author | nipkow |
Thu, 31 Aug 2017 09:50:11 +0200 | |
changeset 66566 | a14bbbaa628d |
parent 66552 | 507a42c0a0ff |
child 67399 | eab6ce8368fa |
permissions | -rw-r--r-- |
66296
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1 |
section\<open>Continuity of the indefinite integral; improper integral theorem\<close> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
2 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
3 |
theory "Improper_Integral" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
4 |
imports Equivalence_Lebesgue_Henstock_Integration |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
5 |
begin |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
6 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
7 |
subsection\<open>Equiintegrability\<close> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
8 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
9 |
text\<open>The definition here only really makes sense for an elementary set. |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
10 |
We just use compact intervals in applications below.\<close> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
11 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
12 |
definition equiintegrable_on (infixr "equiintegrable'_on" 46) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
13 |
where "F equiintegrable_on I \<equiv> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
14 |
(\<forall>f \<in> F. f integrable_on I) \<and> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
15 |
(\<forall>e > 0. \<exists>\<gamma>. gauge \<gamma> \<and> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
16 |
(\<forall>f \<D>. f \<in> F \<and> \<D> tagged_division_of I \<and> \<gamma> fine \<D> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
17 |
\<longrightarrow> norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - integral I f) < e))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
18 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
19 |
lemma equiintegrable_on_integrable: |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
20 |
"\<lbrakk>F equiintegrable_on I; f \<in> F\<rbrakk> \<Longrightarrow> f integrable_on I" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
21 |
using equiintegrable_on_def by metis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
22 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
23 |
lemma equiintegrable_on_sing [simp]: |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
24 |
"{f} equiintegrable_on cbox a b \<longleftrightarrow> f integrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
25 |
by (simp add: equiintegrable_on_def has_integral_integral has_integral integrable_on_def) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
26 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
27 |
lemma equiintegrable_on_subset: "\<lbrakk>F equiintegrable_on I; G \<subseteq> F\<rbrakk> \<Longrightarrow> G equiintegrable_on I" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
28 |
unfolding equiintegrable_on_def Ball_def |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
29 |
by (erule conj_forward imp_forward all_forward ex_forward | blast)+ |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
30 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
31 |
lemma equiintegrable_on_Un: |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
32 |
assumes "F equiintegrable_on I" "G equiintegrable_on I" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
33 |
shows "(F \<union> G) equiintegrable_on I" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
34 |
unfolding equiintegrable_on_def |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
35 |
proof (intro conjI impI allI) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
36 |
show "\<forall>f\<in>F \<union> G. f integrable_on I" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
37 |
using assms unfolding equiintegrable_on_def by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
38 |
show "\<exists>\<gamma>. gauge \<gamma> \<and> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
39 |
(\<forall>f \<D>. f \<in> F \<union> G \<and> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
40 |
\<D> tagged_division_of I \<and> \<gamma> fine \<D> \<longrightarrow> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
41 |
norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - integral I f) < \<epsilon>)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
42 |
if "\<epsilon> > 0" for \<epsilon> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
43 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
44 |
obtain \<gamma>1 where "gauge \<gamma>1" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
45 |
and \<gamma>1: "\<And>f \<D>. f \<in> F \<and> \<D> tagged_division_of I \<and> \<gamma>1 fine \<D> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
46 |
\<Longrightarrow> norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - integral I f) < \<epsilon>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
47 |
using assms \<open>\<epsilon> > 0\<close> unfolding equiintegrable_on_def by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
48 |
obtain \<gamma>2 where "gauge \<gamma>2" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
49 |
and \<gamma>2: "\<And>f \<D>. f \<in> G \<and> \<D> tagged_division_of I \<and> \<gamma>2 fine \<D> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
50 |
\<Longrightarrow> norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - integral I f) < \<epsilon>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
51 |
using assms \<open>\<epsilon> > 0\<close> unfolding equiintegrable_on_def by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
52 |
have "gauge (\<lambda>x. \<gamma>1 x \<inter> \<gamma>2 x)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
53 |
using \<open>gauge \<gamma>1\<close> \<open>gauge \<gamma>2\<close> by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
54 |
moreover have "\<forall>f \<D>. f \<in> F \<union> G \<and> \<D> tagged_division_of I \<and> (\<lambda>x. \<gamma>1 x \<inter> \<gamma>2 x) fine \<D> \<longrightarrow> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
55 |
norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - integral I f) < \<epsilon>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
56 |
using \<gamma>1 \<gamma>2 by (auto simp: fine_Int) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
57 |
ultimately show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
58 |
by (intro exI conjI) assumption+ |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
59 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
60 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
61 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
62 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
63 |
lemma equiintegrable_on_insert: |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
64 |
assumes "f integrable_on cbox a b" "F equiintegrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
65 |
shows "(insert f F) equiintegrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
66 |
by (metis assms equiintegrable_on_Un equiintegrable_on_sing insert_is_Un) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
67 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
