src/HOL/Set.thy
author wenzelm
Fri, 27 May 2016 23:35:13 +0200
changeset 63171 a0088f1c049d
parent 63114 27afe7af7379
child 63301 d3c87eb0bad2
permissions -rw-r--r--
tuned proofs;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
32139
e271a64f03ff moved complete_lattice &c. into separate theory
haftmann
parents: 32135
diff changeset
     1
(*  Author:     Tobias Nipkow, Lawrence C Paulson and Markus Wenzel *)
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     2
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
     3
section \<open>Set theory for higher-order logic\<close>
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
     4
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15120
diff changeset
     5
theory Set
30304
d8e4cd2ac2a1 set operations Int, Un, INTER, UNION, Inter, Union, empty, UNIV are now proper qualified constants with authentic syntax
haftmann
parents: 29901
diff changeset
     6
imports Lattices
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15120
diff changeset
     7
begin
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
     8
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
     9
subsection \<open>Sets as predicates\<close>
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
    10
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
    11
typedecl 'a set
3820
46b255e140dc fixed infix syntax;
wenzelm
parents: 3370
diff changeset
    12
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
    13
axiomatization Collect :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set" \<comment> "comprehension"
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
    14
  and member :: "'a \<Rightarrow> 'a set \<Rightarrow> bool" \<comment> "membership"
61955
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
    15
where mem_Collect_eq [iff, code_unfold]: "member a (Collect P) = P a"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
    16
  and Collect_mem_eq [simp]: "Collect (\<lambda>x. member x A) = A"
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19637
diff changeset
    17
21210
c17fd2df4e9e renamed 'const_syntax' to 'notation';
wenzelm
parents: 20380
diff changeset
    18
notation
61955
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
    19
  member  ("op \<in>") and
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
    20
  member  ("(_/ \<in> _)" [51, 51] 50)
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
    21
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
    22
abbreviation not_member
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
    23
  where "not_member x A \<equiv> \<not> (x \<in> A)" \<comment> "non-membership"
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
    24
notation
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
    25
  not_member  ("op \<notin>") and
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
    26
  not_member  ("(_/ \<notin> _)" [51, 51] 50)
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
    27
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
    28
notation (ASCII)
37677
c5a8b612e571 qualified constants Set.member and Set.Collect
haftmann
parents: 37387
diff changeset
    29
  member  ("op :") and
61955
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
    30
  member  ("(_/ : _)" [51, 51] 50) and
37677
c5a8b612e571 qualified constants Set.member and Set.Collect
haftmann
parents: 37387
diff changeset
    31
  not_member  ("op ~:") and
50580
fbb973a53106 made element and subset relations non-associative (just like all orderings)
nipkow
parents: 49757
diff changeset
    32
  not_member  ("(_/ ~: _)" [51, 51] 50)
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19637
diff changeset
    33
41107
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    34
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
    35
text \<open>Set comprehensions\<close>
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    36
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
    37
syntax
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
    38
  "_Coll" :: "pttrn => bool => 'a set"    ("(1{_./ _})")
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
    39
translations
61955
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
    40
  "{x. P}" \<rightleftharpoons> "CONST Collect (\<lambda>x. P)"
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
    41
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
    42
syntax (ASCII)
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
    43
  "_Collect" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> 'a set"  ("(1{_ :/ _./ _})")
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    44
syntax
61955
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
    45
  "_Collect" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> 'a set"  ("(1{_ \<in>/ _./ _})")
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    46
translations
61955
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
    47
  "{p:A. P}" \<rightharpoonup> "CONST Collect (\<lambda>p. p \<in> A \<and> P)"
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    48
41107
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    49
lemma CollectI: "P a \<Longrightarrow> a \<in> {x. P x}"
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    50
  by simp
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    51
41107
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    52
lemma CollectD: "a \<in> {x. P x} \<Longrightarrow> P a"
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    53
  by simp
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    54
41107
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    55
lemma Collect_cong: "(\<And>x. P x = Q x) ==> {x. P x} = {x. Q x}"
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    56
  by simp
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    57
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
    58
text \<open>
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
    59
Simproc for pulling \<open>x=t\<close> in \<open>{x. \<dots> & x=t & \<dots>}\<close>
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
    60
to the front (and similarly for \<open>t=x\<close>):
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
    61
\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
    62
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
    63
simproc_setup defined_Collect ("{x. P x & Q x}") = \<open>
54998
8601434fa334 tuned signature;
wenzelm
parents: 54147
diff changeset
    64
  fn _ => Quantifier1.rearrange_Collect
59498
50b60f501b05 proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents: 59000
diff changeset
    65
    (fn ctxt =>
50b60f501b05 proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents: 59000
diff changeset
    66
      resolve_tac ctxt @{thms Collect_cong} 1 THEN
50b60f501b05 proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents: 59000
diff changeset
    67
      resolve_tac ctxt @{thms iffI} 1 THEN
42459
38b9f023cc34 misc tuning and simplification;
wenzelm
parents: 42456
diff changeset
    68
      ALLGOALS
59498
50b60f501b05 proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents: 59000
diff changeset
    69
        (EVERY' [REPEAT_DETERM o eresolve_tac ctxt @{thms conjE},
59499
14095f771781 misc tuning;
wenzelm
parents: 59498
diff changeset
    70
          DEPTH_SOLVE_1 o (assume_tac ctxt ORELSE' resolve_tac ctxt @{thms conjI})]))
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
    71
\<close>
32117
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
    72
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    73
lemmas CollectE = CollectD [elim_format]
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    74
41107
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    75
lemma set_eqI:
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    76
  assumes "\<And>x. x \<in> A \<longleftrightarrow> x \<in> B"
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    77
  shows "A = B"
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    78
proof -
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    79
  from assms have "{x. x \<in> A} = {x. x \<in> B}" by simp
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    80
  then show ?thesis by simp
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    81
qed
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    82
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
    83
lemma set_eq_iff:
41107
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    84
  "A = B \<longleftrightarrow> (\<forall>x. x \<in> A \<longleftrightarrow> x \<in> B)"
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    85
  by (auto intro:set_eqI)
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    86
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
    87
text \<open>Lifting of predicate class instances\<close>
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
    88
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
    89
instantiation set :: (type) boolean_algebra
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
    90
begin
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
    91
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
    92
definition less_eq_set where
46853
998ec26044c4 beautified
haftmann
parents: 46504
diff changeset
    93
  "A \<le> B \<longleftrightarrow> (\<lambda>x. member x A) \<le> (\<lambda>x. member x B)"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
    94
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
    95
definition less_set where
46853
998ec26044c4 beautified
haftmann
parents: 46504
diff changeset
    96
  "A < B \<longleftrightarrow> (\<lambda>x. member x A) < (\<lambda>x. member x B)"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
    97
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
    98
definition inf_set where
46853
998ec26044c4 beautified
haftmann
parents: 46504
diff changeset
    99
  "A \<sqinter> B = Collect ((\<lambda>x. member x A) \<sqinter> (\<lambda>x. member x B))"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   100
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   101
definition sup_set where
46853
998ec26044c4 beautified
haftmann
parents: 46504
diff changeset
   102
  "A \<squnion> B = Collect ((\<lambda>x. member x A) \<squnion> (\<lambda>x. member x B))"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   103
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   104
definition bot_set where
46853
998ec26044c4 beautified
haftmann
parents: 46504
diff changeset
   105
  "\<bottom> = Collect \<bottom>"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   106
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   107
definition top_set where
46853
998ec26044c4 beautified
haftmann
parents: 46504
diff changeset
   108
  "\<top> = Collect \<top>"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   109
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   110
definition uminus_set where
46853
998ec26044c4 beautified
haftmann
parents: 46504
diff changeset
   111
  "- A = Collect (- (\<lambda>x. member x A))"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   112
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   113
definition minus_set where
46853
998ec26044c4 beautified
haftmann
parents: 46504
diff changeset
   114
  "A - B = Collect ((\<lambda>x. member x A) - (\<lambda>x. member x B))"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   115
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   116
instance proof
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   117
qed (simp_all add: less_eq_set_def less_set_def inf_set_def sup_set_def
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   118
  bot_set_def top_set_def uminus_set_def minus_set_def
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   119
  less_le_not_le inf_compl_bot sup_compl_top sup_inf_distrib1 diff_eq
46882
6242b4bc05bc tuned simpset
noschinl
parents: 46853
diff changeset
   120
  set_eqI fun_eq_iff
6242b4bc05bc tuned simpset
noschinl
parents: 46853
diff changeset
   121
  del: inf_apply sup_apply bot_apply top_apply minus_apply uminus_apply)
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   122
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   123
end
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   124
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   125
text \<open>Set enumerations\<close>
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   126
32264
0be31453f698 Set.UNIV and Set.empty are mere abbreviations for top and bot
haftmann
parents: 32139
diff changeset
   127
abbreviation empty :: "'a set" ("{}") where
0be31453f698 Set.UNIV and Set.empty are mere abbreviations for top and bot
haftmann
parents: 32139
diff changeset
   128
  "{} \<equiv> bot"
31456
55edadbd43d5 insert now qualified and with authentic syntax
haftmann
parents: 31197
diff changeset
   129
55edadbd43d5 insert now qualified and with authentic syntax
haftmann
parents: 31197
diff changeset
   130
definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   131
  insert_compr: "insert a B = {x. x = a \<or> x \<in> B}"
31456
55edadbd43d5 insert now qualified and with authentic syntax
haftmann
parents: 31197
diff changeset
   132
55edadbd43d5 insert now qualified and with authentic syntax
haftmann
parents: 31197
diff changeset
   133
syntax
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   134
  "_Finset" :: "args => 'a set"    ("{(_)}")
31456
55edadbd43d5 insert now qualified and with authentic syntax
haftmann
parents: 31197
diff changeset
   135
translations
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   136
  "{x, xs}" == "CONST insert x {xs}"
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   137
  "{x}" == "CONST insert x {}"
31456
55edadbd43d5 insert now qualified and with authentic syntax
haftmann
parents: 31197
diff changeset
   138
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   139
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   140
subsection \<open>Subsets and bounded quantifiers\<close>
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   141
61955
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   142
abbreviation subset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool"
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   143
  where "subset \<equiv> less"
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   144
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   145
abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool"
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   146
  where "subset_eq \<equiv> less_eq"
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   147
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   148
notation
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   149
  subset  ("op \<subset>") and
50580
fbb973a53106 made element and subset relations non-associative (just like all orderings)
nipkow
parents: 49757
diff changeset
   150
  subset  ("(_/ \<subset> _)" [51, 51] 50) and
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   151
  subset_eq  ("op \<subseteq>") and
50580
fbb973a53106 made element and subset relations non-associative (just like all orderings)
nipkow
parents: 49757
diff changeset
   152
  subset_eq  ("(_/ \<subseteq> _)" [51, 51] 50)
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   153
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   154
abbreviation (input)
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   155
  supset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   156
  "supset \<equiv> greater"
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   157
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   158
abbreviation (input)
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   159
  supset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   160
  "supset_eq \<equiv> greater_eq"
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   161
61955
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   162
notation
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   163
  supset  ("op \<supset>") and
50580
fbb973a53106 made element and subset relations non-associative (just like all orderings)
nipkow
parents: 49757
diff changeset
   164
  supset  ("(_/ \<supset> _)" [51, 51] 50) and
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   165
  supset_eq  ("op \<supseteq>") and
50580
fbb973a53106 made element and subset relations non-associative (just like all orderings)
nipkow
parents: 49757
diff changeset
   166
  supset_eq  ("(_/ \<supseteq> _)" [51, 51] 50)
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   167
61955
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   168
notation (ASCII output)
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   169
  subset  ("op <") and
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   170
  subset  ("(_/ < _)" [51, 51] 50) and
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   171
  subset_eq  ("op <=") and
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   172
  subset_eq  ("(_/ <= _)" [51, 51] 50)
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   173
37387
3581483cca6c qualified types "+" and nat; qualified constants Ball, Bex, Suc, curry; modernized some specifications
haftmann
parents: 36009
diff changeset
   174
definition Ball :: "'a set \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   175
  "Ball A P \<longleftrightarrow> (\<forall>x. x \<in> A \<longrightarrow> P x)"   \<comment> "bounded universal quantifiers"
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   176
37387
3581483cca6c qualified types "+" and nat; qualified constants Ball, Bex, Suc, curry; modernized some specifications
haftmann
parents: 36009
diff changeset
   177
definition Bex :: "'a set \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   178
  "Bex A P \<longleftrightarrow> (\<exists>x. x \<in> A \<and> P x)"   \<comment> "bounded existential quantifiers"
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   179
61955
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   180
syntax (ASCII)
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   181
  "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3ALL _:_./ _)" [0, 0, 10] 10)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   182
  "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3EX _:_./ _)" [0, 0, 10] 10)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   183
  "_Bex1"       :: "pttrn => 'a set => bool => bool"      ("(3EX! _:_./ _)" [0, 0, 10] 10)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   184
  "_Bleast"     :: "id => 'a set => bool => 'a"           ("(3LEAST _:_./ _)" [0, 0, 10] 10)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   185
62521
6383440f41a8 old HOL syntax is for input only;
wenzelm
parents: 62390
diff changeset
   186
syntax (input)
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   187
  "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3! _:_./ _)" [0, 0, 10] 10)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   188
  "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3? _:_./ _)" [0, 0, 10] 10)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   189
  "_Bex1"       :: "pttrn => 'a set => bool => bool"      ("(3?! _:_./ _)" [0, 0, 10] 10)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   190
61955
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   191
syntax
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   192
  "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   193
  "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   194
  "_Bex1"       :: "pttrn => 'a set => bool => bool"      ("(3\<exists>!_\<in>_./ _)" [0, 0, 10] 10)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   195
  "_Bleast"     :: "id => 'a set => bool => 'a"           ("(3LEAST_\<in>_./ _)" [0, 0, 10] 10)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   196
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   197
translations
61955
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   198
  "\<forall>x\<in>A. P" \<rightleftharpoons> "CONST Ball A (\<lambda>x. P)"
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   199
  "\<exists>x\<in>A. P" \<rightleftharpoons> "CONST Bex A (\<lambda>x. P)"
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   200
  "\<exists>!x\<in>A. P" \<rightharpoonup> "\<exists>!x. x \<in> A \<and> P"
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   201
  "LEAST x:A. P" \<rightharpoonup> "LEAST x. x \<in> A \<and> P"
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   202
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   203
syntax (ASCII output)
14804
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   204
  "_setlessAll" :: "[idt, 'a, bool] => bool"  ("(3ALL _<_./ _)"  [0, 0, 10] 10)
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   205
  "_setlessEx"  :: "[idt, 'a, bool] => bool"  ("(3EX _<_./ _)"  [0, 0, 10] 10)
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   206
  "_setleAll"   :: "[idt, 'a, bool] => bool"  ("(3ALL _<=_./ _)" [0, 0, 10] 10)
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   207
  "_setleEx"    :: "[idt, 'a, bool] => bool"  ("(3EX _<=_./ _)" [0, 0, 10] 10)
20217
25b068a99d2b linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents: 19870
diff changeset
   208
  "_setleEx1"   :: "[idt, 'a, bool] => bool"  ("(3EX! _<=_./ _)" [0, 0, 10] 10)
14804
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   209
61955
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   210
syntax
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   211
  "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subset>_./ _)"  [0, 0, 10] 10)
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   212
  "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subset>_./ _)"  [0, 0, 10] 10)
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   213
  "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subseteq>_./ _)" [0, 0, 10] 10)
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   214
  "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subseteq>_./ _)" [0, 0, 10] 10)
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   215
  "_setleEx1"   :: "[idt, 'a, bool] => bool"   ("(3\<exists>!_\<subseteq>_./ _)" [0, 0, 10] 10)
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   216
14804
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   217
translations
61955
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   218
 "\<forall>A\<subset>B. P"   \<rightharpoonup>  "\<forall>A. A \<subset> B \<longrightarrow> P"
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   219
 "\<exists>A\<subset>B. P"   \<rightharpoonup>  "\<exists>A. A \<subset> B \<and> P"
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   220
 "\<forall>A\<subseteq>B. P"   \<rightharpoonup>  "\<forall>A. A \<subseteq> B \<longrightarrow> P"
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   221
