| author | wenzelm | 
| Tue, 06 Jun 2023 11:07:49 +0200 | |
| changeset 78134 | a11ebc8c751a | 
| parent 73932 | fd21b4a93043 | 
| permissions | -rw-r--r-- | 
| 47613 | 1 | (* Author: Tobias Nipkow *) | 
| 2 | ||
| 68778 | 3 | subsection "Backward Analysis of Expressions" | 
| 4 | ||
| 47613 | 5 | theory Abs_Int2 | 
| 6 | imports Abs_Int1 | |
| 7 | begin | |
| 8 | ||
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51037diff
changeset | 9 | instantiation prod :: (order,order) order | 
| 47613 | 10 | begin | 
| 11 | ||
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51037diff
changeset | 12 | definition "less_eq_prod p1 p2 = (fst p1 \<le> fst p2 \<and> snd p1 \<le> snd p2)" | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51037diff
changeset | 13 | definition "less_prod p1 p2 = (p1 \<le> p2 \<and> \<not> p2 \<le> (p1::'a*'b))" | 
| 47613 | 14 | |
| 15 | instance | |
| 61179 | 16 | proof (standard, goal_cases) | 
| 17 | case 1 show ?case by(rule less_prod_def) | |
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51037diff
changeset | 18 | next | 
| 61179 | 19 | case 2 show ?case by(simp add: less_eq_prod_def) | 
| 47613 | 20 | next | 
| 61179 | 21 | case 3 thus ?case unfolding less_eq_prod_def by(metis order_trans) | 
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51037diff
changeset | 22 | next | 
| 61179 | 23 | case 4 thus ?case by(simp add: less_eq_prod_def)(metis eq_iff surjective_pairing) | 
| 47613 | 24 | qed | 
| 25 | ||
| 26 | end | |
| 27 | ||
| 28 | ||
| 68778 | 29 | subsubsection "Extended Framework" | 
| 47613 | 30 | |
| 51826 | 31 | subclass (in bounded_lattice) semilattice_sup_top .. | 
| 47613 | 32 | |
| 52504 | 33 | locale Val_lattice_gamma = Gamma_semilattice where \<gamma> = \<gamma> | 
| 51826 | 34 | for \<gamma> :: "'av::bounded_lattice \<Rightarrow> val set" + | 
| 51390 | 35 | assumes inter_gamma_subset_gamma_inf: | 
| 47613 | 36 | "\<gamma> a1 \<inter> \<gamma> a2 \<subseteq> \<gamma>(a1 \<sqinter> a2)" | 
| 49396 | 37 | and gamma_bot[simp]: "\<gamma> \<bottom> = {}"
 | 
| 47613 | 38 | begin | 
| 39 | ||
| 67613 | 40 | lemma in_gamma_inf: "x \<in> \<gamma> a1 \<Longrightarrow> x \<in> \<gamma> a2 \<Longrightarrow> x \<in> \<gamma>(a1 \<sqinter> a2)" | 
| 69712 | 41 | by (metis IntI inter_gamma_subset_gamma_inf subsetD) | 
| 47613 | 42 | |
| 51848 | 43 | lemma gamma_inf: "\<gamma>(a1 \<sqinter> a2) = \<gamma> a1 \<inter> \<gamma> a2" | 
| 51390 | 44 | by(rule equalityI[OF _ inter_gamma_subset_gamma_inf]) | 
| 51389 | 45 | (metis inf_le1 inf_le2 le_inf_iff mono_gamma) | 
| 47613 | 46 | |
| 47 | end | |
| 48 | ||
| 49 | ||
| 52504 | 50 | locale Val_inv = Val_lattice_gamma where \<gamma> = \<gamma> | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 51 | for \<gamma> :: "'av::bounded_lattice \<Rightarrow> val set" + | 
| 47613 | 52 | fixes test_num' :: "val \<Rightarrow> 'av \<Rightarrow> bool" | 
| 51974 | 53 | and inv_plus' :: "'av \<Rightarrow> 'av \<Rightarrow> 'av \<Rightarrow> 'av * 'av" | 
| 54 | and inv_less' :: "bool \<Rightarrow> 'av \<Rightarrow> 'av \<Rightarrow> 'av * 'av" | |
| 67613 | 55 | assumes test_num': "test_num' i a = (i \<in> \<gamma> a)" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52504diff
changeset | 56 | and inv_plus': "inv_plus' a a1 a2 = (a\<^sub>1',a\<^sub>2') \<Longrightarrow> | 