68 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
69 |
text\<open> Basic combining theorems for the interval of integration.\<close> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
70 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
71 |
lemma equiintegrable_on_null [simp]: |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
72 |
"content(cbox a b) = 0 \<Longrightarrow> F equiintegrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
73 |
apply (auto simp: equiintegrable_on_def) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
74 |
by (metis gauge_trivial norm_eq_zero sum_content_null) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
75 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
76 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
77 |
text\<open> Main limit theorem for an equiintegrable sequence.\<close> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
78 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
79 |
theorem equiintegrable_limit: |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
80 |
fixes g :: "'a :: euclidean_space \<Rightarrow> 'b :: banach" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
81 |
assumes feq: "range f equiintegrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
82 |
and to_g: "\<And>x. x \<in> cbox a b \<Longrightarrow> (\<lambda>n. f n x) \<longlonglongrightarrow> g x" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
83 |
shows "g integrable_on cbox a b \<and> (\<lambda>n. integral (cbox a b) (f n)) \<longlonglongrightarrow> integral (cbox a b) g" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
84 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
85 |
have "Cauchy (\<lambda>n. integral(cbox a b) (f n))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
86 |
proof (clarsimp simp add: Cauchy_def) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
87 |
fix e::real |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
88 |
assume "0 < e" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
89 |
then have e3: "0 < e/3" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
90 |
by simp |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
91 |
then obtain \<gamma> where "gauge \<gamma>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
92 |
and \<gamma>: "\<And>n \<D>. \<lbrakk>\<D> tagged_division_of cbox a b; \<gamma> fine \<D>\<rbrakk> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
93 |
\<Longrightarrow> norm((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f n x) - integral (cbox a b) (f n)) < e/3" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
94 |
using feq unfolding equiintegrable_on_def |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
95 |
by (meson image_eqI iso_tuple_UNIV_I) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
96 |
obtain \<D> where \<D>: "\<D> tagged_division_of (cbox a b)" and "\<gamma> fine \<D>" "finite \<D>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
97 |
by (meson \<open>gauge \<gamma>\<close> fine_division_exists tagged_division_of_finite) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
98 |
with \<gamma> have \<delta>T: "\<And>n. dist ((\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f n x)) (integral (cbox a b) (f n)) < e/3" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
99 |
by (force simp: dist_norm) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
100 |
have "(\<lambda>n. \<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f n x) \<longlonglongrightarrow> (\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R g x)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
101 |
using \<D> to_g by (auto intro!: tendsto_sum tendsto_scaleR) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
102 |
then have "Cauchy (\<lambda>n. \<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f n x)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
103 |
by (meson convergent_eq_Cauchy) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
104 |
with e3 obtain M where |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
105 |
M: "\<And>m n. \<lbrakk>m\<ge>M; n\<ge>M\<rbrakk> \<Longrightarrow> dist (\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f m x) (\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f n x) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
106 |
< e/3" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
107 |
unfolding Cauchy_def by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
108 |
have "\<And>m n. \<lbrakk>m\<ge>M; n\<ge>M; |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
109 |
dist (\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f m x) (\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f n x) < e/3\<rbrakk> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
110 |
\<Longrightarrow> dist (integral (cbox a b) (f m)) (integral (cbox a b) (f n)) < e" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
111 |
by (metis \<delta>T dist_commute dist_triangle_third [OF _ _ \<delta>T]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
112 |
then show "\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (integral (cbox a b) (f m)) (integral (cbox a b) (f n)) < e" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
113 |
using M by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
114 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
115 |
then obtain L where L: "(\<lambda>n. integral (cbox a b) (f n)) \<longlonglongrightarrow> L" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
116 |
by (meson convergent_eq_Cauchy) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
117 |
have "(g has_integral L) (cbox a b)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
118 |
proof (clarsimp simp: has_integral) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
119 |
fix e::real assume "0 < e" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
120 |
then have e2: "0 < e/2" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
121 |
by simp |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
122 |
then obtain \<gamma> where "gauge \<gamma>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
123 |
and \<gamma>: "\<And>n \<D>. \<lbrakk>\<D> tagged_division_of cbox a b; \<gamma> fine \<D>\<rbrakk> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
124 |
\<Longrightarrow> norm((\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f n x) - integral (cbox a b) (f n)) < e/2" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
125 |
using feq unfolding equiintegrable_on_def |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
126 |
by (meson image_eqI iso_tuple_UNIV_I) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
127 |
moreover |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
128 |
have "norm ((\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R g x) - L) < e" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
129 |
if "\<D> tagged_division_of cbox a b" "\<gamma> fine \<D>" for \<D> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
130 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
131 |
have "norm ((\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R g x) - L) \<le> e/2" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
132 |
proof (rule Lim_norm_ubound) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
133 |