 "\<exists>A\<subseteq>B. P"   \<rightharpoonup>  "\<exists>A. A \<subseteq> B \<and> P"
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   222
 "\<exists>!A\<subseteq>B. P"  \<rightharpoonup>  "\<exists>!A. A \<subseteq> B \<and> P"
14804
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   223
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   224
print_translation \<open>
52143
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   225
  let
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   226
    val All_binder = Mixfix.binder_name @{const_syntax All};
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   227
    val Ex_binder = Mixfix.binder_name @{const_syntax Ex};
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   228
    val impl = @{const_syntax HOL.implies};
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   229
    val conj = @{const_syntax HOL.conj};
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   230
    val sbset = @{const_syntax subset};
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   231
    val sbset_eq = @{const_syntax subset_eq};
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   232
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   233
    val trans =
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   234
     [((All_binder, impl, sbset), @{syntax_const "_setlessAll"}),
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   235
      ((All_binder, impl, sbset_eq), @{syntax_const "_setleAll"}),
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   236
      ((Ex_binder, conj, sbset), @{syntax_const "_setlessEx"}),
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   237
      ((Ex_binder, conj, sbset_eq), @{syntax_const "_setleEx"})];
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   238
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   239
    fun mk v (v', T) c n P =
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   240
      if v = v' andalso not (Term.exists_subterm (fn Free (x, _) => x = v | _ => false) n)
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   241
      then Syntax.const c $ Syntax_Trans.mark_bound_body (v', T) $ n $ P
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   242
      else raise Match;
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   243
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   244
    fun tr' q = (q, fn _ =>
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   245
      (fn [Const (@{syntax_const "_bound"}, _) $ Free (v, Type (@{type_name set}, _)),
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   246
          Const (c, _) $
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   247
            (Const (d, _) $ (Const (@{syntax_const "_bound"}, _) $ Free (v', T)) $ n) $ P] =>
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   248
          (case AList.lookup (op =) trans (q, c, d) of
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   249
            NONE => raise Match
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   250
          | SOME l => mk v (v', T) l n P)
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   251
        | _ => raise Match));
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   252
  in
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   253
    [tr' All_binder, tr' Ex_binder]
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   254
  end
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   255
\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   256
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   257
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   258
text \<open>
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   259
  \medskip Translate between \<open>{e | x1...xn. P}\<close> and \<open>{u. EX x1..xn. u = e & P}\<close>; \<open>{y. EX x1..xn. y = e & P}\<close> is
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   260
  only translated if \<open>[0..n] subset bvs(e)\<close>.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   261
\<close>
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   262
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   263
syntax
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   264
  "_Setcompr" :: "'a => idts => bool => 'a set"    ("(1{_ |/_./ _})")
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   265
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   266
parse_translation \<open>
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   267
  let
42284
326f57825e1a explicit structure Syntax_Trans;
wenzelm
parents: 42163
diff changeset
   268
    val ex_tr = snd (Syntax_Trans.mk_binder_tr ("EX ", @{const_syntax Ex}));
3947
eb707467f8c5 adapted to qualified names;
wenzelm
parents: 3842
diff changeset
   269
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   270
    fun nvars (Const (@{syntax_const "_idts"}, _) $ _ $ idts) = nvars idts + 1
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   271
      | nvars _ = 1;
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   272
52143
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   273
    fun setcompr_tr ctxt [e, idts, b] =
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   274
      let
38864
4abe644fcea5 formerly unnamed infix equality now named HOL.eq
haftmann
parents: 38795
diff changeset
   275
        val eq = Syntax.const @{const_syntax HOL.eq} $ Bound (nvars idts) $ e;
38795
848be46708dc formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents: 38786
diff changeset
   276
        val P = Syntax.const @{const_syntax HOL.conj} $ eq $ b;
52143
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   277
        val exP = ex_tr ctxt [idts, P];
44241
7943b69f0188 modernized signature of Term.absfree/absdummy;
wenzelm
parents: 43967
diff changeset
   278
      in Syntax.const @{const_syntax Collect} $ absdummy dummyT exP end;
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   279
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   280
  in [(@{syntax_const "_Setcompr"}, setcompr_tr)] end;
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   281
\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   282
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   283
print_translation \<open>
42284
326f57825e1a explicit structure Syntax_Trans;
wenzelm
parents: 42163
diff changeset
   284
 [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax Ball} @{syntax_const "_Ball"},
326f57825e1a explicit structure Syntax_Trans;
wenzelm
parents: 42163
diff changeset
   285
  Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax Bex} @{syntax_const "_Bex"}]
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   286
\<close> \<comment> \<open>to avoid eta-contraction of body\<close>
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   287
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   288
print_translation \<open>
13763
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   289
let
42284
326f57825e1a explicit structure Syntax_Trans;
wenzelm
parents: 42163
diff changeset
   290
  val ex_tr' = snd (Syntax_Trans.mk_binder_tr' (@{const_syntax Ex}, "DUMMY"));
13763
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   291
52143
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   292
  fun setcompr_tr' ctxt [Abs (abs as (_, _, P))] =
13763
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   293
    let
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   294
      fun check (Const (@{const_syntax Ex}, _) $ Abs (_, _, P), n) = check (P, n + 1)
38795
848be46708dc formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents: 38786
diff changeset
   295
        | check (Const (@{const_syntax HOL.conj}, _) $
38864
4abe644fcea5 formerly unnamed infix equality now named HOL.eq
haftmann
parents: 38795
diff changeset
   296
              (Const (@{const_syntax HOL.eq}, _) $ Bound m $ e) $ P, n) =
13763
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   297
            n > 0 andalso m = n andalso not (loose_bvar1 (P, n)) andalso
33038
8f9594c31de4 dropped redundant gen_ prefix
haftmann
parents: 33037
diff changeset
   298
            subset (op =) (0 upto (n - 1), add_loose_bnos (e, 0, []))
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   299
        | check _ = false;
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   300
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   301
        fun tr' (_ $ abs) =
52143
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   302
          let val _ $ idts $ (_ $ (_ $ _ $ e) $ Q) = ex_tr' ctxt [abs]
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   303
          in Syntax.const @{syntax_const "_Setcompr"} $ e $ idts $ Q end;
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   304
    in
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   305
      if check (P, 0) then tr' P
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   306
      else
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   307
        let
42284
326f57825e1a explicit structure Syntax_Trans;
wenzelm
parents: 42163
diff changeset
   308
          val (x as _ $ Free(xN, _), t) = Syntax_Trans.atomic_abs_tr' abs;
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   309
          val M = Syntax.const @{syntax_const "_Coll"} $ x $ t;
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   310
        in
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   311
          case t of
38795
848be46708dc formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents: 38786
diff changeset
   312
            Const (@{const_syntax HOL.conj}, _) $
37677
c5a8b612e571 qualified constants Set.member and Set.Collect
haftmann
parents: 37387
diff changeset
   313
              (Const (@{const_syntax Set.member}, _) $
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   314
                (Const (@{syntax_const "_bound"}, _) $ Free (yN, _)) $ A) $ P =>
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   315
            if xN = yN then Syntax.const @{syntax_const "_Collect"} $ x $ A $ P else M
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   316
          | _ => M
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   317
        end
13763
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   318
    end;
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   319
  in [(@{const_syntax Collect}, setcompr_tr')] end;
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   320
\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   321
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   322
simproc_setup defined_Bex ("EX x:A. P x & Q x") = \<open>
54998
8601434fa334 tuned signature;
wenzelm
parents: 54147
diff changeset
   323
  fn _ => Quantifier1.rearrange_bex
8601434fa334 tuned signature;
wenzelm
parents: 54147
diff changeset
   324
    (fn ctxt =>
8601434fa334 tuned signature;
wenzelm
parents: 54147
diff changeset
   325
      unfold_tac ctxt @{thms Bex_def} THEN
59498
50b60f501b05 proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents: 59000
diff changeset
   326
      Quantifier1.prove_one_point_ex_tac ctxt)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   327
\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   328
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   329
simproc_setup defined_All ("ALL x:A. P x --> Q x") = \<open>
54998
8601434fa334 tuned signature;
wenzelm
parents: 54147
diff changeset
   330
  fn _ => Quantifier1.rearrange_ball
8601434fa334 tuned signature;
wenzelm
parents: 54147
diff changeset
   331
    (fn ctxt =>
8601434fa334 tuned signature;
wenzelm
parents: 54147
diff changeset
   332
      unfold_tac ctxt @{thms Ball_def} THEN
59498
50b60f501b05 proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents: 59000
diff changeset
   333
      Quantifier1.prove_one_point_all_tac ctxt)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   334
\<close>
32117
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   335
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   336
lemma ballI [intro!]: "(!!x. x:A ==> P x) ==> ALL x:A. P x"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   337
  by (simp add: Ball_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   338
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   339
lemmas strip = impI allI ballI
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   340
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   341
lemma bspec [dest?]: "ALL x:A. P x ==> x:A ==> P x"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   342
  by (simp add: Ball_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   343
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   344
text \<open>
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   345
  Gives better instantiation for bound:
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   346
\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   347
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   348
setup \<open>
51717
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51703
diff changeset
   349
  map_theory_claset (fn ctxt =>
59498
50b60f501b05 proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents: 59000
diff changeset
   350
    ctxt addbefore ("bspec", fn ctxt' => dresolve_tac ctxt' @{thms bspec} THEN' assume_tac ctxt'))
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   351
\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   352
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   353
ML \<open>
32117
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   354
structure Simpdata =
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   355
struct
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   356
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   357
open Simpdata;
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   358
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   359
val mksimps_pairs = [(@{const_name Ball}, @{thms bspec})] @ mksimps_pairs;
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   360
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   361
end;
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   362
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   363
open Simpdata;
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   364
\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   365
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   366
declaration \<open>fn _ =>
45625
750c5a47400b modernized some old-style infix operations, which were left over from the time of ML proof scripts;
wenzelm
parents: 45607
diff changeset
   367
  Simplifier.map_ss (Simplifier.set_mksimps (mksimps mksimps_pairs))
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   368
\<close>
32117
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   369
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   370
lemma ballE [elim]: "ALL x:A. P x ==> (P x ==> Q) ==> (x ~: A ==> Q) ==> Q"
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   371
  by (unfold Ball_def) blast
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   372
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   373
lemma bexI [intro]: "P x ==> x:A ==> EX x:A. P x"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   374
  \<comment> \<open>Normally the best argument order: @{prop "P x"} constrains the
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   375
    choice of @{prop "x:A"}.\<close>
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   376
  by (unfold Bex_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   377
13113
5eb9be7b72a5 rev_bexI [intro?];
wenzelm
parents: 13103
diff changeset
   378
lemma rev_bexI [intro?]: "x:A ==> P x ==> EX x:A. P x"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   379
  \<comment> \<open>The best argument order when there is only one @{prop "x:A"}.\<close>
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   380
  by (unfold Bex_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   381
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   382
lemma bexCI: "(ALL x:A. ~P x ==> P a) ==> a:A ==> EX x:A. P x"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   383
  by (unfold Bex_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   384
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   385
lemma bexE [elim!]: "EX x:A. P x ==> (!!x. x:A ==> P x ==> Q) ==> Q"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   386
  by (unfold Bex_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   387
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   388
lemma ball_triv [simp]: "(ALL x:A. P) = ((EX x. x:A) --> P)"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   389
  \<comment> \<open>Trival rewrite rule.\<close>
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   390
  by (simp add: Ball_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   391
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   392
lemma bex_triv [simp]: "(EX x:A. P) = ((EX x. x:A) & P)"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   393
  \<comment> \<open>Dual form for existentials.\<close>
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   394
  by (simp add: Bex_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   395
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   396
lemma bex_triv_one_point1 [simp]: "(EX x:A. x = a) = (a:A)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   397
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   398
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   399
lemma bex_triv_one_point2 [simp]: "(EX x:A. a = x) = (a:A)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   400
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   401
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   402
lemma bex_one_point1 [simp]: "(EX x:A. x = a & P x) = (a:A & P a)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   403
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   404
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   405
lemma bex_one_point2 [simp]: "(EX x:A. a = x & P x) = (a:A & P a)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   406
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   407
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   408
lemma ball_one_point1 [simp]: "(ALL x:A. x = a --> P x) = (a:A --> P a)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   409
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   410
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   411
lemma ball_one_point2 [simp]: "(ALL x:A. a = x --> P x) = (a:A --> P a)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   412
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   413
43818
fcc5d3ffb6f5 tuned lemma positions and proofs
haftmann
parents: 42459
diff changeset
   414
lemma ball_conj_distrib:
fcc5d3ffb6f5 tuned lemma positions and proofs
haftmann
parents: 42459
diff changeset
   415
  "(\<forall>x\<in>A. P x \<and> Q x) \<longleftrightarrow> ((\<forall>x\<in>A. P x) \<and> (\<forall>x\<in>A. Q x))"
fcc5d3ffb6f5 tuned lemma positions and proofs
haftmann
parents: 42459
diff changeset
   416
  by blast
fcc5d3ffb6f5 tuned lemma positions and proofs
haftmann
parents: 42459
diff changeset
   417
fcc5d3ffb6f5 tuned lemma positions and proofs
haftmann
parents: 42459
diff changeset
   418
lemma bex_disj_distrib:
fcc5d3ffb6f5 tuned lemma positions and proofs
haftmann
parents: 42459
diff changeset
   419
  "(\<exists>x\<in>A. P x \<or> Q x) \<longleftrightarrow> ((\<exists>x\<in>A. P x) \<or> (\<exists>x\<in>A. Q x))"
fcc5d3ffb6f5 tuned lemma positions and proofs
haftmann
parents: 42459
diff changeset
   420
  by blast
fcc5d3ffb6f5 tuned lemma positions and proofs
haftmann
parents: 42459
diff changeset
   421
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   422
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   423
text \<open>Congruence rules\<close>
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   424
16636
1ed737a98198 Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents: 15950
diff changeset
   425
lemma ball_cong:
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   426
  "A = B ==> (!!x. x:B ==> P x = Q x) ==>
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   427
    (ALL x:A. P x) = (ALL x:B. Q x)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   428
  by (simp add: Ball_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   429
16636
1ed737a98198 Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents: 15950
diff changeset
   430
lemma strong_ball_cong [cong]:
1ed737a98198 Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents: 15950
diff changeset
   431
  "A = B ==> (!!x. x:B =simp=> P x = Q x) ==>
1ed737a98198 Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents: 15950
diff changeset
   432
    (ALL x:A. P x) = (ALL x:B. Q x)"
1ed737a98198 Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents: 15950
diff changeset
   433
  by (simp add: simp_implies_def Ball_def)
1ed737a98198 Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents: 15950
diff changeset
   434
1ed737a98198 Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents: 15950
diff changeset
   435
lemma bex_cong:
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   436
  "A = B ==> (!!x. x:B ==> P x = Q x) ==>
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   437
    (EX x:A. P x) = (EX x:B. Q x)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   438
  by (simp add: Bex_def cong: conj_cong)
1273
6960ec882bca added 8bit pragmas
regensbu
parents: 1068
diff changeset
   439
16636
1ed737a98198 Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents: 15950
diff changeset
   440
lemma strong_bex_cong [cong]:
1ed737a98198 Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents: 15950
diff changeset
   441
  "A = B ==> (!!x. x:B =simp=> P x = Q x) ==>
1ed737a98198 Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents: 15950
diff changeset
   442
    (EX x:A. P x) = (EX x:B. Q x)"
1ed737a98198 Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents: 15950
diff changeset
   443
  by (simp add: simp_implies_def Bex_def cong: conj_cong)
1ed737a98198 Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents: 15950
diff changeset
   444
59000
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58963
diff changeset
   445
lemma bex1_def: "(\<exists>!x\<in>X. P x) \<longleftrightarrow> (\<exists>x\<in>X. P x) \<and> (\<forall>x\<in>X. \<forall>y\<in>X. P x \<longrightarrow> P y \<longrightarrow> x = y)"
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58963
diff changeset
   446
  by auto
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   447
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   448
subsection \<open>Basic operations\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   449
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   450
subsubsection \<open>Subsets\<close>
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   451
33022
c95102496490 Removal of the unused atpset concept, the atp attribute and some related code.