| 67613 | 57 | i1 \<in> \<gamma> a1 \<Longrightarrow> i2 \<in> \<gamma> a2 \<Longrightarrow> i1+i2 \<in> \<gamma> a \<Longrightarrow> i1 \<in> \<gamma> a\<^sub>1' \<and> i2 \<in> \<gamma> a\<^sub>2'" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52504diff
changeset | 58 | and inv_less': "inv_less' (i1<i2) a1 a2 = (a\<^sub>1',a\<^sub>2') \<Longrightarrow> | 
| 67613 | 59 | i1 \<in> \<gamma> a1 \<Longrightarrow> i2 \<in> \<gamma> a2 \<Longrightarrow> i1 \<in> \<gamma> a\<^sub>1' \<and> i2 \<in> \<gamma> a\<^sub>2'" | 
| 47613 | 60 | |
| 61 | ||
| 52504 | 62 | locale Abs_Int_inv = Val_inv where \<gamma> = \<gamma> | 
| 51826 | 63 | for \<gamma> :: "'av::bounded_lattice \<Rightarrow> val set" | 
| 47613 | 64 | begin | 
| 65 | ||
| 51389 | 66 | lemma in_gamma_sup_UpI: | 
| 67613 | 67 | "s \<in> \<gamma>\<^sub>o S1 \<or> s \<in> \<gamma>\<^sub>o S2 \<Longrightarrow> s \<in> \<gamma>\<^sub>o(S1 \<squnion> S2)" | 
| 73932 
fd21b4a93043
added opaque_combs and renamed hide_lams to opaque_lifting
 desharna parents: 
69712diff
changeset | 68 | by (metis (opaque_lifting, no_types) sup_ge1 sup_ge2 mono_gamma_o subsetD) | 
| 47613 | 69 | |
| 70 | fun aval'' :: "aexp \<Rightarrow> 'av st option \<Rightarrow> 'av" where | |
| 71 | "aval'' e None = \<bottom>" | | |
| 51834 | 72 | "aval'' e (Some S) = aval' e S" | 
| 47613 | 73 | |
| 67613 | 74 | lemma aval''_correct: "s \<in> \<gamma>\<^sub>o S \<Longrightarrow> aval a s \<in> \<gamma>(aval'' a S)" | 
| 51974 | 75 | by(cases S)(auto simp add: aval'_correct split: option.splits) | 
| 47613 | 76 | |
| 77 | subsubsection "Backward analysis" | |
| 78 | ||
| 55053 | 79 | fun inv_aval' :: "aexp \<Rightarrow> 'av \<Rightarrow> 'av st option \<Rightarrow> 'av st option" where | 
| 80 | "inv_aval' (N n) a S = (if test_num' n a then S else None)" | | |
| 81 | "inv_aval' (V x) a S = (case S of None \<Rightarrow> None | Some S \<Rightarrow> | |
| 47613 | 82 | let a' = fun S x \<sqinter> a in | 
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51037diff
changeset | 83 | if a' = \<bottom> then None else Some(update S x a'))" | | 
| 55053 | 84 | "inv_aval' (Plus e1 e2) a S = | 
| 51974 | 85 | (let (a1,a2) = inv_plus' a (aval'' e1 S) (aval'' e2 S) | 
| 55053 | 86 | in inv_aval' e1 a1 (inv_aval' e2 a2 S))" | 
| 47613 | 87 | |
| 69597 | 88 | text\<open>The test for \<^const>\<open>bot\<close> in the \<^const>\<open>V\<close>-case is important: \<^const>\<open>bot\<close> indicates that a variable has no possible values, i.e.\ that the current | 
| 47613 | 89 | program point is unreachable. But then the abstract state should collapse to | 
| 69597 | 90 | \<^const>\<open>None\<close>. Put differently, we maintain the invariant that in an abstract | 
| 91 | state of the form \<^term>\<open>Some s\<close>, all variables are mapped to non-\<^const>\<open>bot\<close> values. Otherwise the (pointwise) sup of two abstract states, one of | |
| 92 | which contains \<^const>\<open>bot\<close> values, may produce too large a result, thus | |
| 67406 | 93 | making the analysis less precise.\<close> | 
| 47613 | 94 | |
| 95 | ||
| 55053 | 96 | fun inv_bval' :: "bexp \<Rightarrow> bool \<Rightarrow> 'av st option \<Rightarrow> 'av st option" where | 
| 97 | "inv_bval' (Bc v) res S = (if v=res then S else None)" | | |