show "(\<lambda>n. (\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f n x) - integral (cbox a b) (f n)) \<longlonglongrightarrow> (\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R g x) - L" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
134 |
using to_g that L |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
135 |
by (intro tendsto_diff tendsto_sum) (auto simp: tag_in_interval tendsto_scaleR) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
136 |
show "\<forall>\<^sub>F n in sequentially. |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
137 |
norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f n x) - integral (cbox a b) (f n)) \<le> e/2" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
138 |
by (intro eventuallyI less_imp_le \<gamma> that) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
139 |
qed auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
140 |
with \<open>0 < e\<close> show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
141 |
by linarith |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
142 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
143 |
ultimately |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
144 |
show "\<exists>\<gamma>. gauge \<gamma> \<and> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
145 |
(\<forall>\<D>. \<D> tagged_division_of cbox a b \<and> \<gamma> fine \<D> \<longrightarrow> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
146 |
norm ((\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R g x) - L) < e)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
147 |
by meson |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
148 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
149 |
with L show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
150 |
by (simp add: \<open>(\<lambda>n. integral (cbox a b) (f n)) \<longlonglongrightarrow> L\<close> has_integral_integrable_integral) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
151 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
152 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
153 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
154 |
lemma equiintegrable_reflect: |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
155 |
assumes "F equiintegrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
156 |
shows "(\<lambda>f. f \<circ> uminus) ` F equiintegrable_on cbox (-b) (-a)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
157 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
158 |
have "\<exists>\<gamma>. gauge \<gamma> \<and> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
159 |
(\<forall>f \<D>. f \<in> (\<lambda>f. f \<circ> uminus) ` F \<and> \<D> tagged_division_of cbox (- b) (- a) \<and> \<gamma> fine \<D> \<longrightarrow> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
160 |
norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - integral (cbox (- b) (- a)) f) < e)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
161 |
if "gauge \<gamma>" and |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
162 |
\<gamma>: "\<And>f \<D>. \<lbrakk>f \<in> F; \<D> tagged_division_of cbox a b; \<gamma> fine \<D>\<rbrakk> \<Longrightarrow> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
163 |
norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - integral (cbox a b) f) < e" for e \<gamma> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
164 |
proof (intro exI, safe) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
165 |
show "gauge (\<lambda>x. uminus ` \<gamma> (-x))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
166 |
by (metis \<open>gauge \<gamma>\<close> gauge_reflect) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
167 |
show "norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R (f \<circ> uminus) x) - integral (cbox (- b) (- a)) (f \<circ> uminus)) < e" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
168 |
if "f \<in> F" and tag: "\<D> tagged_division_of cbox (- b) (- a)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
169 |
and fine: "(\<lambda>x. uminus ` \<gamma> (- x)) fine \<D>" for f \<D> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
170 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
171 |
have 1: "(\<lambda>(x,K). (- x, uminus ` K)) ` \<D> tagged_partial_division_of cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
172 |
if "\<D> tagged_partial_division_of cbox (- b) (- a)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
173 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
174 |
have "- y \<in> cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
175 |
if "\<And>x K. (x,K) \<in> \<D> \<Longrightarrow> x \<in> K \<and> K \<subseteq> cbox (- b) (- a) \<and> (\<exists>a b. K = cbox a b)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
176 |
"(x, Y) \<in> \<D>" "y \<in> Y" for x Y y |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
177 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
178 |
have "y \<in> uminus ` cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
179 |
using that by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
180 |
then show "- y \<in> cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
181 |
by force |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
182 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
183 |
with that show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
184 |
by (fastforce simp: tagged_partial_division_of_def interior_negations image_iff) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
185 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
186 |
have 2: "\<exists>K. (\<exists>x. (x,K) \<in> (\<lambda>(x,K). (- x, uminus ` K)) ` \<D>) \<and> x \<in> K" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
187 |
if "\<Union>{K. \<exists>x. (x,K) \<in> \<D>} = cbox (- b) (- a)" "x \<in> cbox a b" for x |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
188 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
189 |
have xm: "x \<in> uminus ` \<Union>{A. \<exists>a. (a, A) \<in> \<D>}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
190 |
by (simp add: that) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
191 |
then obtain a X where "-x \<in> X" "(a, X) \<in> \<D>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
192 |
by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
193 |
then show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
194 |
by (metis (no_types, lifting) add.inverse_inverse image_iff pair_imageI) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
195 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
196 |
have 3: "\<And>x X y. \<lbrakk>\<D> tagged_partial_division_of cbox (- b) (- a); (x, X) \<in> \<D>; y \<in> X\<rbrakk> \<Longrightarrow> - y \<in> cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
197 |
by (metis (no_types, lifting) equation_minus_iff imageE subsetD tagged_partial_division_ofD(3) uminus_interval_vector) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
198 |
have tag': "(\<lambda>(x,K). (- x, uminus ` K)) ` \<D> tagged_division_of cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
199 |
using tag by (auto simp: tagged_division_of_def dest: 1 2 3) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
200 |
have fine': "\<gamma> fine (\<lambda>(x,K). (- x, uminus ` K)) ` \<D>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
