==> B <= Union(A)"
|
|
73 |
(fn prems=> [ (REPEAT (ares_tac (prems@[subsetI,UnionI]) 1)) ]);
|
|
74 |
|
|
75 |
val Union_least = prove_goal ZF.thy
|
|
76 |
"[| !!x. x:A ==> x<=C |] ==> Union(A) <= C"
|
|
77 |
(fn [prem]=>
|
|
78 |
[ (rtac (ballI RS (Union_subset_iff RS iffD2)) 1),
|
|
79 |
(etac prem 1) ]);
|
|
80 |
|
|
81 |
(*** Union of a family of sets ***)
|
|
82 |
|
|
83 |
goal ZF.thy "A <= (UN i:I. B(i)) <-> A = (UN i:I. A Int B(i))";
|
|
84 |
by (fast_tac (upair_cs addSIs [equalityI] addSEs [equalityE]) 1);
|
|
85 |
val subset_UN_iff_eq = result();
|
|
86 |
|
|
87 |
val UN_subset_iff = prove_goal ZF.thy
|
|
88 |
"(UN x:A.B(x)) <= C <-> (ALL x:A. B(x) <= C)"
|
|
89 |
(fn _ => [ fast_tac upair_cs 1 ]);
|
|
90 |
|
|
91 |
val UN_upper = prove_goal ZF.thy
|
|
92 |
"!!x A. x:A ==> B(x) <= (UN x:A.B(x))"
|
|
93 |
(fn _ => [ etac (RepFunI RS Union_upper) 1 ]);
|
|
94 |
|
|
95 |
val UN_least = prove_goal ZF.thy
|
|
96 |
"[| !!x. x:A ==> B(x)<=C |] ==> (UN x:A.B(x)) <= C"
|
|
97 |
(fn [prem]=>
|
|
98 |
[ (rtac (ballI RS (UN_subset_iff RS iffD2)) 1),
|
|
99 |
(etac prem 1) ]);
|
|
100 |
|
|
101 |
|
|
102 |
(*** Big Intersection -- greatest lower bound of a nonempty set ***)
|
|
103 |
|
|
104 |
val Inter_subset_iff = prove_goal ZF.thy
|
|
105 |
"!!a A. a: A ==> C <= Inter(A) <-> (ALL x:A. C <= x)"
|
|
106 |
(fn _ => [ fast_tac upair_cs 1 ]);
|
|
107 |
|
|
108 |
val Inter_lower = prove_goal ZF.thy "B:A ==> Inter(A) <= B"
|
|
109 |
(fn prems=>
|
|
110 |
[ (REPEAT (resolve_tac (prems@[subsetI]) 1
|
|
111 |
ORELSE etac InterD 1)) ]);
|
|
112 |
|
|
113 |
val Inter_greatest = prove_goal ZF.thy
|
|
114 |
"[| a:A; !!x. x:A ==> C<=x |] ==> C <= Inter(A)"
|
|
115 |
(fn [prem1,prem2]=>
|
|
116 |
[ (rtac ([prem1, ballI] MRS (Inter_subset_iff RS iffD2)) 1),
|
|
117 |
(etac prem2 1) ]);
|
|
118 |
|
|
119 |
(*** Intersection of a family of sets ***)
|
|
120 |
|
|
121 |
val INT_lower = prove_goal ZF.thy
|
|
122 |
"x:A ==> (INT x:A.B(x)) <= B(x)"
|
|
123 |
(fn [prem] =>
|
|
124 |
[ rtac (prem RS RepFunI RS Inter_lower) 1 ]);
|
|
125 |
|
|
126 |
val INT_greatest = prove_goal ZF.thy
|
|
127 |
"[| a:A; !!x. x:A ==> C<=B(x) |] ==> C <= (INT x:A.B(x))"
|
|
128 |
(fn [nonempty,prem] =>
|
|
129 |
[ rtac (nonempty RS RepFunI RS Inter_greatest) 1,
|
|
130 |
REPEAT (eresolve_tac [RepFunE, prem, ssubst] 1) ]);
|
|
131 |
|
|
132 |
|
|
133 |