paulson
parents: 32888
diff changeset
   452
lemma subsetI [intro!]: "(\<And>x. x \<in> A \<Longrightarrow> x \<in> B) \<Longrightarrow> A \<subseteq> B"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   453
  by (simp add: less_eq_set_def le_fun_def)
30352
047f183c43b0 restructured theory Set.thy
haftmann
parents: 30304
diff changeset
   454
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   455
text \<open>
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   456
  \medskip Map the type \<open>'a set => anything\<close> to just @{typ
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   457
  'a}; for overloading constants whose first argument has type @{typ
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   458
  "'a set"}.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   459
\<close>
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   460
30596
140b22f22071 tuned some theorem and attribute bindings
haftmann
parents: 30531
diff changeset
   461
lemma subsetD [elim, intro?]: "A \<subseteq> B ==> c \<in> A ==> c \<in> B"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   462
  by (simp add: less_eq_set_def le_fun_def)
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   463
  \<comment> \<open>Rule in Modus Ponens style.\<close>
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   464
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
   465
lemma rev_subsetD [intro?]: "c \<in> A ==> A \<subseteq> B ==> c \<in> B"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   466
  \<comment> \<open>The same, with reversed premises for use with \<open>erule\<close> --
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   467
      cf \<open>rev_mp\<close>.\<close>
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   468
  by (rule subsetD)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   469
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   470
text \<open>
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   471
  \medskip Converts @{prop "A \<subseteq> B"} to @{prop "x \<in> A ==> x \<in> B"}.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   472
\<close>
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   473
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
   474
lemma subsetCE [elim]: "A \<subseteq> B ==> (c \<notin> A ==> P) ==> (c \<in> B ==> P) ==> P"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   475
  \<comment> \<open>Classical elimination rule.\<close>
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   476
  by (auto simp add: less_eq_set_def le_fun_def)
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   477
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
   478
lemma subset_eq: "A \<le> B = (\<forall>x\<in>A. x \<in> B)" by blast
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
   479
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
   480
lemma contra_subsetD: "A \<subseteq> B ==> c \<notin> B ==> c \<notin> A"
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   481
  by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   482
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
   483
lemma subset_refl: "A \<subseteq> A"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
   484
  by (fact order_refl) (* already [iff] *)
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   485
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   486
lemma subset_trans: "A \<subseteq> B ==> B \<subseteq> C ==> A \<subseteq> C"
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   487
  by (fact order_trans)
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   488
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   489
lemma set_rev_mp: "x:A ==> A \<subseteq> B ==> x:B"
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   490
  by (rule subsetD)
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   491
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   492
lemma set_mp: "A \<subseteq> B ==> x:A ==> x:B"
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   493
  by (rule subsetD)
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   494
46146
6baea4fca6bd incorporated various theorems from theory More_Set into corpus
haftmann
parents: 46137
diff changeset
   495
lemma subset_not_subset_eq [code]:
6baea4fca6bd incorporated various theorems from theory More_Set into corpus
haftmann
parents: 46137
diff changeset
   496
  "A \<subset> B \<longleftrightarrow> A \<subseteq> B \<and> \<not> B \<subseteq> A"
6baea4fca6bd incorporated various theorems from theory More_Set into corpus
haftmann
parents: 46137
diff changeset
   497
  by (fact less_le_not_le)
6baea4fca6bd incorporated various theorems from theory More_Set into corpus
haftmann
parents: 46137
diff changeset
   498
33044
fd0a9c794ec1 Some new lemmas concerning sets
paulson
parents: 33022
diff changeset
   499
lemma eq_mem_trans: "a=b ==> b \<in> A ==> a \<in> A"
fd0a9c794ec1 Some new lemmas concerning sets
paulson
parents: 33022
diff changeset
   500
  by simp
fd0a9c794ec1 Some new lemmas concerning sets
paulson
parents: 33022
diff changeset
   501
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   502
lemmas basic_trans_rules [trans] =
33044
fd0a9c794ec1 Some new lemmas concerning sets
paulson
parents: 33022
diff changeset
   503
  order_trans_rules set_rev_mp set_mp eq_mem_trans
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   504
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   505
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   506
subsubsection \<open>Equality\<close>
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   507
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   508
lemma subset_antisym [intro!]: "A \<subseteq> B ==> B \<subseteq> A ==> A = B"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   509
  \<comment> \<open>Anti-symmetry of the subset relation.\<close>
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39213
diff changeset
   510
  by (iprover intro: set_eqI subsetD)
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   511
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   512
text \<open>
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   513
  \medskip Equality rules from ZF set theory -- are they appropriate
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   514
  here?
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   515
\<close>
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   516
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   517
lemma equalityD1: "A = B ==> A \<subseteq> B"
34209
c7f621786035 killed a few warnings
krauss
parents: 33935
diff changeset
   518
  by simp
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   519
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   520
lemma equalityD2: "A = B ==> B \<subseteq> A"
34209
c7f621786035 killed a few warnings
krauss
parents: 33935
diff changeset
   521
  by simp
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   522
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   523
text \<open>
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   524
  \medskip Be careful when adding this to the claset as \<open>subset_empty\<close> is in the simpset: @{prop "A = {}"} goes to @{prop "{}
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   525
  \<subseteq> A"} and @{prop "A \<subseteq> {}"} and then back to @{prop "A = {}"}!
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   526
\<close>
30352
047f183c43b0 restructured theory Set.thy
haftmann
parents: 30304
diff changeset
   527
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   528
lemma equalityE: "A = B ==> (A \<subseteq> B ==> B \<subseteq> A ==> P) ==> P"
34209
c7f621786035 killed a few warnings
krauss
parents: 33935
diff changeset
   529
  by simp
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   530
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   531
lemma equalityCE [elim]:
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   532
    "A = B ==> (c \<in> A ==> c \<in> B ==> P) ==> (c \<notin> A ==> c \<notin> B ==> P) ==> P"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   533
  by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   534
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   535
lemma eqset_imp_iff: "A = B ==> (x : A) = (x : B)"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   536
  by simp
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   537
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   538
lemma eqelem_imp_iff: "x = y ==> (x : A) = (y : A)"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   539
  by simp
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   540
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   541
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   542
subsubsection \<open>The empty set\<close>
41082
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   543
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   544
lemma empty_def:
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   545
  "{} = {x. False}"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   546
  by (simp add: bot_set_def bot_fun_def)
41082
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   547
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   548
lemma empty_iff [simp]: "(c : {}) = False"
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   549
  by (simp add: empty_def)
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   550
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   551
lemma emptyE [elim!]: "a : {} ==> P"
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   552
  by simp
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   553
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   554
lemma empty_subsetI [iff]: "{} \<subseteq> A"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   555
    \<comment> \<open>One effect is to delete the ASSUMPTION @{prop "{} <= A"}\<close>
41082
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   556
  by blast
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   557
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   558
lemma equals0I: "(!!y. y \<in> A ==> False) ==> A = {}"
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   559
  by blast
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   560
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   561
lemma equals0D: "A = {} ==> a \<notin> A"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   562
    \<comment> \<open>Use for reasoning about disjointness: \<open>A Int B = {}\<close>\<close>
41082
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   563
  by blast
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   564
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   565
lemma ball_empty [simp]: "Ball {} P = True"
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   566
  by (simp add: Ball_def)
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   567
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   568
lemma bex_empty [simp]: "Bex {} P = False"
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   569
  by (simp add: Bex_def)
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   570
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   571
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   572
subsubsection \<open>The universal set -- UNIV\<close>
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   573
32264
0be31453f698 Set.UNIV and Set.empty are mere abbreviations for top and bot
haftmann
parents: 32139
diff changeset
   574
abbreviation UNIV :: "'a set" where
0be31453f698 Set.UNIV and Set.empty are mere abbreviations for top and bot
haftmann
parents: 32139
diff changeset
   575
  "UNIV \<equiv> top"
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
   576
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
   577
lemma UNIV_def:
32117
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   578
  "UNIV = {x. True}"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   579
  by (simp add: top_set_def top_fun_def)
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   580
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   581
lemma UNIV_I [simp]: "x : UNIV"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   582
  by (simp add: UNIV_def)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   583
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   584
declare UNIV_I [intro]  \<comment> \<open>unsafe makes it less likely to cause problems\<close>
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   585
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   586
lemma UNIV_witness [intro?]: "EX x. x : UNIV"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   587
  by simp
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   588
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
   589
lemma subset_UNIV: "A \<subseteq> UNIV"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
   590
  by (fact top_greatest) (* already simp *)
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   591
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   592
text \<open>
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   593
  \medskip Eta-contracting these two rules (to remove \<open>P\<close>)
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   594
  causes them to be ignored because of their interaction with
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   595
  congruence rules.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   596
\<close>
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   597
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   598
lemma ball_UNIV [simp]: "Ball UNIV P = All P"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   599
  by (simp add: Ball_def)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   600
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   601
lemma bex_UNIV [simp]: "Bex UNIV P = Ex P"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   602
  by (simp add: Bex_def)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   603
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   604
lemma UNIV_eq_I: "(\<And>x. x \<in> A) \<Longrightarrow> UNIV = A"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   605
  by auto
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   606
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   607
lemma UNIV_not_empty [iff]: "UNIV ~= {}"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   608
  by (blast elim: equalityE)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   609
51334
fd531bd984d8 more lemmas about intervals
nipkow
parents: 51173
diff changeset
   610
lemma empty_not_UNIV[simp]: "{} \<noteq> UNIV"
fd531bd984d8 more lemmas about intervals
nipkow
parents: 51173
diff changeset
   611
by blast
fd531bd984d8 more lemmas about intervals
nipkow
parents: 51173
diff changeset
   612
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   613
subsubsection \<open>The Powerset operator -- Pow\<close>
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   614
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   615
definition Pow :: "'a set => 'a set set" where
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   616
  Pow_def: "Pow A = {B. B \<le> A}"
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   617
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   618
lemma Pow_iff [iff]: "(A \<in> Pow B) = (A \<subseteq> B)"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   619
  by (simp add: Pow_def)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   620
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   621
lemma PowI: "A \<subseteq> B ==> A \<in> Pow B"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   622
  by (simp add: Pow_def)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   623
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   624
lemma PowD: "A \<in> Pow B ==> A \<subseteq> B"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   625
  by (simp add: Pow_def)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   626
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   627
lemma Pow_bottom: "{} \<in> Pow B"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   628
  by simp
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   629
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   630
lemma Pow_top: "A \<in> Pow A"
34209
c7f621786035 killed a few warnings
krauss
parents: 33935
diff changeset
   631
  by simp
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   632
40703
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 39910
diff changeset
   633
lemma Pow_not_empty: "Pow A \<noteq> {}"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 39910
diff changeset
   634
  using Pow_top by blast
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   635
41076
a7fba340058c primitive definitions of bot/top/inf/sup for bool and fun are named with canonical suffix `_def` rather than `_eq`;
haftmann
parents: 40872
diff changeset
   636
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   637
subsubsection \<open>Set complement\<close>
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   638
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   639
lemma Compl_iff [simp]: "(c \<in> -A) = (c \<notin> A)"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   640
  by (simp add: fun_Compl_def uminus_set_def)
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   641
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   642
lemma ComplI [intro!]: "(c \<in> A ==> False) ==> c \<in> -A"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   643
  by (simp add: fun_Compl_def uminus_set_def) blast
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   644
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   645
text \<open>
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   646
  \medskip This form, with negated conclusion, works well with the
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   647
  Classical prover.  Negated assumptions behave like formulae on the
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   648
  right side of the notional turnstile ...\<close>
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   649
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   650
lemma ComplD [dest!]: "c : -A ==> c~:A"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   651
  by simp
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   652
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   653
lemmas ComplE = ComplD [elim_format]
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   654
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   655
lemma Compl_eq: "- A = {x. ~ x : A}"
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   656
  by blast
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   657
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   658
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   659
subsubsection \<open>Binary intersection\<close>
41082
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   660
61955
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   661
abbreviation inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set"  (infixl "\<inter>" 70)
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   662
  where "op \<inter> \<equiv> inf"
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   663
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   664
notation (ASCII)
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   665
  inter  (infixl "Int" 70)
41082
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   666
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   667
lemma Int_def:
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   668
  "A \<inter> B = {x. x \<in> A \<and> x \<in> B}"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   669
  by (simp add: inf_set_def inf_fun_def)
41082
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   670
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   671
lemma Int_iff [simp]: "(c : A Int B) = (c:A & c:B)"
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   672
  by (unfold Int_def) blast
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   673
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   674
lemma IntI [intro!]: "c:A ==> c:B ==> c : A Int B"
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   675
  by simp
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   676
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   677
lemma IntD1: "c : A Int B ==> c:A"
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   678
  by simp
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   679
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   680
lemma IntD2: "c : A Int B ==> c:B"
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   681
  by simp
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   682
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   683
lemma IntE [elim!]: "c : A Int B ==> (c:A ==> c:B ==> P) ==> P"
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   684
  by simp
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   685
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   686
lemma mono_Int: "mono f \<Longrightarrow> f (A \<inter> B) \<subseteq> f A \<inter> f B"
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   687
  by (fact mono_inf)
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   688
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   689
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   690
subsubsection \<open>Binary union\<close>
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   691
61955
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   692
abbreviation union :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set"  (infixl "\<union>" 65)
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   693
  where "union \<equiv> sup"
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   694
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   695
notation (ASCII)
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   696
  union  (infixl "Un" 65)
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   697
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
   698
lemma Un_def:
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
   699
  "A \<union> B = {x. x \<in> A \<or> x \<in> B}"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   700
  by (simp add: sup_set_def sup_fun_def)
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   701
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   702
lemma Un_iff [simp]: "(c : A Un B) = (c:A | c:B)"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   703
  by (unfold Un_def) blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   704
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   705
lemma UnI1 [elim?]: "c:A ==> c : A Un B"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   706
  by simp
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   707
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   708
lemma UnI2 [elim?]: "c:B ==> c : A Un B"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   709
  by simp
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   710
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   711
text \<open>
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   712
  \medskip Classical introduction rule: no commitment to @{prop A} vs
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   713
  @{prop B}.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   714
\<close>
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   715
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   716
lemma UnCI [intro!]: "(c~:B ==> c:A) ==> c : A Un B"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   717
  by auto
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   718
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   719
lemma UnE [elim!]: "c : A Un B ==> (c:A ==> P) ==> (c:B ==> P) ==> P"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   720
  by (unfold Un_def) blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   721
32117
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   722
lemma insert_def: "insert a B = {x. x = a} \<union> B"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   723