201 |
using fine by (fastforce simp: fine_def) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
202 |
have inj: "inj_on (\<lambda>(x,K). (- x, uminus ` K)) \<D>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
203 |
unfolding inj_on_def by force |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
204 |
have eq: "content (uminus ` I) = content I" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
205 |
if I: "(x, I) \<in> \<D>" and fnz: "f (- x) \<noteq> 0" for x I |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
206 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
207 |
obtain a b where "I = cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
208 |
using tag I that by (force simp: tagged_division_of_def tagged_partial_division_of_def) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
209 |
then show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
210 |
using content_image_affinity_cbox [of "-1" 0] by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
211 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
212 |
have "(\<Sum>(x,K) \<in> (\<lambda>(x,K). (- x, uminus ` K)) ` \<D>. content K *\<^sub>R f x) = |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
213 |
(\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f (- x))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
214 |
apply (simp add: sum.reindex [OF inj]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
215 |
apply (auto simp: eq intro!: sum.cong) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
216 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
217 |
then show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
218 |
using \<gamma> [OF \<open>f \<in> F\<close> tag' fine'] integral_reflect |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
219 |
by (metis (mono_tags, lifting) Henstock_Kurzweil_Integration.integral_cong comp_apply split_def sum.cong) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
220 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
221 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
222 |
then show ?thesis |
66552
507a42c0a0ff
last-minute integration unscrambling
paulson <lp15@cam.ac.uk>
parents:
66497
diff
changeset
|
223 |
using assms |
507a42c0a0ff
last-minute integration unscrambling
paulson <lp15@cam.ac.uk>
parents:
66497
diff
changeset
|
224 |
apply (auto simp: equiintegrable_on_def) |
507a42c0a0ff
last-minute integration unscrambling
paulson <lp15@cam.ac.uk>
parents:
66497
diff
changeset
|
225 |
apply (rule integrable_eq) |
507a42c0a0ff
last-minute integration unscrambling
paulson <lp15@cam.ac.uk>
parents:
66497
diff
changeset
|
226 |
by auto |
66296
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
227 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
228 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
229 |
subsection\<open>Subinterval restrictions for equiintegrable families\<close> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
230 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
231 |
text\<open>First, some technical lemmas about minimizing a "flat" part of a sum over a division.\<close> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
232 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
233 |
lemma lemma0: |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
234 |
assumes "i \<in> Basis" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
235 |
shows "content (cbox u v) / (interval_upperbound (cbox u v) \<bullet> i - interval_lowerbound (cbox u v) \<bullet> i) = |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
236 |
(if content (cbox u v) = 0 then 0 |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
237 |
else \<Prod>j \<in> Basis - {i}. interval_upperbound (cbox u v) \<bullet> j - interval_lowerbound (cbox u v) \<bullet> j)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
238 |
proof (cases "content (cbox u v) = 0") |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
239 |
case True |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
240 |
then show ?thesis by simp |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
241 |
next |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
242 |
case False |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
243 |
then show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
244 |
using prod.subset_diff [of "{i}" Basis] assms |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
245 |
by (force simp: content_cbox_if divide_simps split: if_split_asm) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
246 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
247 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
248 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
249 |
lemma content_division_lemma1: |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
250 |
assumes div: "\<D> division_of S" and S: "S \<subseteq> cbox a b" and i: "i \<in> Basis" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
251 |
and mt: "\<And>K. K \<in> \<D> \<Longrightarrow> content K \<noteq> 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
252 |
and disj: "(\<forall>K \<in> \<D>. K \<inter> {x. x \<bullet> i = a \<bullet> i} \<noteq> {}) \<or> (\<forall>K \<in> \<D>. K \<inter> {x. x \<bullet> i = b \<bullet> i} \<noteq> {})" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
253 |
shows "(b \<bullet> i - a \<bullet> i) * (\<Sum>K\<in>\<D>. content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i)) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
254 |
\<le> content(cbox a b)" (is "?lhs \<le> ?rhs") |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
255 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
256 |
have "finite \<D>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
257 |
using div by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
258 |
define extend where |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
259 |
"extend \<equiv> \<lambda>K. cbox (\<Sum>j \<in> Basis. if j = i then (a \<bullet> i) *\<^sub>R i else (interval_lowerbound K \<bullet> j) *\<^sub>R j) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
260 |
(\<Sum>j \<in> Basis. if j = i then (b \<bullet> i) *\<^sub>R i else (interval_upperbound K \<bullet> j) *\<^sub>R j)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
261 |
have div_subset_cbox: "\<And>K. K \<in> \<D> \<Longrightarrow> K \<subseteq> cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
262 |
using S div by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
263 |
have "\<And>K. K \<in> \<D> \<Longrightarrow> K \<noteq> {}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
264 |
using div by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
265 |
have extend: "extend K \<noteq> {}" "extend K \<subseteq> cbox a b" if K: "K \<in> \<D>" for K |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
266 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
267 |
obtain u v where K: "K = cbox u v" "K \<noteq> {}" "K \<subseteq> cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
268 |
using K cbox_division_memE [OF _ div] by (meson div_subset_cbox) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
269 |
with i show "extend K \<noteq> {}" "extend K \<subseteq> cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
270 |