| 98 | "inv_bval' (Not b) res S = inv_bval' b (\<not> res) S" | | |
| 99 | "inv_bval' (And b1 b2) res S = | |
| 100 | (if res then inv_bval' b1 True (inv_bval' b2 True S) | |
| 101 | else inv_bval' b1 False S \<squnion> inv_bval' b2 False S)" | | |
| 102 | "inv_bval' (Less e1 e2) res S = | |
| 51974 | 103 | (let (a1,a2) = inv_less' res (aval'' e1 S) (aval'' e2 S) | 
| 55053 | 104 | in inv_aval' e1 a1 (inv_aval' e2 a2 S))" | 
| 47613 | 105 | |
| 67613 | 106 | lemma inv_aval'_correct: "s \<in> \<gamma>\<^sub>o S \<Longrightarrow> aval e s \<in> \<gamma> a \<Longrightarrow> s \<in> \<gamma>\<^sub>o (inv_aval' e a S)" | 
| 47613 | 107 | proof(induction e arbitrary: a S) | 
| 108 | case N thus ?case by simp (metis test_num') | |
| 109 | next | |
| 110 | case (V x) | |
| 67613 | 111 | obtain S' where "S = Some S'" and "s \<in> \<gamma>\<^sub>s S'" using \<open>s \<in> \<gamma>\<^sub>o S\<close> | 
| 47613 | 112 | by(auto simp: in_gamma_option_iff) | 
| 67613 | 113 | moreover hence "s x \<in> \<gamma> (fun S' x)" | 
| 51849 | 114 | by(simp add: \<gamma>_st_def) | 
| 67613 | 115 | moreover have "s x \<in> \<gamma> a" using V(2) by simp | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 116 | ultimately show ?case | 
| 47613 | 117 | by(simp add: Let_def \<gamma>_st_def) | 
| 51390 | 118 | (metis mono_gamma emptyE in_gamma_inf gamma_bot subset_empty) | 
| 47613 | 119 | next | 
| 120 | case (Plus e1 e2) thus ?case | |
| 51974 | 121 | using inv_plus'[OF _ aval''_correct aval''_correct] | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 122 | by (auto split: prod.split) | 
| 47613 | 123 | qed | 
| 124 | ||
| 67613 | 125 | lemma inv_bval'_correct: "s \<in> \<gamma>\<^sub>o S \<Longrightarrow> bv = bval b s \<Longrightarrow> s \<in> \<gamma>\<^sub>o(inv_bval' b bv S)" | 
| 47613 | 126 | proof(induction b arbitrary: S bv) | 
| 127 | case Bc thus ?case by simp | |
| 128 | next | |
| 129 | case (Not b) thus ?case by simp | |
| 130 | next | |
| 131 | case (And b1 b2) thus ?case | |
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 132 | by simp (metis And(1) And(2) in_gamma_sup_UpI) | 
| 47613 | 133 | next | 
| 134 | case (Less e1 e2) thus ?case | |
| 57492 
74bf65a1910a
Hypsubst preserves equality hypotheses
 Thomas Sewell <thomas.sewell@nicta.com.au> parents: 
55053diff
changeset | 135 | apply hypsubst_thin | 
| 
74bf65a1910a
Hypsubst preserves equality hypotheses
 Thomas Sewell <thomas.sewell@nicta.com.au> parents: 
55053diff
changeset | 136 | apply (auto split: prod.split) | 
| 
74bf65a1910a
Hypsubst preserves equality hypotheses
 Thomas Sewell <thomas.sewell@nicta.com.au> parents: 
55053diff
changeset | 137 | apply (metis (lifting) inv_aval'_correct aval''_correct inv_less') | 
| 
74bf65a1910a
Hypsubst preserves equality hypotheses
 Thomas Sewell <thomas.sewell@nicta.com.au> parents: 
55053diff
changeset | 138 | done | 
| 47613 | 139 | qed | 
| 140 | ||
| 51390 | 141 | definition "step' = Step | 
| 51389 | 142 | (\<lambda>x e S. case S of None \<Rightarrow> None | Some S \<Rightarrow> Some(update S x (aval' e S))) | 
| 55053 | 143 | (\<lambda>b S. inv_bval' b True S)" | 
| 47613 | 144 | |
| 145 | definition AI :: "com \<Rightarrow> 'av st option acom option" where | |
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 146 | "AI c = pfp (step' \<top>) (bot c)" | 