  by (simp add: insert_compr Un_def)
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   724
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   725
lemma mono_Un: "mono f \<Longrightarrow> f A \<union> f B \<subseteq> f (A \<union> B)"
32683
7c1fe854ca6a inter and union are mere abbreviations for inf and sup
haftmann
parents: 32456
diff changeset
   726
  by (fact mono_sup)
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   727
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   728
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   729
subsubsection \<open>Set difference\<close>
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   730
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   731
lemma Diff_iff [simp]: "(c : A - B) = (c:A & c~:B)"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   732
  by (simp add: minus_set_def fun_diff_def)
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   733
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   734
lemma DiffI [intro!]: "c : A ==> c ~: B ==> c : A - B"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   735
  by simp
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   736
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   737
lemma DiffD1: "c : A - B ==> c : A"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   738
  by simp
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   739
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   740
lemma DiffD2: "c : A - B ==> c : B ==> P"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   741
  by simp
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   742
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   743
lemma DiffE [elim!]: "c : A - B ==> (c:A ==> c~:B ==> P) ==> P"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   744
  by simp
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   745
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   746
lemma set_diff_eq: "A - B = {x. x : A & ~ x : B}" by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   747
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   748
lemma Compl_eq_Diff_UNIV: "-A = (UNIV - A)"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   749
by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   750
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   751
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   752
subsubsection \<open>Augmenting a set -- @{const insert}\<close>
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   753
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   754
lemma insert_iff [simp]: "(a : insert b A) = (a = b | a:A)"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   755
  by (unfold insert_def) blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   756
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   757
lemma insertI1: "a : insert a B"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   758
  by simp
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   759
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   760
lemma insertI2: "a : B ==> a : insert b B"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   761
  by simp
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   762
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   763
lemma insertE [elim!]: "a : insert b A ==> (a = b ==> P) ==> (a:A ==> P) ==> P"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   764
  by (unfold insert_def) blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   765
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   766
lemma insertCI [intro!]: "(a~:B ==> a = b) ==> a: insert b B"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   767
  \<comment> \<open>Classical introduction rule.\<close>
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   768
  by auto
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   769
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   770
lemma subset_insert_iff: "(A \<subseteq> insert x B) = (if x:A then A - {x} \<subseteq> B else A \<subseteq> B)"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   771
  by auto
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   772
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   773
lemma set_insert:
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   774
  assumes "x \<in> A"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   775
  obtains B where "A = insert x B" and "x \<notin> B"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   776
proof
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   777
  from assms show "A = insert x (A - {x})" by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   778
next
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   779
  show "x \<notin> A - {x}" by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   780
qed
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   781
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   782
lemma insert_ident: "x ~: A ==> x ~: B ==> (insert x A = insert x B) = (A = B)"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   783
by auto
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   784
44744
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   785
lemma insert_eq_iff: assumes "a \<notin> A" "b \<notin> B"
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   786
shows "insert a A = insert b B \<longleftrightarrow>
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   787
  (if a=b then A=B else \<exists>C. A = insert b C \<and> b \<notin> C \<and> B = insert a C \<and> a \<notin> C)"
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   788
  (is "?L \<longleftrightarrow> ?R")
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   789
proof
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   790
  assume ?L
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   791
  show ?R
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   792
  proof cases
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   793
    assume "a=b" with assms \<open>?L\<close> show ?R by (simp add: insert_ident)
44744
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   794
  next
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   795
    assume "a\<noteq>b"
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   796
    let ?C = "A - {b}"
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   797
    have "A = insert b ?C \<and> b \<notin> ?C \<and> B = insert a ?C \<and> a \<notin> ?C"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   798
      using assms \<open>?L\<close> \<open>a\<noteq>b\<close> by auto
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   799
    thus ?R using \<open>a\<noteq>b\<close> by auto
44744
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   800
  qed
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   801
next
46128
53e7cc599f58 interaction of set operations for execution and membership predicate
haftmann
parents: 46127
diff changeset
   802
  assume ?R thus ?L by (auto split: if_splits)
44744
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   803
qed
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   804
60057
86fa63ce8156 add lemmas
Andreas Lochbihler
parents: 59507
diff changeset
   805
lemma insert_UNIV: "insert x UNIV = UNIV"
86fa63ce8156 add lemmas
Andreas Lochbihler
parents: 59507
diff changeset
   806
by auto
86fa63ce8156 add lemmas
Andreas Lochbihler
parents: 59507
diff changeset
   807
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   808
subsubsection \<open>Singletons, using insert\<close>
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   809
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
   810
lemma singletonI [intro!]: "a : {a}"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   811
    \<comment> \<open>Redundant? But unlike \<open>insertCI\<close>, it proves the subgoal immediately!\<close>
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   812
  by (rule insertI1)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   813
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
   814
lemma singletonD [dest!]: "b : {a} ==> b = a"
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   815
  by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   816
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   817
lemmas singletonE = singletonD [elim_format]
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   818
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   819
lemma singleton_iff: "(b : {a}) = (b = a)"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   820
  by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   821
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   822
lemma singleton_inject [dest!]: "{a} = {b} ==> a = b"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   823
  by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   824
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
   825
lemma singleton_insert_inj_eq [iff]:
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   826
     "({b} = insert a A) = (a = b & A \<subseteq> {b})"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   827
  by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   828
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
   829
lemma singleton_insert_inj_eq' [iff]:
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   830
     "(insert a A = {b}) = (a = b & A \<subseteq> {b})"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   831
  by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   832
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   833
lemma subset_singletonD: "A \<subseteq> {x} ==> A = {} | A = {x}"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   834
  by fast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   835
62843
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62521
diff changeset
   836
lemma subset_singleton_iff: "X \<subseteq> {a} \<longleftrightarrow> X = {} \<or> X = {a}"
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62521
diff changeset
   837
  by blast
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62521
diff changeset
   838
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   839
lemma singleton_conv [simp]: "{x. x = a} = {a}"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   840
  by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   841
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   842
lemma singleton_conv2 [simp]: "{x. a = x} = {a}"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   843
  by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   844
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 62083
diff changeset
   845
lemma Diff_single_insert: "A - {x} \<subseteq> B ==> A \<subseteq> insert x B"
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 62083
diff changeset
   846
  by blast
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 62083
diff changeset
   847
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 62083
diff changeset
   848
lemma subset_Diff_insert: "A \<subseteq> B - (insert x C) \<longleftrightarrow> A \<subseteq> B - C \<and> x \<notin> A"
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   849
  by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   850
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   851
lemma doubleton_eq_iff: "({a,b} = {c,d}) = (a=c & b=d | a=d & b=c)"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   852
  by (blast elim: equalityE)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   853
53364
a4fff0c0599c added lemmas
nipkow
parents: 52143
diff changeset
   854
lemma Un_singleton_iff:
a4fff0c0599c added lemmas
nipkow
parents: 52143
diff changeset
   855
  "(A \<union> B = {x}) = (A = {} \<and> B = {x} \<or> A = {x} \<and> B = {} \<or> A = {x} \<and> B = {x})"
a4fff0c0599c added lemmas
nipkow
parents: 52143
diff changeset
   856
by auto
a4fff0c0599c added lemmas
nipkow
parents: 52143
diff changeset
   857
a4fff0c0599c added lemmas
nipkow
parents: 52143
diff changeset
   858
lemma singleton_Un_iff:
a4fff0c0599c added lemmas
nipkow
parents: 52143
diff changeset
   859
  "({x} = A \<union> B) = (A = {} \<and> B = {x} \<or> A = {x} \<and> B = {} \<or> A = {x} \<and> B = {x})"
a4fff0c0599c added lemmas
nipkow
parents: 52143
diff changeset
   860
by auto
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   861
56014
haftmann
parents: 55775
diff changeset
   862
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   863
subsubsection \<open>Image of a set under a function\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   864
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   865
text \<open>
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   866
  Frequently @{term b} does not have the syntactic form of @{term "f x"}.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   867
\<close>
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   868
56014
haftmann
parents: 55775
diff changeset
   869
definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90)
haftmann
parents: 55775
diff changeset
   870
where
haftmann
parents: 55775
diff changeset
   871
  "f ` A = {y. \<exists>x\<in>A. y = f x}"
haftmann
parents: 55775
diff changeset
   872
haftmann
parents: 55775
diff changeset
   873
lemma image_eqI [simp, intro]:
haftmann
parents: 55775
diff changeset
   874
  "b = f x \<Longrightarrow> x \<in> A \<Longrightarrow> b \<in> f ` A"
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   875
  by (unfold image_def) blast
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   876
56014
haftmann
parents: 55775
diff changeset
   877
lemma imageI:
haftmann
parents: 55775
diff changeset
   878
  "x \<in> A \<Longrightarrow> f x \<in> f ` A"
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   879
  by (rule image_eqI) (rule refl)
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   880
56014
haftmann
parents: 55775
diff changeset
   881
lemma rev_image_eqI:
haftmann
parents: 55775
diff changeset
   882
  "x \<in> A \<Longrightarrow> b = f x \<Longrightarrow> b \<in> f ` A"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   883
  \<comment> \<open>This version's more effective when we already have the
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   884
    required @{term x}.\<close>
56014
haftmann
parents: 55775
diff changeset
   885
  by (rule image_eqI)
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   886
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   887
lemma imageE [elim!]:
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   888
  assumes "b \<in> (\<lambda>x. f x) ` A" \<comment> \<open>The eta-expansion gives variable-name preservation.\<close>
56014
haftmann
parents: 55775
diff changeset
   889
  obtains x where "b = f x" and "x \<in> A"
haftmann
parents: 55775
diff changeset
   890
  using assms by (unfold image_def) blast
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   891
51173
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50580
diff changeset
   892
lemma Compr_image_eq:
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50580
diff changeset
   893
  "{x \<in> f ` A. P x} = f ` {x \<in> A. P (f x)}"
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50580
diff changeset
   894
  by auto
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50580
diff changeset
   895
56014
haftmann
parents: 55775
diff changeset
   896
lemma image_Un:
haftmann
parents: 55775
diff changeset
   897
  "f ` (A \<union> B) = f ` A \<union> f ` B"
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   898
  by blast
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   899
56014
haftmann
parents: 55775
diff changeset
   900
lemma image_iff:
haftmann
parents: 55775
diff changeset
   901
  "z \<in> f ` A \<longleftrightarrow> (\<exists>x\<in>A. z = f x)"
haftmann
parents: 55775
diff changeset
   902
  by blast
haftmann
parents: 55775
diff changeset
   903
haftmann
parents: 55775
diff changeset
   904
lemma image_subsetI:
haftmann
parents: 55775
diff changeset
   905
  "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> f ` A \<subseteq> B"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   906
  \<comment> \<open>Replaces the three steps \<open>subsetI\<close>, \<open>imageE\<close>,
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   907
    \<open>hypsubst\<close>, but breaks too many existing proofs.\<close>
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   908
  by blast
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   909
56014
haftmann
parents: 55775
diff changeset
   910
lemma image_subset_iff:
haftmann
parents: 55775
diff changeset
   911
  "f ` A \<subseteq> B \<longleftrightarrow> (\<forall>x\<in>A. f x \<in> B)"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   912
  \<comment> \<open>This rewrite rule would confuse users if made default.\<close>
56014
haftmann
parents: 55775
diff changeset
   913
  by blast
haftmann
parents: 55775
diff changeset
   914
haftmann
parents: 55775
diff changeset
   915
lemma subset_imageE:
haftmann
parents: 55775
diff changeset
   916
  assumes "B \<subseteq> f ` A"
haftmann
parents: 55775
diff changeset
   917
  obtains C where "C \<subseteq> A" and "B = f ` C"
haftmann
parents: 55775
diff changeset
   918
proof -
haftmann
parents: 55775
diff changeset
   919
  from assms have "B = f ` {a \<in> A. f a \<in> B}" by fast
haftmann
parents: 55775
diff changeset
   920
  moreover have "{a \<in> A. f a \<in> B} \<subseteq> A" by blast
haftmann
parents: 55775
diff changeset
   921
  ultimately show thesis by (blast intro: that)
haftmann
parents: 55775
diff changeset
   922
qed
haftmann
parents: 55775
diff changeset
   923
haftmann
parents: 55775
diff changeset
   924
lemma subset_image_iff:
haftmann
parents: 55775
diff changeset
   925
  "B \<subseteq> f ` A \<longleftrightarrow> (\<exists>AA\<subseteq>A. B = f ` AA)"
haftmann
parents: 55775
diff changeset
   926
  by (blast elim: subset_imageE)
haftmann
parents: 55775
diff changeset
   927
haftmann
parents: 55775
diff changeset
   928
lemma image_ident [simp]:
haftmann
parents: 55775
diff changeset
   929
  "(\<lambda>x. x) ` Y = Y"
haftmann
parents: 55775
diff changeset
   930
  by blast
haftmann
parents: 55775
diff changeset
   931
haftmann
parents: 55775
diff changeset
   932
lemma image_empty [simp]:
haftmann
parents: 55775
diff changeset
   933
  "f ` {} = {}"
haftmann
parents: 55775
diff changeset
   934
  by blast
haftmann
parents: 55775
diff changeset
   935
haftmann
parents: 55775
diff changeset
   936
lemma image_insert [simp]:
haftmann
parents: 55775
diff changeset
   937
  "f ` insert a B = insert (f a) (f ` B)"
haftmann
parents: 55775
diff changeset
   938
  by blast
haftmann
parents: 55775
diff changeset
   939
haftmann
parents: 55775
diff changeset
   940
lemma image_constant:
haftmann
parents: 55775
diff changeset
   941
  "x \<in> A \<Longrightarrow> (\<lambda>x. c) ` A = {c}"
haftmann
parents: 55775
diff changeset
   942
  by auto
haftmann
parents: 55775
diff changeset
   943
haftmann
parents: 55775
diff changeset
   944
lemma image_constant_conv:
haftmann
parents: 55775
diff changeset
   945
  "(\<lambda>x. c) ` A = (if A = {} then {} else {c})"
haftmann
parents: 55775
diff changeset
   946
  by auto
haftmann
parents: 55775
diff changeset
   947
haftmann
parents: 55775
diff changeset
   948
lemma image_image:
haftmann
parents: 55775
diff changeset
   949
  "f ` (g ` A) = (\<lambda>x. f (g x)) ` A"
haftmann
parents: 55775
diff changeset
   950
  by blast
haftmann
parents: 55775
diff changeset
   951
haftmann
parents: 55775
diff changeset
   952
lemma insert_image [simp]:
haftmann
parents: 55775
diff changeset
   953
  "x \<in> A ==> insert (f x) (f ` A) = f ` A"
haftmann
parents: 55775
diff changeset
   954
  by blast
haftmann
parents: 55775
diff changeset
   955
haftmann
parents: 55775
diff changeset
   956
lemma image_is_empty [iff]:
haftmann
parents: 55775
diff changeset
   957
  "f ` A = {} \<longleftrightarrow> A = {}"
haftmann
parents: 55775
diff changeset
   958
  by blast
haftmann
parents: 55775
diff changeset
   959
haftmann
parents: 55775
diff changeset
   960
lemma empty_is_image [iff]:
haftmann
parents: 55775
diff changeset
   961
  "{} = f ` A \<longleftrightarrow> A = {}"
haftmann
parents: 55775
diff changeset
   962
  by blast
haftmann
parents: 55775
diff changeset
   963
haftmann
parents: 55775
diff changeset
   964
lemma image_Collect:
haftmann
parents: 55775
diff changeset
   965
  "f ` {x. P x} = {f x | x. P x}"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
   966
  \<comment> \<open>NOT suitable as a default simprule: the RHS isn't simpler than the LHS,
56014
haftmann
parents: 55775
diff changeset
   967
      with its implicit quantifier and conjunction.  Also image enjoys better
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
   968
      equational properties than does the RHS.\<close>
56014
haftmann
parents: 55775
diff changeset
   969
  by blast
haftmann
parents: 55775
diff changeset
   970
haftmann
parents: 55775
diff changeset
   971
lemma if_image_distrib [simp]:
haftmann
parents: 55775
diff changeset
   972
  "(\<lambda>x. if P x then f x else g x) ` S
haftmann
parents: 55775
diff changeset
   973
    = (f ` (S \<inter> {x. P x})) \<union> (g ` (S \<inter> {x. \<not> P x}))"
56077
d397030fb27e tuned proofs
haftmann
parents: 56014
diff changeset
   974
  by auto
56014
haftmann
parents: 55775
diff changeset
   975
haftmann
parents: 55775
diff changeset
   976
lemma image_cong:
haftmann
parents: 55775
diff changeset
   977
  "M = N \<Longrightarrow> (\<And>x. x \<in> N \<Longrightarrow> f x = g x) \<Longrightarrow> f ` M = g ` N"
haftmann
parents: 55775
diff changeset
   978
  by (simp add: image_def)
haftmann
parents: 55775
diff changeset
   979
haftmann
parents: 55775
diff changeset
   980
lemma image_Int_subset:
haftmann
parents: 55775
diff changeset
   981
  "f ` (A \<inter> B) \<subseteq> f ` A \<inter> f ` B"
haftmann
parents: 55775
diff changeset
   982
  by blast
haftmann
parents: 55775
diff changeset
   983
haftmann
parents: 55775
diff changeset
   984
lemma image_diff_subset:
haftmann
parents: 55775
diff changeset
   985
  "f ` A - f ` B \<subseteq> f ` (A - B)"
haftmann
parents: 55775
diff changeset
   986
  by blast
haftmann
parents: 55775
diff changeset
   987
59504
8c6747dba731 New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents: 59000
diff changeset
   988
lemma Setcompr_eq_image: "{f x | x. x \<in> A} = f ` A"
8c6747dba731 New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents: 59000
diff changeset
   989
  by blast
8c6747dba731 New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents: 59000
diff changeset
   990
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61955
diff changeset
   991
lemma setcompr_eq_image: "{f x |x. P x} = f ` {x. P x}"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61955
diff changeset
   992
  by auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61955
diff changeset
   993
56014
haftmann
parents: 55775
diff changeset
   994
lemma ball_imageD:
haftmann
parents: 55775
diff changeset
   995
  assumes "\<forall>x\<in>f ` A. P x"
haftmann
parents: 55775
diff changeset
   996
  shows "\<forall>x\<in>A. P (f x)"
haftmann
parents: 55775
diff changeset
   997
  using assms by simp
haftmann
parents: 55775
diff changeset
   998
haftmann
parents: 55775
diff changeset
   999
lemma bex_imageD:
haftmann
parents: 55775
diff changeset
  1000
  assumes "\<exists>x\<in>f ` A. P x"
haftmann
parents: 55775
diff changeset
  1001
  shows "\<exists>x\<in>A. P (f x)"
haftmann
parents: 55775
diff changeset
  1002
  using assms by auto
haftmann
parents: 55775
diff changeset
  1003
63007
aa894a49f77d new theorems about convex hulls, etc.; also, renamed some theorems
paulson <lp15@cam.ac.uk>
parents: 62843
diff changeset
  1004
lemma image_add_0 [simp]: "op+ (0::'a::comm_monoid_add) ` S = S"
aa894a49f77d new theorems about convex hulls, etc.; also, renamed some theorems
paulson <lp15@cam.ac.uk>
parents: 62843
diff changeset
  1005
  by auto
aa894a49f77d new theorems about convex hulls, etc.; also, renamed some theorems
paulson <lp15@cam.ac.uk>
parents: 62843
diff changeset
  1006
56014
haftmann
parents: 55775
diff changeset
  1007
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1008
text \<open>
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
  1009
  \medskip Range of a function -- just a translation for image!