apply (auto simp: extend_def subset_box box_ne_empty sum_if_inner) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
271 |
by fastforce |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
272 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
273 |
have int_extend_disjoint: |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
274 |
"interior(extend K1) \<inter> interior(extend K2) = {}" if K: "K1 \<in> \<D>" "K2 \<in> \<D>" "K1 \<noteq> K2" for K1 K2 |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
275 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
276 |
obtain u v where K1: "K1 = cbox u v" "K1 \<noteq> {}" "K1 \<subseteq> cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
277 |
using K cbox_division_memE [OF _ div] by (meson div_subset_cbox) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
278 |
obtain w z where K2: "K2 = cbox w z" "K2 \<noteq> {}" "K2 \<subseteq> cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
279 |
using K cbox_division_memE [OF _ div] by (meson div_subset_cbox) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
280 |
have cboxes: "cbox u v \<in> \<D>" "cbox w z \<in> \<D>" "cbox u v \<noteq> cbox w z" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
281 |
using K1 K2 that by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
282 |
with div have "interior (cbox u v) \<inter> interior (cbox w z) = {}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
283 |
by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
284 |
moreover |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
285 |
have "\<exists>x. x \<in> box u v \<and> x \<in> box w z" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
286 |
if "x \<in> interior (extend K1)" "x \<in> interior (extend K2)" for x |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
287 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
288 |
have "a \<bullet> i < x \<bullet> i" "x \<bullet> i < b \<bullet> i" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
289 |
and ux: "\<And>k. k \<in> Basis - {i} \<Longrightarrow> u \<bullet> k < x \<bullet> k" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
290 |
and xv: "\<And>k. k \<in> Basis - {i} \<Longrightarrow> x \<bullet> k < v \<bullet> k" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
291 |
and wx: "\<And>k. k \<in> Basis - {i} \<Longrightarrow> w \<bullet> k < x \<bullet> k" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
292 |
and xz: "\<And>k. k \<in> Basis - {i} \<Longrightarrow> x \<bullet> k < z \<bullet> k" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
293 |
using that K1 K2 i by (auto simp: extend_def box_ne_empty sum_if_inner mem_box) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
294 |
have "box u v \<noteq> {}" "box w z \<noteq> {}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
295 |
using cboxes interior_cbox by (auto simp: content_eq_0_interior dest: mt) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
296 |
then obtain q s |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
297 |
where q: "\<And>k. k \<in> Basis \<Longrightarrow> w \<bullet> k < q \<bullet> k \<and> q \<bullet> k < z \<bullet> k" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
298 |
and s: "\<And>k. k \<in> Basis \<Longrightarrow> u \<bullet> k < s \<bullet> k \<and> s \<bullet> k < v \<bullet> k" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
299 |
by (meson all_not_in_conv mem_box(1)) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
300 |
show ?thesis using disj |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
301 |
proof |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
302 |
assume "\<forall>K\<in>\<D>. K \<inter> {x. x \<bullet> i = a \<bullet> i} \<noteq> {}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
303 |
then have uva: "(cbox u v) \<inter> {x. x \<bullet> i = a \<bullet> i} \<noteq> {}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
304 |
and wza: "(cbox w z) \<inter> {x. x \<bullet> i = a \<bullet> i} \<noteq> {}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
305 |
using cboxes by (auto simp: content_eq_0_interior) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
306 |
then obtain r t where "r \<bullet> i = a \<bullet> i" and r: "\<And>k. k \<in> Basis \<Longrightarrow> w \<bullet> k \<le> r \<bullet> k \<and> r \<bullet> k \<le> z \<bullet> k" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
307 |
and "t \<bullet> i = a \<bullet> i" and t: "\<And>k. k \<in> Basis \<Longrightarrow> u \<bullet> k \<le> t \<bullet> k \<and> t \<bullet> k \<le> v \<bullet> k" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
308 |
by (fastforce simp: mem_box) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
309 |
have u: "u \<bullet> i < q \<bullet> i" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
310 |
using i K2(1) K2(3) \<open>t \<bullet> i = a \<bullet> i\<close> q s t [OF i] by (force simp: subset_box) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
311 |
have w: "w \<bullet> i < s \<bullet> i" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
312 |
using i K1(1) K1(3) \<open>r \<bullet> i = a \<bullet> i\<close> s r [OF i] by (force simp: subset_box) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
313 |
let ?x = "(\<Sum>j \<in> Basis. if j = i then min (q \<bullet> i) (s \<bullet> i) *\<^sub>R i else (x \<bullet> j) *\<^sub>R j)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
314 |
show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
315 |
proof (intro exI conjI) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
316 |
show "?x \<in> box u v" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
317 |
using \<open>i \<in> Basis\<close> s apply (clarsimp simp: mem_box) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
318 |
apply (subst sum_if_inner; simp)+ |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
319 |
apply (fastforce simp: u ux xv) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
320 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
321 |
show "?x \<in> box w z" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
322 |
using \<open>i \<in> Basis\<close> q apply (clarsimp simp: mem_box) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
323 |
apply (subst sum_if_inner; simp)+ |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
324 |
apply (fastforce simp: w wx xz) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
325 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
326 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
327 |
next |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
328 |
assume "\<forall>K\<in>\<D>. K \<inter> {x. x \<bullet> i = b \<bullet> i} \<noteq> {}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
329 |
then have uva: "(cbox u v) \<inter> {x. x \<bullet> i = b \<bullet> i} \<noteq> {}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
330 |
and wza: "(cbox w z) \<inter> {x. x \<bullet> i = b \<bullet> i} \<noteq> {}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
331 |
using cboxes by (auto simp: content_eq_0_interior) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
332 |
then obtain r t where "r \<bullet> i = b \<bullet> i" and r: "\<And>k. k \<in> Basis \<Longrightarrow> w \<bullet> k \<le> r \<bullet> k \<and> r \<bullet> k \<le> z \<bullet> k" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
333 |