| 47613 | 147 | |
| 148 | lemma strip_step'[simp]: "strip(step' S c) = strip c" | |
| 51390 | 149 | by(simp add: step'_def) | 
| 47613 | 150 | |
| 55053 | 151 | lemma top_on_inv_aval': "\<lbrakk> top_on_opt S X; vars e \<subseteq> -X \<rbrakk> \<Longrightarrow> top_on_opt (inv_aval' e a S) X" | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 152 | by(induction e arbitrary: a S) (auto simp: Let_def split: option.splits prod.split) | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 153 | |
| 55053 | 154 | lemma top_on_inv_bval': "\<lbrakk>top_on_opt S X; vars b \<subseteq> -X\<rbrakk> \<Longrightarrow> top_on_opt (inv_bval' b r S) X" | 
| 155 | by(induction b arbitrary: r S) (auto simp: top_on_inv_aval' top_on_sup split: prod.split) | |
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 156 | |
| 51785 | 157 | lemma top_on_step': "top_on_acom C (- vars C) \<Longrightarrow> top_on_acom (step' \<top> C) (- vars C)" | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 158 | unfolding step'_def | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 159 | by(rule top_on_Step) | 
| 55053 | 160 | (auto simp add: top_on_top top_on_inv_bval' split: option.split) | 
| 47613 | 161 | |
| 51974 | 162 | subsubsection "Correctness" | 
| 47613 | 163 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52504diff
changeset | 164 | lemma step_step': "step (\<gamma>\<^sub>o S) (\<gamma>\<^sub>c C) \<le> \<gamma>\<^sub>c (step' S C)" | 
| 51390 | 165 | unfolding step_def step'_def | 
| 166 | by(rule gamma_Step_subcomm) | |
| 55053 | 167 | (auto simp: intro!: aval'_correct inv_bval'_correct in_gamma_update split: option.splits) | 
| 47613 | 168 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52504diff
changeset | 169 | lemma AI_correct: "AI c = Some C \<Longrightarrow> CS c \<le> \<gamma>\<^sub>c C" | 
| 47613 | 170 | proof(simp add: CS_def AI_def) | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 171 | assume 1: "pfp (step' \<top>) (bot c) = Some C" | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 172 | have pfp': "step' \<top> C \<le> C" by(rule pfp_pfp[OF 1]) | 
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
67406diff
changeset | 173 | have 2: "step (\<gamma>\<^sub>o \<top>) (\<gamma>\<^sub>c C) \<le> \<gamma>\<^sub>c C" \<comment> \<open>transfer the pfp'\<close> | 
| 50986 | 174 | proof(rule order_trans) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52504diff
changeset | 175 | show "step (\<gamma>\<^sub>o \<top>) (\<gamma>\<^sub>c C) \<le> \<gamma>\<^sub>c (step' \<top> C)" by(rule step_step') | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52504diff
changeset | 176 | show "... \<le> \<gamma>\<^sub>c C" by (metis mono_gamma_c[OF pfp']) | 
| 47613 | 177 | qed | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52504diff
changeset | 178 | have 3: "strip (\<gamma>\<^sub>c C) = c" by(simp add: strip_pfp[OF _ 1] step'_def) | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52504diff
changeset | 179 | have "lfp c (step (\<gamma>\<^sub>o \<top>)) \<le> \<gamma>\<^sub>c C" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52504diff
changeset | 180 | by(rule lfp_lowerbound[simplified,where f="step (\<gamma>\<^sub>o \<top>)", OF 3 2]) | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52504diff