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1010
\<close>
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
  1011
56014
haftmann
parents: 55775
diff changeset
  1012
abbreviation range :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b set"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
  1013
where \<comment> "of function"
56014
haftmann
parents: 55775
diff changeset
  1014
  "range f \<equiv> f ` UNIV"
haftmann
parents: 55775
diff changeset
  1015
haftmann
parents: 55775
diff changeset
  1016
lemma range_eqI:
haftmann
parents: 55775
diff changeset
  1017
  "b = f x \<Longrightarrow> b \<in> range f"
haftmann
parents: 55775
diff changeset
  1018
  by simp
haftmann
parents: 55775
diff changeset
  1019
haftmann
parents: 55775
diff changeset
  1020
lemma rangeI:
haftmann
parents: 55775
diff changeset
  1021
  "f x \<in> range f"
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
  1022
  by simp
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
  1023
56014
haftmann
parents: 55775
diff changeset
  1024
lemma rangeE [elim?]:
haftmann
parents: 55775
diff changeset
  1025
  "b \<in> range (\<lambda>x. f x) \<Longrightarrow> (\<And>x. b = f x \<Longrightarrow> P) \<Longrightarrow> P"
haftmann
parents: 55775
diff changeset
  1026
  by (rule imageE)
haftmann
parents: 55775
diff changeset
  1027
haftmann
parents: 55775
diff changeset
  1028
lemma full_SetCompr_eq:
haftmann
parents: 55775
diff changeset
  1029
  "{u. \<exists>x. u = f x} = range f"
haftmann
parents: 55775
diff changeset
  1030
  by auto
haftmann
parents: 55775
diff changeset
  1031
59506
4af607652318 Not a simprule, as it complicates proofs
paulson <lp15@cam.ac.uk>
parents: 59504
diff changeset
  1032
lemma range_composition:
56014
haftmann
parents: 55775
diff changeset
  1033
  "range (\<lambda>x. f (g x)) = f ` range g"
56077
d397030fb27e tuned proofs
haftmann
parents: 56014
diff changeset
  1034
  by auto
56014
haftmann
parents: 55775
diff changeset
  1035
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
  1036
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
  1037
subsubsection \<open>Some rules with \<open>if\<close>\<close>
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
  1038
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
  1039
text\<open>Elimination of \<open>{x. \<dots> & x=t & \<dots>}\<close>.\<close>
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
  1040
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
  1041
lemma Collect_conv_if: "{x. x=a & P x} = (if P a then {a} else {})"
32117
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
  1042
  by auto
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
  1043
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
  1044
lemma Collect_conv_if2: "{x. a=x & P x} = (if P a then {a} else {})"
32117
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
  1045
  by auto
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
  1046
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1047
text \<open>
62390
842917225d56 more canonical names
nipkow
parents: 62087
diff changeset
  1048
  Rewrite rules for boolean case-splitting: faster than \<open>if_split [split]\<close>.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1049
\<close>
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
  1050
62390
842917225d56 more canonical names
nipkow
parents: 62087
diff changeset
  1051
lemma if_split_eq1: "((if Q then x else y) = b) = ((Q --> x = b) & (~ Q --> y = b))"
842917225d56 more canonical names
nipkow
parents: 62087
diff changeset
  1052
  by (rule if_split)
842917225d56 more canonical names
nipkow
parents: 62087
diff changeset
  1053
842917225d56 more canonical names
nipkow
parents: 62087
diff changeset
  1054
lemma if_split_eq2: "(a = (if Q then x else y)) = ((Q --> a = x) & (~ Q --> a = y))"
842917225d56 more canonical names
nipkow
parents: 62087
diff changeset
  1055
  by (rule if_split)
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
  1056
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1057
text \<open>
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
  1058
  Split ifs on either side of the membership relation.  Not for \<open>[simp]\<close> -- can cause goals to blow up!
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1059
\<close>
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
  1060
62390
842917225d56 more canonical names
nipkow
parents: 62087
diff changeset
  1061
lemma if_split_mem1: "((if Q then x else y) : b) = ((Q --> x : b) & (~ Q --> y : b))"
842917225d56 more canonical names
nipkow
parents: 62087
diff changeset
  1062
  by (rule if_split)
842917225d56 more canonical names
nipkow
parents: 62087
diff changeset
  1063
842917225d56 more canonical names
nipkow
parents: 62087
diff changeset
  1064
lemma if_split_mem2: "(a : (if Q then x else y)) = ((Q --> a : x) & (~ Q --> a : y))"
842917225d56 more canonical names
nipkow
parents: 62087
diff changeset
  1065
  by (rule if_split [where P="%S. a : S"])
842917225d56 more canonical names
nipkow
parents: 62087
diff changeset
  1066
842917225d56 more canonical names
nipkow
parents: 62087
diff changeset
  1067
lemmas split_ifs = if_bool_eq_conj if_split_eq1 if_split_eq2 if_split_mem1 if_split_mem2
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
  1068
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
  1069
(*Would like to add these, but the existing code only searches for the
37677
c5a8b612e571 qualified constants Set.member and Set.Collect
haftmann
parents: 37387
diff changeset
  1070
  outer-level constant, which in this case is just Set.member; we instead need
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
  1071
  to use term-nets to associate patterns with rules.  Also, if a rule fails to
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
  1072
  apply, then the formula should be kept.
34974
18b41bba42b5 new theory Algebras.thy for generic algebraic structures
haftmann
parents: 34209
diff changeset
  1073
  [("uminus", Compl_iff RS iffD1), ("minus", [Diff_iff RS iffD1]),
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
  1074
   ("Int", [IntD1,IntD2]),
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
  1075
   ("Collect", [CollectD]), ("Inter", [InterD]), ("INTER", [INT_D])]
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
  1076
 *)
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
  1077
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
  1078
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1079
subsection \<open>Further operations and lemmas\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1080
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1081
subsubsection \<open>The ``proper subset'' relation\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1082
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1083
lemma psubsetI [intro!]: "A \<subseteq> B ==> A \<noteq> B ==> A \<subset> B"
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1084
  by (unfold less_le) blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1085
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1086
lemma psubsetE [elim!]:
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1087
    "[|A \<subset> B;  [|A \<subseteq> B; ~ (B\<subseteq>A)|] ==> R|] ==> R"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1088
  by (unfold less_le) blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1089
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1090
lemma psubset_insert_iff:
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1091
  "(A \<subset> insert x B) = (if x \<in> B then A \<subset> B else if x \<in> A then A - {x} \<subset> B else A \<subseteq> B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1092
  by (auto simp add: less_le subset_insert_iff)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1093
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1094
lemma psubset_eq: "(A \<subset> B) = (A \<subseteq> B & A \<noteq> B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1095
  by (simp only: less_le)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1096
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1097
lemma psubset_imp_subset: "A \<subset> B ==> A \<subseteq> B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1098
  by (simp add: psubset_eq)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1099
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1100
lemma psubset_trans: "[| A \<subset> B; B \<subset> C |] ==> A \<subset> C"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1101
apply (unfold less_le)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1102
apply (auto dest: subset_antisym)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1103
done
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1104
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1105
lemma psubsetD: "[| A \<subset> B; c \<in> A |] ==> c \<in> B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1106
apply (unfold less_le)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1107
apply (auto dest: subsetD)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1108
done
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1109
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1110
lemma psubset_subset_trans: "A \<subset> B ==> B \<subseteq> C ==> A \<subset> C"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1111
  by (auto simp add: psubset_eq)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1112
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1113
lemma subset_psubset_trans: "A \<subseteq> B ==> B \<subset> C ==> A \<subset> C"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1114
  by (auto simp add: psubset_eq)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1115
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1116
lemma psubset_imp_ex_mem: "A \<subset> B ==> \<exists>b. b \<in> (B - A)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1117
  by (unfold less_le) blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1118
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1119
lemma atomize_ball:
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1120
    "(!!x. x \<in> A ==> P x) == Trueprop (\<forall>x\<in>A. P x)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1121
  by (simp only: Ball_def atomize_all atomize_imp)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1122
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1123
lemmas [symmetric, rulify] = atomize_ball
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1124
  and [symmetric, defn] = atomize_ball
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1125
40703
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 39910
diff changeset
  1126
lemma image_Pow_mono:
56014
haftmann
parents: 55775
diff changeset
  1127
  assumes "f ` A \<subseteq> B"
haftmann
parents: 55775
diff changeset
  1128
  shows "image f ` Pow A \<subseteq> Pow B"
haftmann
parents: 55775
diff changeset
  1129
  using assms by blast
40703
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 39910
diff changeset
  1130
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 39910
diff changeset
  1131
lemma image_Pow_surj:
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 39910
diff changeset
  1132
  assumes "f ` A = B"
56014
haftmann
parents: 55775
diff changeset
  1133
  shows "image f ` Pow A = Pow B"
haftmann
parents: 55775
diff changeset
  1134
  using assms by (blast elim: subset_imageE)
haftmann
parents: 55775
diff changeset
  1135
40703
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 39910
diff changeset
  1136
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1137
subsubsection \<open>Derived rules involving subsets.\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1138
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
  1139
text \<open>\<open>insert\<close>.\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1140
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1141
lemma subset_insertI: "B \<subseteq> insert a B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1142
  by (rule subsetI) (erule insertI2)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1143
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1144
lemma subset_insertI2: "A \<subseteq> B \<Longrightarrow> A \<subseteq> insert b B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1145
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1146
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1147
lemma subset_insert: "x \<notin> A ==> (A \<subseteq> insert x B) = (A \<subseteq> B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1148
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1149
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1150
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1151
text \<open>\medskip Finite Union -- the least upper bound of two sets.\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1152
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1153
lemma Un_upper1: "A \<subseteq> A \<union> B"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1154
  by (fact sup_ge1)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1155
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1156
lemma Un_upper2: "B \<subseteq> A \<union> B"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1157
  by (fact sup_ge2)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1158
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1159
lemma Un_least: "A \<subseteq> C ==> B \<subseteq> C ==> A \<union> B \<subseteq> C"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1160
  by (fact sup_least)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1161
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1162
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1163
text \<open>\medskip Finite Intersection -- the greatest lower bound of two sets.\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1164
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1165
lemma Int_lower1: "A \<inter> B \<subseteq> A"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1166
  by (fact inf_le1)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1167
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1168
lemma Int_lower2: "A \<inter> B \<subseteq> B"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1169
  by (fact inf_le2)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1170
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1171
lemma Int_greatest: "C \<subseteq> A ==> C \<subseteq> B ==> C \<subseteq> A \<inter> B"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1172
  by (fact inf_greatest)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1173
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1174
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1175
text \<open>\medskip Set difference.\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1176
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1177
lemma Diff_subset: "A - B \<subseteq> A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1178
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1179
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1180
lemma Diff_subset_conv: "(A - B \<subseteq> C) = (A \<subseteq> B \<union> C)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1181
by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1182
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1183
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1184
subsubsection \<open>Equalities involving union, intersection, inclusion, etc.\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1185
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
  1186
text \<open>\<open>{}\<close>.\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1187
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1188
lemma Collect_const [simp]: "{s. P} = (if P then UNIV else {})"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
  1189
  \<comment> \<open>supersedes \<open>Collect_False_empty\<close>\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1190
  by auto
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1191
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1192
lemma subset_empty [simp]: "(A \<subseteq> {}) = (A = {})"
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1193
  by (fact bot_unique)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1194
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1195
lemma not_psubset_empty [iff]: "\<not> (A < {})"
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1196
  by (fact not_less_bot) (* FIXME: already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1197
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1198
lemma Collect_empty_eq [simp]: "(Collect P = {}) = (\<forall>x. \<not> P x)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1199
by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1200
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1201
lemma empty_Collect_eq [simp]: "({} = Collect P) = (\<forall>x. \<not> P x)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1202
by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1203
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1204
lemma Collect_neg_eq: "{x. \<not> P x} = - {x. P x}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1205
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1206
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1207
lemma Collect_disj_eq: "{x. P x | Q x} = {x. P x} \<union> {x. Q x}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1208
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1209
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1210
lemma Collect_imp_eq: "{x. P x --> Q x} = -{x. P x} \<union> {x. Q x}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1211
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1212
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1213
lemma Collect_conj_eq: "{x. P x & Q x} = {x. P x} \<inter> {x. Q x}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1214
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1215
59506
4af607652318 Not a simprule, as it complicates proofs
paulson <lp15@cam.ac.uk>
parents: 59504
diff changeset
  1216
lemma Collect_mono_iff: "Collect P \<subseteq> Collect Q \<longleftrightarrow> (\<forall>x. P x \<longrightarrow> Q x)"
59504
8c6747dba731 New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents: 59000
diff changeset
  1217
  by blast
8c6747dba731 New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents: 59000
diff changeset
  1218
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1219
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
  1220
text \<open>\medskip \<open>insert\<close>.\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1221
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1222
lemma insert_is_Un: "insert a A = {a} Un A"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
  1223
  \<comment> \<open>NOT SUITABLE FOR REWRITING since \<open>{a} == insert a {}\<close>\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1224
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1225
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1226
lemma insert_not_empty [simp]: "insert a A \<noteq> {}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1227
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1228
45607
16b4f5774621 eliminated obsolete "standard";
wenzelm
parents: 45152
diff changeset
  1229
lemmas empty_not_insert = insert_not_empty [symmetric]
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1230
declare empty_not_insert [simp]
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1231
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1232
lemma insert_absorb: "a \<in> A ==> insert a A = A"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
  1233
  \<comment> \<open>\<open>[simp]\<close> causes recursive calls when there are nested inserts\<close>
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
  1234
  \<comment> \<open>with \emph{quadratic} running time\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1235