and "t \<bullet> i = b \<bullet> i" and t: "\<And>k. k \<in> Basis \<Longrightarrow> u \<bullet> k \<le> t \<bullet> k \<and> t \<bullet> k \<le> v \<bullet> k" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
334 |
by (fastforce simp: mem_box) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
335 |
have z: "s \<bullet> i < z \<bullet> i" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
336 |
using K1(1) K1(3) \<open>r \<bullet> i = b \<bullet> i\<close> r [OF i] i s by (force simp: subset_box) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
337 |
have v: "q \<bullet> i < v \<bullet> i" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
338 |
using K2(1) K2(3) \<open>t \<bullet> i = b \<bullet> i\<close> t [OF i] i q by (force simp: subset_box) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
339 |
let ?x = "(\<Sum>j \<in> Basis. if j = i then max (q \<bullet> i) (s \<bullet> i) *\<^sub>R i else (x \<bullet> j) *\<^sub>R j)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
340 |
show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
341 |
proof (intro exI conjI) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
342 |
show "?x \<in> box u v" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
343 |
using \<open>i \<in> Basis\<close> s apply (clarsimp simp: mem_box) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
344 |
apply (subst sum_if_inner; simp)+ |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
345 |
apply (fastforce simp: v ux xv) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
346 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
347 |
show "?x \<in> box w z" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
348 |
using \<open>i \<in> Basis\<close> q apply (clarsimp simp: mem_box) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
349 |
apply (subst sum_if_inner; simp)+ |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
350 |
apply (fastforce simp: z wx xz) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
351 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
352 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
353 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
354 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
355 |
ultimately show ?thesis by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
356 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
357 |
have "?lhs = (\<Sum>K\<in>\<D>. (b \<bullet> i - a \<bullet> i) * content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
358 |
by (simp add: sum_distrib_left) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
359 |
also have "\<dots> = sum (content \<circ> extend) \<D>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
360 |
proof (rule sum.cong [OF refl]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
361 |
fix K assume "K \<in> \<D>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
362 |
then obtain u v where K: "K = cbox u v" "cbox u v \<noteq> {}" "K \<subseteq> cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
363 |
using cbox_division_memE [OF _ div] div_subset_cbox by metis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
364 |
then have uv: "u \<bullet> i < v \<bullet> i" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
365 |
using mt [OF \<open>K \<in> \<D>\<close>] \<open>i \<in> Basis\<close> content_eq_0 by fastforce |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
366 |
have "insert i (Basis \<inter> -{i}) = Basis" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
367 |
using \<open>i \<in> Basis\<close> by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
368 |
then have "(b \<bullet> i - a \<bullet> i) * content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
369 |
= (b \<bullet> i - a \<bullet> i) * (\<Prod>i \<in> insert i (Basis \<inter> -{i}). v \<bullet> i - u \<bullet> i) / (interval_upperbound (cbox u v) \<bullet> i - interval_lowerbound (cbox u v) \<bullet> i)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
370 |
using K box_ne_empty(1) content_cbox by fastforce |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
371 |
also have "... = (\<Prod>x\<in>Basis. if x = i then b \<bullet> x - a \<bullet> x |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
372 |
else (interval_upperbound (cbox u v) - interval_lowerbound (cbox u v)) \<bullet> x)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
373 |
using \<open>i \<in> Basis\<close> K uv by (simp add: prod.If_cases) (simp add: algebra_simps) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
374 |
also have "... = (\<Prod>k\<in>Basis. |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
375 |
(\<Sum>j\<in>Basis. if j = i then (b \<bullet> i - a \<bullet> i) *\<^sub>R i else ((interval_upperbound (cbox u v) - interval_lowerbound (cbox u v)) \<bullet> j) *\<^sub>R j) \<bullet> k)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
376 |
using \<open>i \<in> Basis\<close> by (subst prod.cong [OF refl sum_if_inner]; simp) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
377 |
also have "... = (\<Prod>k\<in>Basis. |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
378 |
(\<Sum>j\<in>Basis. if j = i then (b \<bullet> i) *\<^sub>R i else (interval_upperbound (cbox u v) \<bullet> j) *\<^sub>R j) \<bullet> k - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
379 |
(\<Sum>j\<in>Basis. if j = i then (a \<bullet> i) *\<^sub>R i else (interval_lowerbound (cbox u v) \<bullet> j) *\<^sub>R j) \<bullet> k)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
380 |
apply (rule prod.cong [OF refl]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
381 |
using \<open>i \<in> Basis\<close> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
382 |
apply (subst sum_if_inner; simp add: algebra_simps)+ |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
383 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
384 |
also have "... = (content \<circ> extend) K" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
385 |
using \<open>i \<in> Basis\<close> K box_ne_empty |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
386 |
apply (simp add: extend_def) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
387 |
apply (subst content_cbox, auto) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
388 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
389 |
finally show "(b \<bullet> i - a \<bullet> i) * content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
390 |
= (content \<circ> extend) K" . |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
391 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
392 |
also have "... = sum content (extend ` \<D>)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
393 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
394 |
have "\<lbrakk>K1 \<in> \<D>; K2 \<in> \<D>; K1 \<noteq> K2; extend K1 = extend K2\<rbrakk> \<Longrightarrow> content (extend K1) = 0" for K1 K2 |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
395 |
using int_extend_disjoint [of K1 K2] extend_def by (simp add: content_eq_0_interior) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
396 |
then show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
397 |
by (simp add: comm_monoid_add_class.sum.reindex_nontrivial [OF \<open>finite \<D>\<close>]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