(*** Finite Union -- the least upper bound of 2 sets ***)
|
|
134 |
|
|
135 |
val Un_subset_iff = prove_goal ZF.thy "A Un B <= C <-> A <= C & B <= C"
|
|
136 |
(fn _ => [ fast_tac upair_cs 1 ]);
|
|
137 |
|
|
138 |
val Un_upper1 = prove_goal ZF.thy "A <= A Un B"
|
|
139 |
(fn _ => [ (REPEAT (ares_tac [subsetI,UnI1] 1)) ]);
|
|
140 |
|
|
141 |
val Un_upper2 = prove_goal ZF.thy "B <= A Un B"
|
|
142 |
(fn _ => [ (REPEAT (ares_tac [subsetI,UnI2] 1)) ]);
|
|
143 |
|
|
144 |
val Un_least = prove_goal ZF.thy "!!A B C. [| A<=C; B<=C |] ==> A Un B <= C"
|
|
145 |
(fn _ =>
|
|
146 |
[ (rtac (Un_subset_iff RS iffD2) 1),
|
|
147 |
(REPEAT (ares_tac [conjI] 1)) ]);
|
|
148 |
|
|
149 |
(*** Finite Intersection -- the greatest lower bound of 2 sets *)
|
|
150 |
|
|
151 |
val Int_subset_iff = prove_goal ZF.thy "C <= A Int B <-> C <= A & C <= B"
|
|
152 |
(fn _ => [ fast_tac upair_cs 1 ]);
|
|
153 |
|
|
154 |
val Int_lower1 = prove_goal ZF.thy "A Int B <= A"
|
|
155 |
(fn _ => [ (REPEAT (ares_tac [subsetI] 1 ORELSE etac IntE 1)) ]);
|
|
156 |
|
|
157 |
val Int_lower2 = prove_goal ZF.thy "A Int B <= B"
|
|
158 |
(fn _ => [ (REPEAT (ares_tac [subsetI] 1 ORELSE etac IntE 1)) ]);
|
|
159 |
|
|
160 |
val Int_greatest = prove_goal ZF.thy
|
|
161 |
"!!A B C. [| C<=A; C<=B |] ==> C <= A Int B"
|
|
162 |
(fn prems=>
|
|
163 |
[ (rtac (Int_subset_iff RS iffD2) 1),
|
|
164 |
(REPEAT (ares_tac [conjI] 1)) ]);
|
|
165 |
|
|
166 |
(*** Set difference *)
|
|
167 |
|
|
168 |
val Diff_subset = prove_goal ZF.thy "A-B <= A"
|
|
169 |
(fn _ => [ (REPEAT (ares_tac [subsetI] 1 ORELSE etac DiffE 1)) ]);
|
|
170 |
|
|
171 |
val Diff_contains = prove_goal ZF.thy
|
|
172 |
"[| C<=A; C Int B = 0 |] ==> C <= A-B"
|
|
173 |
(fn prems=>
|
|
174 |
[ (cut_facts_tac prems 1),
|
|
175 |
(rtac subsetI 1),
|
|
176 |
(REPEAT (ares_tac [DiffI,IntI,notI] 1
|
|
177 |
ORELSE eresolve_tac [subsetD,equals0D] 1)) ]);
|
|
178 |
|
|
179 |
(** Collect **)
|
|
180 |
|
|
181 |
val Collect_subset = prove_goal ZF.thy "Collect(A,P) <= A"
|
|
182 |
(fn _ => [ (REPEAT (ares_tac [subsetI] 1 ORELSE etac CollectD1 1)) ]);
|
|
183 |
|
|
184 |
(** RepFun **)
|
|
185 |
|
|
186 |
val prems = goal ZF.thy "[| !!x. x:A ==> f(x): B |] ==> {f(x). x:A} <= B";
|
|
187 |
by (rtac subsetI 1);
|
|
188 |
by (etac RepFunE 1);
|
|
189 |
by (etac ssubst 1);
|
|
190 |
by (eresolve_tac prems 1);
|
|
191 |
val RepFun_subset = result();
|