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1236
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1237
lemma insert_absorb2 [simp]: "insert x (insert x A) = insert x A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1238
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1239
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1240
lemma insert_commute: "insert x (insert y A) = insert y (insert x A)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1241
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1242
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1243
lemma insert_subset [simp]: "(insert x A \<subseteq> B) = (x \<in> B & A \<subseteq> B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1244
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1245
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1246
lemma mk_disjoint_insert: "a \<in> A ==> \<exists>B. A = insert a B & a \<notin> B"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
  1247
  \<comment> \<open>use new \<open>B\<close> rather than \<open>A - {a}\<close> to avoid infinite unfolding\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1248
  apply (rule_tac x = "A - {a}" in exI, blast)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1249
  done
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1250
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1251
lemma insert_Collect: "insert a (Collect P) = {u. u \<noteq> a --> P u}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1252
  by auto
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1253
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1254
lemma insert_inter_insert[simp]: "insert a A \<inter> insert a B = insert a (A \<inter> B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1255
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1256
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1257
lemma insert_disjoint [simp]:
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1258
 "(insert a A \<inter> B = {}) = (a \<notin> B \<and> A \<inter> B = {})"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1259
 "({} = insert a A \<inter> B) = (a \<notin> B \<and> {} = A \<inter> B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1260
  by auto
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1261
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1262
lemma disjoint_insert [simp]:
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1263
 "(B \<inter> insert a A = {}) = (a \<notin> B \<and> B \<inter> A = {})"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1264
 "({} = A \<inter> insert b B) = (b \<notin> A \<and> {} = A \<inter> B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1265
  by auto
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1266
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1267
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
  1268
text \<open>\medskip \<open>Int\<close>\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1269
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1270
lemma Int_absorb: "A \<inter> A = A"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1271
  by (fact inf_idem) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1272
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1273
lemma Int_left_absorb: "A \<inter> (A \<inter> B) = A \<inter> B"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1274
  by (fact inf_left_idem)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1275
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1276
lemma Int_commute: "A \<inter> B = B \<inter> A"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1277
  by (fact inf_commute)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1278
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1279
lemma Int_left_commute: "A \<inter> (B \<inter> C) = B \<inter> (A \<inter> C)"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1280
  by (fact inf_left_commute)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1281
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1282
lemma Int_assoc: "(A \<inter> B) \<inter> C = A \<inter> (B \<inter> C)"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1283
  by (fact inf_assoc)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1284
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1285
lemmas Int_ac = Int_assoc Int_left_absorb Int_commute Int_left_commute
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
  1286
  \<comment> \<open>Intersection is an AC-operator\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1287
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1288
lemma Int_absorb1: "B \<subseteq> A ==> A \<inter> B = B"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1289
  by (fact inf_absorb2)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1290
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1291
lemma Int_absorb2: "A \<subseteq> B ==> A \<inter> B = A"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1292
  by (fact inf_absorb1)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1293
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1294
lemma Int_empty_left: "{} \<inter> B = {}"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1295
  by (fact inf_bot_left) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1296
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1297
lemma Int_empty_right: "A \<inter> {} = {}"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1298
  by (fact inf_bot_right) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1299
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1300
lemma disjoint_eq_subset_Compl: "(A \<inter> B = {}) = (A \<subseteq> -B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1301
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1302
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1303
lemma disjoint_iff_not_equal: "(A \<inter> B = {}) = (\<forall>x\<in>A. \<forall>y\<in>B. x \<noteq> y)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1304
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1305
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1306
lemma Int_UNIV_left: "UNIV \<inter> B = B"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1307
  by (fact inf_top_left) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1308
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1309
lemma Int_UNIV_right: "A \<inter> UNIV = A"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1310
  by (fact inf_top_right) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1311
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1312
lemma Int_Un_distrib: "A \<inter> (B \<union> C) = (A \<inter> B) \<union> (A \<inter> C)"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1313
  by (fact inf_sup_distrib1)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1314
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1315
lemma Int_Un_distrib2: "(B \<union> C) \<inter> A = (B \<inter> A) \<union> (C \<inter> A)"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1316
  by (fact inf_sup_distrib2)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1317
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1318
lemma Int_UNIV [simp]: "(A \<inter> B = UNIV) = (A = UNIV & B = UNIV)"
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1319
  by (fact inf_eq_top_iff) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1320
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1321
lemma Int_subset_iff [simp]: "(C \<subseteq> A \<inter> B) = (C \<subseteq> A & C \<subseteq> B)"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1322
  by (fact le_inf_iff)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1323
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1324
lemma Int_Collect: "(x \<in> A \<inter> {x. P x}) = (x \<in> A & P x)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1325
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1326
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1327
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
  1328
text \<open>\medskip \<open>Un\<close>.\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1329
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1330
lemma Un_absorb: "A \<union> A = A"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1331
  by (fact sup_idem) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1332
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1333
lemma Un_left_absorb: "A \<union> (A \<union> B) = A \<union> B"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1334
  by (fact sup_left_idem)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1335
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1336
lemma Un_commute: "A \<union> B = B \<union> A"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1337
  by (fact sup_commute)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1338
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1339
lemma Un_left_commute: "A \<union> (B \<union> C) = B \<union> (A \<union> C)"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1340
  by (fact sup_left_commute)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1341
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1342
lemma Un_assoc: "(A \<union> B) \<union> C = A \<union> (B \<union> C)"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1343
  by (fact sup_assoc)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1344
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1345
lemmas Un_ac = Un_assoc Un_left_absorb Un_commute Un_left_commute
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
  1346
  \<comment> \<open>Union is an AC-operator\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1347
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1348
lemma Un_absorb1: "A \<subseteq> B ==> A \<union> B = B"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1349
  by (fact sup_absorb2)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1350
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1351
lemma Un_absorb2: "B \<subseteq> A ==> A \<union> B = A"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1352
  by (fact sup_absorb1)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1353
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1354
lemma Un_empty_left: "{} \<union> B = B"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1355
  by (fact sup_bot_left) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1356
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1357
lemma Un_empty_right: "A \<union> {} = A"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1358
  by (fact sup_bot_right) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1359
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1360
lemma Un_UNIV_left: "UNIV \<union> B = UNIV"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1361
  by (fact sup_top_left) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1362
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1363
lemma Un_UNIV_right: "A \<union> UNIV = UNIV"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1364
  by (fact sup_top_right) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1365
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1366
lemma Un_insert_left [simp]: "(insert a B) \<union> C = insert a (B \<union> C)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1367
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1368
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1369
lemma Un_insert_right [simp]: "A \<union> (insert a B) = insert a (A \<union> B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1370
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1371
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1372
lemma Int_insert_left:
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1373
    "(insert a B) Int C = (if a \<in> C then insert a (B \<inter> C) else B \<inter> C)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1374
  by auto
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1375
32456
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1376
lemma Int_insert_left_if0[simp]:
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1377
    "a \<notin> C \<Longrightarrow> (insert a B) Int C = B \<inter> C"
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1378
  by auto
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1379
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1380
lemma Int_insert_left_if1[simp]:
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1381
    "a \<in> C \<Longrightarrow> (insert a B) Int C = insert a (B Int C)"
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1382
  by auto
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1383
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1384
lemma Int_insert_right:
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1385
    "A \<inter> (insert a B) = (if a \<in> A then insert a (A \<inter> B) else A \<inter> B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1386
  by auto
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1387
32456
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1388
lemma Int_insert_right_if0[simp]:
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1389
    "a \<notin> A \<Longrightarrow> A Int (insert a B) = A Int B"
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1390
  by auto
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1391
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1392
lemma Int_insert_right_if1[simp]:
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1393
    "a \<in> A \<Longrightarrow> A Int (insert a B) = insert a (A Int B)"
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1394
  by auto
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1395
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1396
lemma Un_Int_distrib: "A \<union> (B \<inter> C) = (A \<union> B) \<inter> (A \<union> C)"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1397
  by (fact sup_inf_distrib1)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1398
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1399
lemma Un_Int_distrib2: "(B \<inter> C) \<union> A = (B \<union> A) \<inter> (C \<union> A)"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1400
  by (fact sup_inf_distrib2)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1401
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1402
lemma Un_Int_crazy:
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1403
    "(A \<inter> B) \<union> (B \<inter> C) \<union> (C \<inter> A) = (A \<union> B) \<inter> (B \<union> C) \<inter> (C \<union> A)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1404
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1405
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1406
lemma subset_Un_eq: "(A \<subseteq> B) = (A \<union> B = B)"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1407
  by (fact le_iff_sup)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1408
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1409
lemma Un_empty [iff]: "(A \<union> B = {}) = (A = {} & B = {})"
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1410
  by (fact sup_eq_bot_iff) (* FIXME: already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1411
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1412
lemma Un_subset_iff [simp]: "(A \<union> B \<subseteq> C) = (A \<subseteq> C & B \<subseteq> C)"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1413
  by (fact le_sup_iff)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1414
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1415
lemma Un_Diff_Int: "(A - B) \<union> (A \<inter> B) = A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1416
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1417
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1418
lemma Diff_Int2: "A \<inter> C - B \<inter> C = A \<inter> C - B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1419
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1420
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1421
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1422
text \<open>\medskip Set complement\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1423
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1424
lemma Compl_disjoint [simp]: "A \<inter> -A = {}"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1425
  by (fact inf_compl_bot)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1426
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1427
lemma Compl_disjoint2 [simp]: "-A \<inter> A = {}"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1428
  by (fact compl_inf_bot)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1429
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1430
lemma Compl_partition: "A \<union> -A = UNIV"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1431
  by (fact sup_compl_top)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1432
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1433
lemma Compl_partition2: "-A \<union> A = UNIV"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1434
  by (fact compl_sup_top)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1435
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1436
lemma double_complement: "- (-A) = (A::'a set)"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1437
  by (fact double_compl) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1438
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1439
lemma Compl_Un: "-(A \<union> B) = (-A) \<inter> (-B)"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1440
  by (fact compl_sup) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1441
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1442
lemma Compl_Int: "-(A \<inter> B) = (-A) \<union> (-B)"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1443
  by (fact compl_inf) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1444
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1445
lemma subset_Compl_self_eq: "(A \<subseteq> -A) = (A = {})"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1446
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1447
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1448
lemma Un_Int_assoc_eq: "((A \<inter> B) \<union> C = A \<inter> (B \<union> C)) = (C \<subseteq> A)"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
  1449
  \<comment> \<open>Halmos, Naive Set Theory, page 16.\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1450
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1451
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1452
lemma Compl_UNIV_eq: "-UNIV = {}"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1453
  by (fact compl_top_eq) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1454
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1455
lemma Compl_empty_eq: "-{} = UNIV"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1456
  by (fact compl_bot_eq) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1457
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1458
lemma Compl_subset_Compl_iff [iff]: "(-A \<subseteq> -B) = (B \<subseteq> A)"
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1459
  by (fact compl_le_compl_iff) (* FIXME: already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1460
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1461
lemma Compl_eq_Compl_iff [iff]: "(-A = -B) = (A = (B::'a set))"
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1462
  by (fact compl_eq_compl_iff) (* FIXME: already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1463
44490
e3e8d20a6ebc lemma Compl_insert: "- insert x A = (-A) - {x}"
krauss
parents: 44241
diff changeset
  1464
lemma Compl_insert: "- insert x A = (-A) - {x}"
e3e8d20a6ebc lemma Compl_insert: "- insert x A = (-A) - {x}"
krauss
parents: 44241
diff changeset
  1465
  by blast
e3e8d20a6ebc lemma Compl_insert: "- insert x A = (-A) - {x}"
krauss
parents: 44241
diff changeset
  1466
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1467
text \<open>\medskip Bounded quantifiers.