398 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
399 |
also have "... \<le> ?rhs" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
400 |
proof (rule subadditive_content_division) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
401 |
show "extend ` \<D> division_of UNION \<D> extend" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
402 |
using int_extend_disjoint apply (auto simp: division_of_def \<open>finite \<D>\<close> extend) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
403 |
using extend_def apply blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
404 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
405 |
show "UNION \<D> extend \<subseteq> cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
406 |
using extend by fastforce |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
407 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
408 |
finally show ?thesis . |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
409 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
410 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
411 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
412 |
proposition sum_content_area_over_thin_division: |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
413 |
assumes div: "\<D> division_of S" and S: "S \<subseteq> cbox a b" and i: "i \<in> Basis" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
414 |
and "a \<bullet> i \<le> c" "c \<le> b \<bullet> i" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
415 |
and nonmt: "\<And>K. K \<in> \<D> \<Longrightarrow> K \<inter> {x. x \<bullet> i = c} \<noteq> {}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
416 |
shows "(b \<bullet> i - a \<bullet> i) * (\<Sum>K\<in>\<D>. content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i)) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
417 |
\<le> 2 * content(cbox a b)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
418 |
proof (cases "content(cbox a b) = 0") |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
419 |
case True |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
420 |
have "(\<Sum>K\<in>\<D>. content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i)) = 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
421 |
using S div by (force intro!: sum.neutral content_0_subset [OF True]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
422 |
then show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
423 |
by (auto simp: True) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
424 |
next |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
425 |
case False |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
426 |
then have "content(cbox a b) > 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
427 |
using zero_less_measure_iff by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
428 |
then have "a \<bullet> i < b \<bullet> i" if "i \<in> Basis" for i |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
429 |
using content_pos_lt_eq that by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
430 |
have "finite \<D>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
431 |
using div by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
432 |
define Dlec where "Dlec \<equiv> {L \<in> (\<lambda>L. L \<inter> {x. x \<bullet> i \<le> c}) ` \<D>. content L \<noteq> 0}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
433 |
define Dgec where "Dgec \<equiv> {L \<in> (\<lambda>L. L \<inter> {x. x \<bullet> i \<ge> c}) ` \<D>. content L \<noteq> 0}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
434 |
define a' where "a' \<equiv> (\<Sum>j\<in>Basis. (if j = i then c else a \<bullet> j) *\<^sub>R j)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
435 |
define b' where "b' \<equiv> (\<Sum>j\<in>Basis. (if j = i then c else b \<bullet> j) *\<^sub>R j)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
436 |
have Dlec_cbox: "\<And>K. K \<in> Dlec \<Longrightarrow> \<exists>a b. K = cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
437 |
using interval_split [OF i] div by (fastforce simp: Dlec_def division_of_def) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
438 |
then have lec_is_cbox: "\<lbrakk>content (L \<inter> {x. x \<bullet> i \<le> c}) \<noteq> 0; L \<in> \<D>\<rbrakk> \<Longrightarrow> \<exists>a b. L \<inter> {x. x \<bullet> i \<le> c} = cbox a b" for L |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
439 |
using Dlec_def by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
440 |
have Dgec_cbox: "\<And>K. K \<in> Dgec \<Longrightarrow> \<exists>a b. K = cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
441 |
using interval_split [OF i] div by (fastforce simp: Dgec_def division_of_def) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
442 |
then have gec_is_cbox: "\<lbrakk>content (L \<inter> {x. x \<bullet> i \<ge> c}) \<noteq> 0; L \<in> \<D>\<rbrakk> \<Longrightarrow> \<exists>a b. L \<inter> {x. x \<bullet> i \<ge> c} = cbox a b" for L |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
443 |
using Dgec_def by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
444 |
have "(b' \<bullet> i - a \<bullet> i) * (\<Sum>K\<in>Dlec. content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i)) \<le> content(cbox a b')" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
445 |
proof (rule content_division_lemma1) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
446 |
show "Dlec division_of \<Union>Dlec" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
447 |
unfolding division_of_def |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
448 |
proof (intro conjI ballI Dlec_cbox) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
449 |
show "\<And>K1 K2. \<lbrakk>K1 \<in> Dlec; K2 \<in> Dlec\<rbrakk> \<Longrightarrow> K1 \<noteq> K2 \<longrightarrow> interior K1 \<inter> interior K2 = {}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
450 |
by (clarsimp simp: Dlec_def) (use div in auto) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
451 |
qed (use \<open>finite \<D>\<close> Dlec_def in auto) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
452 |
show "\<Union>Dlec \<subseteq> cbox a b'" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
453 |
using Dlec_def div S by (auto simp: b'_def division_of_def mem_box) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
454 |
show "(\<forall>K\<in>Dlec. K \<inter> {x. x \<bullet> i = a \<bullet> i} \<noteq> {}) \<or> (\<forall>K\<in>Dlec. K \<inter> {x. x \<bullet> i = b' \<bullet> i} \<noteq> {})" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
455 |
using nonmt by (fastforce simp: Dlec_def b'_def sum_if_inner i) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
456 |
qed (use i Dlec_def in auto) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
457 |
moreover |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
458 |
have "(\<Sum>K\<in>Dlec. content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i)) = |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
459 |
(\<Sum>K\<in>\<D>. ((\<lambda>K. content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i)) \<circ> ((\<lambda>K. K \<inter> {x. x \<bullet> i \<le> c}))) K)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
460 |
apply (subst sum.reindex_nontrivial [OF \<open>finite \<D>\<close>, symmetric], simp) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