changeset | 181 | thus "lfp c (step UNIV) \<le> \<gamma>\<^sub>c C" by simp | 
| 47613 | 182 | qed | 
| 183 | ||
| 184 | end | |
| 185 | ||
| 186 | ||
| 187 | subsubsection "Monotonicity" | |
| 188 | ||
| 52504 | 189 | locale Abs_Int_inv_mono = Abs_Int_inv + | 
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51037diff
changeset | 190 | assumes mono_plus': "a1 \<le> b1 \<Longrightarrow> a2 \<le> b2 \<Longrightarrow> plus' a1 a2 \<le> plus' b1 b2" | 
| 51974 | 191 | and mono_inv_plus': "a1 \<le> b1 \<Longrightarrow> a2 \<le> b2 \<Longrightarrow> r \<le> r' \<Longrightarrow> | 
| 192 | inv_plus' r a1 a2 \<le> inv_plus' r' b1 b2" | |
| 193 | and mono_inv_less': "a1 \<le> b1 \<Longrightarrow> a2 \<le> b2 \<Longrightarrow> | |
| 194 | inv_less' bv a1 a2 \<le> inv_less' bv b1 b2" | |
| 47613 | 195 | begin | 
| 196 | ||
| 197 | lemma mono_aval': | |
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 198 | "S1 \<le> S2 \<Longrightarrow> aval' e S1 \<le> aval' e S2" | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 199 | by(induction e) (auto simp: mono_plus' mono_fun) | 
| 47613 | 200 | |
| 201 | lemma mono_aval'': | |
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 202 | "S1 \<le> S2 \<Longrightarrow> aval'' e S1 \<le> aval'' e S2" | 
| 47613 | 203 | apply(cases S1) | 
| 204 | apply simp | |
| 205 | apply(cases S2) | |
| 206 | apply simp | |
| 207 | by (simp add: mono_aval') | |
| 208 | ||
| 55053 | 209 | lemma mono_inv_aval': "r1 \<le> r2 \<Longrightarrow> S1 \<le> S2 \<Longrightarrow> inv_aval' e r1 S1 \<le> inv_aval' e r2 S2" | 
| 47613 | 210 | apply(induction e arbitrary: r1 r2 S1 S2) | 
| 51390 | 211 | apply(auto simp: test_num' Let_def inf_mono split: option.splits prod.splits) | 
| 212 | apply (metis mono_gamma subsetD) | |
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 213 | apply (metis le_bot inf_mono le_st_iff) | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 214 | apply (metis inf_mono mono_update le_st_iff) | 
| 51974 | 215 | apply(metis mono_aval'' mono_inv_plus'[simplified less_eq_prod_def] fst_conv snd_conv) | 
| 47613 | 216 | done | 
| 217 | ||
| 55053 | 218 | lemma mono_inv_bval': "S1 \<le> S2 \<Longrightarrow> inv_bval' b bv S1 \<le> inv_bval' b bv S2" | 
| 47613 | 219 | apply(induction b arbitrary: bv S1 S2) | 
| 51390 | 220 | apply(simp) | 
| 221 | apply(simp) | |
| 222 | apply simp | |
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 223 | apply(metis order_trans[OF _ sup_ge1] order_trans[OF _ sup_ge2]) | 
| 47613 | 224 | apply (simp split: prod.splits) | 
| 55053 | 225 | apply(metis mono_aval'' mono_inv_aval' mono_inv_less'[simplified less_eq_prod_def] fst_conv snd_conv) | 
| 47613 | 226 | done | 
| 227 | ||
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 228 | theorem mono_step': "S1 \<le> S2 \<Longrightarrow> C1 \<le> C2 \<Longrightarrow> step' S1 C1 \<le> step' S2 C2" | 
| 51390 | 229 | unfolding step'_def | 
| 55053 | 230 | by(rule mono2_Step) (auto simp: mono_aval' mono_inv_bval' split: option.split) | 
| 47613 | 231 | |
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 232 | lemma mono_step'_top: "C1 \<le> C2 \<Longrightarrow> step' \<top> C1 \<le> step' \<top> C2" | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 233 | by (metis mono_step' order_refl) | 
| 47613 | 234 | |
| 235 | end | |
| 236 | ||
| 237 | end |