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1468
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1469
  The following are not added to the default simpset because
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
  1470
  (a) they duplicate the body and (b) there are no similar rules for \<open>Int\<close>.\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1471
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1472
lemma ball_Un: "(\<forall>x \<in> A \<union> B. P x) = ((\<forall>x\<in>A. P x) & (\<forall>x\<in>B. P x))"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1473
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1474
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1475
lemma bex_Un: "(\<exists>x \<in> A \<union> B. P x) = ((\<exists>x\<in>A. P x) | (\<exists>x\<in>B. P x))"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1476
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1477
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1478
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1479
text \<open>\medskip Set difference.\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1480
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1481
lemma Diff_eq: "A - B = A \<inter> (-B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1482
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1483
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1484
lemma Diff_eq_empty_iff [simp]: "(A - B = {}) = (A \<subseteq> B)"
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1485
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1486
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1487
lemma Diff_cancel [simp]: "A - A = {}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1488
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1489
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1490
lemma Diff_idemp [simp]: "(A - B) - B = A - (B::'a set)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1491
by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1492
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1493
lemma Diff_triv: "A \<inter> B = {} ==> A - B = A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1494
  by (blast elim: equalityE)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1495
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1496
lemma empty_Diff [simp]: "{} - A = {}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1497
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1498
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1499
lemma Diff_empty [simp]: "A - {} = A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1500
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1501
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1502
lemma Diff_UNIV [simp]: "A - UNIV = {}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1503
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1504
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1505
lemma Diff_insert0 [simp]: "x \<notin> A ==> A - insert x B = A - B"
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1506
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1507
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1508
lemma Diff_insert: "A - insert a B = A - B - {a}"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
  1509
  \<comment> \<open>NOT SUITABLE FOR REWRITING since \<open>{a} == insert a 0\<close>\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1510
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1511
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1512
lemma Diff_insert2: "A - insert a B = A - {a} - B"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
  1513
  \<comment> \<open>NOT SUITABLE FOR REWRITING since \<open>{a} == insert a 0\<close>\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1514
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1515
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1516
lemma insert_Diff_if: "insert x A - B = (if x \<in> B then A - B else insert x (A - B))"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1517
  by auto
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1518
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1519
lemma insert_Diff1 [simp]: "x \<in> B ==> insert x A - B = A - B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1520
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1521
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1522
lemma insert_Diff_single[simp]: "insert a (A - {a}) = insert a A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1523
by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1524
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1525
lemma insert_Diff: "a \<in> A ==> insert a (A - {a}) = A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1526
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1527
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1528
lemma Diff_insert_absorb: "x \<notin> A ==> (insert x A) - {x} = A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1529
  by auto
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1530
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1531
lemma Diff_disjoint [simp]: "A \<inter> (B - A) = {}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1532
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1533
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1534
lemma Diff_partition: "A \<subseteq> B ==> A \<union> (B - A) = B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1535
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1536
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1537
lemma double_diff: "A \<subseteq> B ==> B \<subseteq> C ==> B - (C - A) = A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1538
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1539
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1540
lemma Un_Diff_cancel [simp]: "A \<union> (B - A) = A \<union> B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1541
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1542
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1543
lemma Un_Diff_cancel2 [simp]: "(B - A) \<union> A = B \<union> A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1544
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1545
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1546
lemma Diff_Un: "A - (B \<union> C) = (A - B) \<inter> (A - C)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1547
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1548
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1549
lemma Diff_Int: "A - (B \<inter> C) = (A - B) \<union> (A - C)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1550
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1551
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61378
diff changeset
  1552
lemma Diff_Diff_Int: "A - (A - B) = A \<inter> B"
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61378
diff changeset
  1553
  by blast
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61378
diff changeset
  1554
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1555
lemma Un_Diff: "(A \<union> B) - C = (A - C) \<union> (B - C)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1556
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1557
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1558
lemma Int_Diff: "(A \<inter> B) - C = A \<inter> (B - C)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1559
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1560
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1561
lemma Diff_Int_distrib: "C \<inter> (A - B) = (C \<inter> A) - (C \<inter> B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1562
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1563
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1564
lemma Diff_Int_distrib2: "(A - B) \<inter> C = (A \<inter> C) - (B \<inter> C)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1565
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1566
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1567
lemma Diff_Compl [simp]: "A - (- B) = A \<inter> B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1568
  by auto
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1569
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1570
lemma Compl_Diff_eq [simp]: "- (A - B) = -A \<union> B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1571
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1572
62843
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62521
diff changeset
  1573
lemma subset_Compl_singleton [simp]: "A \<subseteq> - {b} \<longleftrightarrow> (b \<notin> A)"
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62521
diff changeset
  1574
  by blast
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1575
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1576
text \<open>\medskip Quantification over type @{typ bool}.\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1577
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1578
lemma bool_induct: "P True \<Longrightarrow> P False \<Longrightarrow> P x"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1579
  by (cases x) auto
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1580
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1581
lemma all_bool_eq: "(\<forall>b. P b) \<longleftrightarrow> P True \<and> P False"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1582
  by (auto intro: bool_induct)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1583
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1584
lemma bool_contrapos: "P x \<Longrightarrow> \<not> P False \<Longrightarrow> P True"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1585
  by (cases x) auto
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1586
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1587
lemma ex_bool_eq: "(\<exists>b. P b) \<longleftrightarrow> P True \<or> P False"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1588
  by (auto intro: bool_contrapos)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1589
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1590
lemma UNIV_bool: "UNIV = {False, True}"
43866
8a50dc70cbff moving UNIV = ... equations to their proper theories
haftmann
parents: 43818
diff changeset
  1591
  by (auto intro: bool_induct)
8a50dc70cbff moving UNIV = ... equations to their proper theories
haftmann
parents: 43818
diff changeset
  1592
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
  1593
text \<open>\medskip \<open>Pow\<close>\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1594
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1595
lemma Pow_empty [simp]: "Pow {} = {{}}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1596
  by (auto simp add: Pow_def)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1597
60161
59ebc3f2f896 new simp rule
nipkow
parents: 60057
diff changeset
  1598
lemma Pow_singleton_iff [simp]: "Pow X = {Y} \<longleftrightarrow> X = {} \<and> Y = {}"
63171
a0088f1c049d tuned proofs;
wenzelm
parents: 63114
diff changeset
  1599
  by blast
60161
59ebc3f2f896 new simp rule
nipkow
parents: 60057
diff changeset
  1600
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1601
lemma Pow_insert: "Pow (insert a A) = Pow A \<union> (insert a ` Pow A)"
55143
04448228381d explicit eigen-context for attributes "where", "of", and corresponding read_instantiate, instantiate_tac;
wenzelm
parents: 54998
diff changeset
  1602
  by (blast intro: image_eqI [where ?x = "u - {a}" for u])
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1603
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1604
lemma Pow_Compl: "Pow (- A) = {-B | B. A \<in> Pow B}"
55143
04448228381d explicit eigen-context for attributes "where", "of", and corresponding read_instantiate, instantiate_tac;
wenzelm
parents: 54998
diff changeset
  1605
  by (blast intro: exI [where ?x = "- u" for u])
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1606
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1607
lemma Pow_UNIV [simp]: "Pow UNIV = UNIV"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1608
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1609
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1610
lemma Un_Pow_subset: "Pow A \<union> Pow B \<subseteq> Pow (A \<union> B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1611
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1612
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1613
lemma Pow_Int_eq [simp]: "Pow (A \<inter> B) = Pow A \<inter> Pow B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1614
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1615
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1616
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1617
text \<open>\medskip Miscellany.\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1618
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1619
lemma set_eq_subset: "(A = B) = (A \<subseteq> B & B \<subseteq> A)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1620
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1621
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1622
lemma subset_iff: "(A \<subseteq> B) = (\<forall>t. t \<in> A --> t \<in> B)"
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1623
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1624
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1625
lemma subset_iff_psubset_eq: "(A \<subseteq> B) = ((A \<subset> B) | (A = B))"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1626
  by (unfold less_le) blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1627
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1628
lemma all_not_in_conv [simp]: "(\<forall>x. x \<notin> A) = (A = {})"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1629
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1630
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1631
lemma ex_in_conv: "(\<exists>x. x \<in> A) = (A \<noteq> {})"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1632
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1633
43967
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1634
lemma ball_simps [simp, no_atp]:
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1635
  "\<And>A P Q. (\<forall>x\<in>A. P x \<or> Q) \<longleftrightarrow> ((\<forall>x\<in>A. P x) \<or> Q)"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1636
  "\<And>A P Q. (\<forall>x\<in>A. P \<or> Q x) \<longleftrightarrow> (P \<or> (\<forall>x\<in>A. Q x))"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1637
  "\<And>A P Q. (\<forall>x\<in>A. P \<longrightarrow> Q x) \<longleftrightarrow> (P \<longrightarrow> (\<forall>x\<in>A. Q x))"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1638
  "\<And>A P Q. (\<forall>x\<in>A. P x \<longrightarrow> Q) \<longleftrightarrow> ((\<exists>x\<in>A. P x) \<longrightarrow> Q)"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1639
  "\<And>P. (\<forall>x\<in>{}. P x) \<longleftrightarrow> True"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1640
  "\<And>P. (\<forall>x\<in>UNIV. P x) \<longleftrightarrow> (\<forall>x. P x)"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1641
  "\<And>a B P. (\<forall>x\<in>insert a B. P x) \<longleftrightarrow> (P a \<and> (\<forall>x\<in>B. P x))"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1642
  "\<And>P Q. (\<forall>x\<in>Collect Q. P x) \<longleftrightarrow> (\<forall>x. Q x \<longrightarrow> P x)"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1643
  "\<And>A P f. (\<forall>x\<in>f`A. P x) \<longleftrightarrow> (\<forall>x\<in>A. P (f x))"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1644
  "\<And>A P. (\<not> (\<forall>x\<in>A. P x)) \<longleftrightarrow> (\<exists>x\<in>A. \<not> P x)"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1645
  by auto
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1646
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1647
lemma bex_simps [simp, no_atp]:
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1648
  "\<And>A P Q. (\<exists>x\<in>A. P x \<and> Q) \<longleftrightarrow> ((\<exists>x\<in>A. P x) \<and> Q)"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1649
  "\<And>A P Q. (\<exists>x\<in>A. P \<and> Q x) \<longleftrightarrow> (P \<and> (\<exists>x\<in>A. Q x))"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1650
  "\<And>P. (\<exists>x\<in>{}. P x) \<longleftrightarrow> False"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1651
  "\<And>P. (\<exists>x\<in>UNIV. P x) \<longleftrightarrow> (\<exists>x. P x)"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1652
  "\<And>a B P. (\<exists>x\<in>insert a B. P x) \<longleftrightarrow> (P a | (\<exists>x\<in>B. P x))"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1653
  "\<And>P Q. (\<exists>x\<in>Collect Q. P x) \<longleftrightarrow> (\<exists>x. Q x \<and> P x)"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1654
  "\<And>A P f. (\<exists>x\<in>f`A. P x) \<longleftrightarrow> (\<exists>x\<in>A. P (f x))"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1655
  "\<And>A P. (\<not>(\<exists>x\<in>A. P x)) \<longleftrightarrow> (\<forall>x\<in>A. \<not> P x)"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1656
  by auto
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1657
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1658
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1659
subsubsection \<open>Monotonicity of various operations\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1660
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1661
lemma image_mono: "A \<subseteq> B ==> f`A \<subseteq> f`B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1662
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1663
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1664
lemma Pow_mono: "A \<subseteq> B ==> Pow A \<subseteq> Pow B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1665
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1666
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1667
lemma insert_mono: "C \<subseteq> D ==> insert a C \<subseteq> insert a D"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1668
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1669
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1670
lemma Un_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<union> B \<subseteq> C \<union> D"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1671
  by (fact sup_mono)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1672
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1673
lemma Int_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<inter> B \<subseteq> C \<inter> D"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1674
  by (fact inf_mono)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1675
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1676
lemma Diff_mono: "A \<subseteq> C ==> D \<subseteq> B ==> A - B \<subseteq> C - D"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1677
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1678
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1679
lemma Compl_anti_mono: "A \<subseteq> B ==> -B \<subseteq> -A"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1680
  by (fact compl_mono)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1681
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1682
text \<open>\medskip Monotonicity of implications.\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1683
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1684
lemma in_mono: "A \<subseteq> B ==> x \<in> A --> x \<in> B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1685
  apply (rule impI)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1686
  apply (erule subsetD, assumption)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1687
  done
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1688
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1689
lemma conj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 & P2) --> (Q1 & Q2)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1690
  by iprover
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1691
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1692
lemma disj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 | P2) --> (Q1 | Q2)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1693
  by iprover
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1694
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1695
lemma imp_mono: "Q1 --> P1 ==> P2 --> Q2 ==> (P1 --> P2) --> (Q1 --> Q2)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1696
  by iprover
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1697
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1698
lemma imp_refl: "P --> P" ..
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1699
33935
b94b4587106a Removed eq_to_mono2, added not_mono.
berghofe
parents: 33533
diff changeset
  1700
lemma not_mono: "Q --> P ==> ~ P --> ~ Q"
b94b4587106a Removed eq_to_mono2, added not_mono.
berghofe
parents: 33533
diff changeset
  1701
  by iprover
b94b4587106a Removed eq_to_mono2, added not_mono.
berghofe
parents: 33533
diff changeset
  1702
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1703
lemma ex_mono: "(!!x. P x --> Q x) ==> (EX x. P x) --> (EX x. Q x)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1704
  by iprover
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1705
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1706
lemma all_mono: "(!!x. P x --> Q x) ==> (ALL x. P x) --> (ALL x. Q x)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1707
  by iprover
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1708
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1709
lemma Collect_mono: "(!!x. P x --> Q x) ==> Collect P \<subseteq> Collect Q"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1710
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1711
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1712
lemma Int_Collect_mono:
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1713
    "A \<subseteq> B ==> (!!x. x \<in> A ==> P x --> Q x) ==> A \<inter> Collect P \<subseteq> B \<inter> Collect Q"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1714
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1715
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1716
lemmas basic_monos =
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1717
  subset_refl imp_refl disj_mono conj_mono
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1718
  ex_mono Collect_mono in_mono
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1719
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1720
lemma eq_to_mono: "a = b ==> c = d ==> b --> d ==> a --> c"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1721
  by iprover
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1722
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1723
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1724
subsubsection \<open>Inverse image of a function\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1725
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35115
diff changeset
  1726
definition vimage :: "('a => 'b) => 'b set => 'a set" (infixr "-`" 90) where
37767
a2b7a20d6ea3 dropped superfluous [code del]s
haftmann
parents: 37677
diff changeset
  1727
  "f -` B == {x. f x : B}"
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1728
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1729
lemma vimage_eq [simp]: "(a : f -` B) = (f a : B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1730
  by (unfold vimage_def) blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1731
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1732
lemma vimage_singleton_eq: "(a : f -` {b}) = (f a = b)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1733
  by simp
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1734
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1735
lemma vimageI [intro]: "f a = b ==> b:B ==> a : f -` B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1736
  by (unfold vimage_def) blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1737
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1738
lemma vimageI2: "f a : A ==> a : f -` A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1739
  by (unfold vimage_def) fast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1740
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1741
lemma vimageE [elim!]: "a: f -` B ==> (!!x. f a = x ==> x:B ==> P) ==> P"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1742
  by (unfold vimage_def) blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1743
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1744
lemma vimageD: "a : f -` A ==> f a : A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1745
  by (unfold vimage_def) fast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1746
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1747
lemma vimage_empty [simp]: "f -` {} = {}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1748
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1749
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1750
lemma vimage_Compl: "f -` (-A) = -(f -` A)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1751
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1752
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1753
lemma vimage_Un [simp]: "f -` (A Un B) = (f -` A) Un (f -` B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1754
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1755
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1756
lemma vimage_Int [simp]: "f -` (A Int B) = (f -` A) Int (f -` B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1757
  by fast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1758
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1759
lemma vimage_Collect_eq [simp]: "f -` Collect P = {y. P (f y)}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1760
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1761
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1762
lemma vimage_Collect: "(!!x. P (f x) = Q x) ==> f -` (Collect P) = Collect Q"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1763
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1764
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1765
lemma vimage_insert: "f-`(insert a B) = (f-`{a}) Un (f-`B)"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
  1766
  \<comment> \<open>NOT suitable for rewriting because of the recurrence of @{term "{a}"}.\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1767
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1768
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1769
lemma vimage_Diff: "f -` (A - B) = (f -` A) - (f -` B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1770
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1771
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1772
lemma vimage_UNIV [simp]: "f -` UNIV = UNIV"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1773
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1774
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1775
lemma vimage_mono: "A \<subseteq> B ==> f -` A \<subseteq> f -` B"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
  1776
  \<comment> \<open>monotonicity\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1777
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1778
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1779
lemma vimage_image_eq: "f -` (f ` A) = {y. EX x:A. f x = f y}"
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1780
by (blast intro: sym)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1781
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1782
lemma image_vimage_subset: "f ` (f -` A) <= A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1783
by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1784
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1785
lemma image_vimage_eq [simp]: "f ` (f -` A) = A Int range f"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1786
by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1787
55775
1557a391a858 A bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 55143
diff changeset
  1788
lemma image_subset_iff_subset_vimage: "f ` A \<subseteq> B \<longleftrightarrow> A \<subseteq> f -` B"
59506
4af607652318 Not a simprule, as it complicates proofs
paulson <lp15@cam.ac.uk>
parents: 59504
diff changeset
  1789
  by blast
55775
1557a391a858 A bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 55143
diff changeset
  1790
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents: 33045
diff changeset
  1791
lemma vimage_const [simp]: "((\<lambda>x. c) -` A) = (if c \<in> A then UNIV else {})"
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents: 33045
diff changeset
  1792
  by auto
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents: 33045
diff changeset
  1793
52143
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
  1794
lemma vimage_if [simp]: "((\<lambda>x. if x \<in> B then c else d) -` A) =
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents: 33045
diff changeset
  1795
   (if c \<in> A then (if d \<in> A then UNIV else B)
52143
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
  1796
    else if d \<in> A then -B else {})"
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
  1797
  by (auto simp add: vimage_def)
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents: 33045
diff changeset
  1798
35576
5f6bd3ac99f9 Added vimage_inter_cong
hoelzl
parents: 35416
diff changeset
  1799
lemma vimage_inter_cong:
5f6bd3ac99f9 Added vimage_inter_cong
hoelzl
parents: 35416
diff changeset
  1800
  "(\<And> w. w \<in> S \<Longrightarrow> f w = g w) \<Longrightarrow> f -` y \<inter> S = g -` y \<inter> S"
5f6bd3ac99f9 Added vimage_inter_cong
hoelzl
parents: 35416
diff changeset
  1801
  by auto
5f6bd3ac99f9 Added vimage_inter_cong
hoelzl
parents: 35416
diff changeset
  1802
43898
935359fd8210 moved lemmas to appropriate theory
haftmann
parents: 43866
diff changeset
  1803
lemma vimage_ident [simp]: "(%x. x) -` Y = Y"
935359fd8210 moved lemmas to appropriate theory
haftmann
parents: 43866
diff changeset
  1804
  by blast
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1805
63099
af0e964aad7b Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents: 63072
diff changeset
  1806
  
af0e964aad7b Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents: 63072
diff changeset
  1807
subsubsection \<open>Singleton sets\<close>
af0e964aad7b Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents: 63072
diff changeset
  1808
af0e964aad7b Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents: 63072
diff changeset
  1809
definition is_singleton :: "'a set \<Rightarrow> bool" where
af0e964aad7b Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents: 63072
diff changeset
  1810
  "is_singleton A \<longleftrightarrow> (\<exists>x. A = {x})"
af0e964aad7b Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents: 63072
diff changeset
  1811
af0e964aad7b Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents: 63072
diff changeset
  1812
lemma is_singletonI [simp, intro!]: "is_singleton {x}"
af0e964aad7b Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents: 63072
diff changeset
  1813
  unfolding is_singleton_def by simp
af0e964aad7b Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents: 63072
diff changeset
  1814
af0e964aad7b Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents: 63072
diff changeset
  1815
lemma is_singletonI': "A \<noteq> {} \<Longrightarrow> (\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x = y) \<Longrightarrow> is_singleton A"
af0e964aad7b Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents: 63072
diff changeset
  1816
  unfolding is_singleton_def by blast
af0e964aad7b Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents: 63072
diff changeset
  1817
af0e964aad7b Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents: 63072
diff changeset
  1818
lemma is_singletonE: "is_singleton A \<Longrightarrow> (\<And>x. A = {x} \<Longrightarrow> P) \<Longrightarrow> P"
af0e964aad7b Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents: 63072
diff changeset
  1819
  unfolding is_singleton_def by blast
af0e964aad7b Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents: 63072
diff changeset
  1820
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1821
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1822
subsubsection \<open>Getting the Contents of a Singleton Set\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1823
39910
10097e0a9dbd constant `contents` renamed to `the_elem`
haftmann
parents: 39302
diff changeset
  1824
definition the_elem :: "'a set \<Rightarrow> 'a" where
10097e0a9dbd constant `contents` renamed to `the_elem`
haftmann
parents: 39302
diff changeset
  1825
  "the_elem X = (THE x. X = {x})"
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1826
39910
10097e0a9dbd constant `contents` renamed to `the_elem`
haftmann
parents: 39302
diff changeset
  1827
lemma the_elem_eq [simp]: "the_elem {x} = x"
10097e0a9dbd constant `contents` renamed to `the_elem`
haftmann
parents: 39302
diff changeset
  1828
  by (simp add: the_elem_def)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1829
63099
af0e964aad7b Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents: 63072
diff changeset
  1830
lemma is_singleton_the_elem: "is_singleton A \<longleftrightarrow> A = {the_elem A}"
af0e964aad7b Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents: 63072
diff changeset
  1831
  by (auto simp: is_singleton_def)
af0e964aad7b Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents: 63072
diff changeset
  1832
56740
haftmann
parents: 56077
diff changeset
  1833
lemma the_elem_image_unique:
haftmann
parents: 56077
diff changeset
  1834
  assumes "A \<noteq> {}"
haftmann
parents: 56077
diff changeset
  1835
  assumes *: "\<And>y. y \<in> A \<Longrightarrow> f y = f x"
haftmann
parents: 56077
diff changeset
  1836
  shows "the_elem (f ` A) = f x"
haftmann
parents: 56077
diff changeset
  1837
unfolding the_elem_def proof (rule the1_equality)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1838
  from \<open>A \<noteq> {}\<close> obtain y where "y \<in> A" by auto
56740
haftmann
parents: 56077
diff changeset
  1839
  with * have "f x = f y" by simp
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1840
  with \<open>y \<in> A\<close> have "f x \<in> f ` A" by blast
56740
haftmann
parents: 56077
diff changeset
  1841
  with * show "f ` A = {f x}" by auto
haftmann
parents: 56077
diff changeset
  1842
  then show "\<exists>!x. f ` A = {x}" by auto
haftmann
parents: 56077
diff changeset
  1843
qed
haftmann
parents: 56077
diff changeset
  1844
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1845
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1846
subsubsection \<open>Least value operator\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1847
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1848
lemma Least_mono:
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1849
  "mono (f::'a::order => 'b::order) ==> EX x:S. ALL y:S. x <= y
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1850
    ==> (LEAST y. y : f ` S) = f (LEAST x. x : S)"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61518
diff changeset
  1851
    \<comment> \<open>Courtesy of Stephan Merz\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1852
  apply clarify
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1853
  apply (erule_tac P = "%x. x : S" in LeastI2_order, fast)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1854
  apply (rule LeastI2_order)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1855
  apply (auto elim: monoD intro!: order_antisym)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1856
  done
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1857
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1858
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1859
subsubsection \<open>Monad operation\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1860
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
  1861
definition bind :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
  1862
  "bind A f = {x. \<exists>B \<in> f`A. x \<in> B}"
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1863
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
  1864
hide_const (open) bind
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
  1865
46036
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1866
lemma bind_bind:
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1867
  fixes A :: "'a set"
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1868
  shows "Set.bind (Set.bind A B) C = Set.bind A (\<lambda>x. Set.bind (B x) C)"
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1869
  by (auto simp add: bind_def)
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1870
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1871
lemma empty_bind [simp]:
46128
53e7cc599f58 interaction of set operations for execution and membership predicate
haftmann
parents: 46127
diff changeset
  1872
  "Set.bind {} f = {}"
46036
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1873
  by (simp add: bind_def)
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1874
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1875
lemma nonempty_bind_const:
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1876
  "A \<noteq> {} \<Longrightarrow> Set.bind A (\<lambda>_. B) = B"
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1877
  by (auto simp add: bind_def)
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1878
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1879
lemma bind_const: "Set.bind A (\<lambda>_. B) = (if A = {} then {} else B)"
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1880
  by (auto simp add: bind_def)
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1881
60057
86fa63ce8156 add lemmas
Andreas Lochbihler
parents: 59507
diff changeset
  1882
lemma bind_singleton_conv_image: "Set.bind A (\<lambda>x. {f x}) = f ` A"
86fa63ce8156 add lemmas
Andreas Lochbihler
parents: 59507
diff changeset
  1883
  by(auto simp add: bind_def)
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
  1884
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1885
subsubsection \<open>Operations for execution\<close>
45986
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1886
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1887
definition is_empty :: "'a set \<Rightarrow> bool" where
46127
af3b95160b59 cleanup of code declarations
haftmann
parents: 46036
diff changeset
  1888
  [code_abbrev]: "is_empty A \<longleftrightarrow> A = {}"
45986
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1889
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1890
hide_const (open) is_empty
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1891
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1892
definition remove :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where
46127
af3b95160b59 cleanup of code declarations
haftmann
parents: 46036
diff changeset
  1893
  [code_abbrev]: "remove x A = A - {x}"
45986
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1894
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1895
hide_const (open) remove
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1896
46128
53e7cc599f58 interaction of set operations for execution and membership predicate
haftmann
parents: 46127
diff changeset
  1897
lemma member_remove [simp]:
53e7cc599f58 interaction of set operations for execution and membership predicate
haftmann
parents: 46127
diff changeset
  1898
  "x \<in> Set.remove y A \<longleftrightarrow> x \<in> A \<and> x \<noteq> y"
53e7cc599f58 interaction of set operations for execution and membership predicate
haftmann
parents: 46127
diff changeset
  1899
  by (simp add: remove_def)
53e7cc599f58 interaction of set operations for execution and membership predicate
haftmann
parents: 46127
diff changeset
  1900
49757
73ab6d4a9236 rename Set.project to Set.filter - more appropriate name
kuncar
parents: 49660
diff changeset
  1901
definition filter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set" where
73ab6d4a9236 rename Set.project to Set.filter - more appropriate name
kuncar
parents: 49660
diff changeset
  1902
  [code_abbrev]: "filter P A = {a \<in> A. P a}"
73ab6d4a9236 rename Set.project to Set.filter - more appropriate name
kuncar
parents: 49660
diff changeset
  1903
73ab6d4a9236 rename Set.project to Set.filter - more appropriate name
kuncar
parents: 49660
diff changeset
  1904
hide_const (open) filter
73ab6d4a9236 rename Set.project to Set.filter - more appropriate name
kuncar
parents: 49660
diff changeset
  1905
73ab6d4a9236 rename Set.project to Set.filter - more appropriate name
kuncar
parents: 49660
diff changeset
  1906
lemma member_filter [simp]:
73ab6d4a9236 rename Set.project to Set.filter - more appropriate name
kuncar
parents: 49660
diff changeset
  1907
  "x \<in> Set.filter P A \<longleftrightarrow> x \<in> A \<and> P x"
73ab6d4a9236 rename Set.project to Set.filter - more appropriate name
kuncar
parents: 49660
diff changeset
  1908
  by (simp add: filter_def)
46128
53e7cc599f58 interaction of set operations for execution and membership predicate
haftmann
parents: 46127
diff changeset
  1909
45986
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1910
instantiation set :: (equal) equal
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1911
begin
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1912
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1913
definition
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1914
  "HOL.equal A B \<longleftrightarrow> A \<subseteq> B \<and> B \<subseteq> A"
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1915
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1916
instance proof
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1917
qed (auto simp add: equal_set_def)
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1918
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1919
end
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1920
46127
af3b95160b59 cleanup of code declarations
haftmann
parents: 46036
diff changeset
  1921
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1922
text \<open>Misc\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1923
61306
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  1924
definition "pairwise R S \<longleftrightarrow> (\<forall>x \<in> S. \<forall>y\<in> S. x\<noteq>y \<longrightarrow> R x y)"
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  1925
63072
eb5d493a9e03 renamings and refinements
paulson <lp15@cam.ac.uk>
parents: 63007
diff changeset
  1926
lemma pairwise_subset: "\<lbrakk>pairwise P S; T \<subseteq> S\<rbrakk> \<Longrightarrow> pairwise P T"
eb5d493a9e03 renamings and refinements
paulson <lp15@cam.ac.uk>
parents: 63007
diff changeset
  1927
  by (force simp: pairwise_def)
eb5d493a9e03 renamings and refinements
paulson <lp15@cam.ac.uk>
parents: 63007
diff changeset
  1928
62843
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62521
diff changeset
  1929
definition disjnt where "disjnt A B \<equiv> A \<inter> B = {}"
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62521
diff changeset
  1930
63072
eb5d493a9e03 renamings and refinements
paulson <lp15@cam.ac.uk>
parents: 63007
diff changeset
  1931
lemma pairwise_empty [simp]: "pairwise P {}"
eb5d493a9e03 renamings and refinements
paulson <lp15@cam.ac.uk>
parents: 63007
diff changeset
  1932
  by (simp add: pairwise_def)
eb5d493a9e03 renamings and refinements
paulson <lp15@cam.ac.uk>
parents: 63007
diff changeset
  1933
eb5d493a9e03 renamings and refinements
paulson <lp15@cam.ac.uk>
parents: 63007
diff changeset
  1934
lemma pairwise_singleton [simp]: "pairwise P {A}"
eb5d493a9e03 renamings and refinements
paulson <lp15@cam.ac.uk>
parents: 63007
diff changeset
  1935
  by (simp add: pairwise_def)
62843
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62521
diff changeset
  1936
63114
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63099
diff changeset
  1937
lemma pairwise_insert:
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63099
diff changeset
  1938
   "pairwise r (insert x s) \<longleftrightarrow> (\<forall>y. y \<in> s \<and> y \<noteq> x \<longrightarrow> r x y \<and> r y x) \<and> pairwise r s"
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63099
diff changeset
  1939
by (force simp: pairwise_def)
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63099
diff changeset
  1940
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63099
diff changeset
  1941
lemma pairwise_image:
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63099
diff changeset
  1942
   "pairwise r (f ` s) \<longleftrightarrow> pairwise (\<lambda>x y. (f x \<noteq> f y) \<longrightarrow> r (f x) (f y)) s"
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63099
diff changeset
  1943
by (force simp: pairwise_def)
27afe7af7379 Lots of new material for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 63099
diff changeset
  1944
63099
af0e964aad7b Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents: 63072
diff changeset
  1945
lemma Int_emptyI: "(\<And>x. x \<in> A \<Longrightarrow> x \<in> B \<Longrightarrow> False) \<Longrightarrow> A \<inter> B = {}"
af0e964aad7b Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents: 63072
diff changeset
  1946
  by blast
af0e964aad7b Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents: 63072
diff changeset
  1947
45152
e877b76c72bd hide not_member as also member
haftmann
parents: 45121
diff changeset
  1948
hide_const (open) member not_member
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1949
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1950
lemmas equalityI = subset_antisym
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1951
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  1952
ML \<open>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1953
val Ball_def = @{thm Ball_def}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1954
val Bex_def = @{thm Bex_def}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1955
val CollectD = @{thm CollectD}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1956
val CollectE = @{thm CollectE}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1957
val CollectI = @{thm CollectI}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1958
val Collect_conj_eq = @{thm Collect_conj_eq}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1959
val Collect_mem_eq = @{thm Collect_mem_eq}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1960
val IntD1 = @{thm IntD1}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1961
val IntD2 = @{thm IntD2}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1962
val IntE = @{thm IntE}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1963
val IntI = @{thm IntI}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1964
val Int_Collect = @{thm Int_Collect}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1965
val UNIV_I = @{thm UNIV_I}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1966
val UNIV_witness = @{thm UNIV_witness}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1967
val UnE = @{thm UnE}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1968
val UnI1 = @{thm UnI1}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1969
val UnI2 = @{thm UnI2}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1970
val ballE = @{thm ballE}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1971
val ballI = @{thm ballI}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1972
val bexCI = @{thm bexCI}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1973
val bexE = @{thm bexE}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1974
val bexI = @{thm bexI}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1975
val bex_triv = @{thm bex_triv}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1976
val bspec = @{thm bspec}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1977
val contra_subsetD = @{thm contra_subsetD}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1978
val equalityCE = @{thm equalityCE}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1979
val equalityD1 = @{thm equalityD1}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1980
val equalityD2 = @{thm equalityD2}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1981
val equalityE = @{thm equalityE}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1982
val equalityI = @{thm equalityI}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1983
val imageE = @{thm imageE}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1984
val imageI = @{thm imageI}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1985
val image_Un = @{thm image_Un}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1986
val image_insert = @{thm image_insert}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1987
val insert_commute = @{thm insert_commute}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1988
val insert_iff = @{thm insert_iff}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1989
val mem_Collect_eq = @{thm mem_Collect_eq}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1990
val rangeE = @{thm rangeE}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1991
val rangeI = @{thm rangeI}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1992
val range_eqI = @{thm range_eqI}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1993
val subsetCE = @{thm subsetCE}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1994
val subsetD = @{thm subsetD}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1995
val subsetI = @{thm subsetI}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1996
val subset_refl = @{thm subset_refl}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1997
val subset_trans = @{thm subset_trans}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1998
val vimageD = @{thm vimageD}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1999
val vimageE = @{thm vimageE}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  2000
val vimageI = @{thm vimageI}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  2001
val vimageI2 = @{thm vimageI2}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  2002
val vimage_Collect = @{thm vimage_Collect}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  2003
val vimage_Int = @{thm vimage_Int}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  2004
val vimage_Un = @{thm vimage_Un}
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60161
diff changeset
  2005
\<close>
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  2006
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
  2007
end
46853
998ec26044c4 beautified
haftmann
parents: 46504
diff changeset
  2008