461 |
apply (metis division_split_left_inj [OF div] lec_is_cbox content_eq_0_interior) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
462 |
unfolding Dlec_def using \<open>finite \<D>\<close> apply (auto simp: sum.mono_neutral_left) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
463 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
464 |
moreover have "(b' \<bullet> i - a \<bullet> i) = (c - a \<bullet> i)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
465 |
by (simp add: b'_def sum_if_inner i) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
466 |
ultimately |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
467 |
have lec: "(c - a \<bullet> i) * (\<Sum>K\<in>\<D>. ((\<lambda>K. content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i)) \<circ> ((\<lambda>K. K \<inter> {x. x \<bullet> i \<le> c}))) K) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
468 |
\<le> content(cbox a b')" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
469 |
by simp |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
470 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
471 |
have "(b \<bullet> i - a' \<bullet> i) * (\<Sum>K\<in>Dgec. content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i)) \<le> content(cbox a' b)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
472 |
proof (rule content_division_lemma1) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
473 |
show "Dgec division_of \<Union>Dgec" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
474 |
unfolding division_of_def |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
475 |
proof (intro conjI ballI Dgec_cbox) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
476 |
show "\<And>K1 K2. \<lbrakk>K1 \<in> Dgec; K2 \<in> Dgec\<rbrakk> \<Longrightarrow> K1 \<noteq> K2 \<longrightarrow> interior K1 \<inter> interior K2 = {}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
477 |
by (clarsimp simp: Dgec_def) (use div in auto) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
478 |
qed (use \<open>finite \<D>\<close> Dgec_def in auto) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
479 |
show "\<Union>Dgec \<subseteq> cbox a' b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
480 |
using Dgec_def div S by (auto simp: a'_def division_of_def mem_box) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
481 |
show "(\<forall>K\<in>Dgec. K \<inter> {x. x \<bullet> i = a' \<bullet> i} \<noteq> {}) \<or> (\<forall>K\<in>Dgec. K \<inter> {x. x \<bullet> i = b \<bullet> i} \<noteq> {})" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
482 |
using nonmt by (fastforce simp: Dgec_def a'_def sum_if_inner i) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
483 |
qed (use i Dgec_def in auto) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
484 |
moreover |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
485 |
have "(\<Sum>K\<in>Dgec. content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i)) = |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
486 |
(\<Sum>K\<in>\<D>. ((\<lambda>K. content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i)) \<circ> ((\<lambda>K. K \<inter> {x. x \<bullet> i \<ge> c}))) K)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
487 |
apply (subst sum.reindex_nontrivial [OF \<open>finite \<D>\<close>, symmetric], simp) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
488 |
apply (metis division_split_right_inj [OF div] gec_is_cbox content_eq_0_interior) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
489 |
unfolding Dgec_def using \<open>finite \<D>\<close> apply (auto simp: sum.mono_neutral_left) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
490 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
491 |
moreover have "(b \<bullet> i - a' \<bullet> i) = (b \<bullet> i - c)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
492 |
by (simp add: a'_def sum_if_inner i) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
493 |
ultimately |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
494 |
have gec: "(b \<bullet> i - c) * (\<Sum>K\<in>\<D>. ((\<lambda>K. content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i)) \<circ> ((\<lambda>K. K \<inter> {x. x \<bullet> i \<ge> c}))) K) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
495 |
\<le> content(cbox a' b)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
496 |
by simp |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
497 |
show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
498 |
proof (cases "c = a \<bullet> i \<or> c = b \<bullet> i") |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
499 |
case True |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
500 |
then show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
501 |
proof |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
502 |
assume c: "c = a \<bullet> i" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
503 |
then have "a' = a" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
504 |
apply (simp add: sum_if_inner i a'_def cong: if_cong) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
505 |
using euclidean_representation [of a] sum.cong [OF refl, of Basis "\<lambda>i. (a \<bullet> i) *\<^sub>R i"] by presburger |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
506 |
then have "content (cbox a' b) \<le> 2 * content (cbox a b)" by simp |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
507 |
moreover |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
508 |
have eq: "(\<Sum>K\<in>\<D>. content (K \<inter> {x. a \<bullet> i \<le> x \<bullet> i}) / |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
509 |
(interval_upperbound (K \<inter> {x. a \<bullet> i \<le> x \<bullet> i}) \<bullet> i - interval_lowerbound (K \<inter> {x. a \<bullet> i \<le> x \<bullet> i}) \<bullet> i)) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
510 |
= (\<Sum>K\<in>\<D>. content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
511 |
(is "sum ?f _ = sum ?g _") |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
512 |
proof (rule sum.cong [OF refl]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
513 |
fix K assume "K \<in> \<D>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
514 |
then have "a \<bullet> i \<le> x \<bullet> i" if "x \<in> K" for x |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
515 |
by (metis S UnionI div division_ofD(6) i mem_box(2) subsetCE that) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
516 |
then have "K \<inter> {x. a \<bullet> i \<le> x \<bullet> i} = K" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
517 |
by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
518 |
then show "?f K = ?g K" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
519 |
by simp |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
520 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
521 |
ultimately show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
522 |
using gec c eq by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
523 |
next |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
524 |
assume c: "c = b \<bullet> i" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
525 |
then have "b' = b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
526 |
apply (simp add: sum_if_inner i b'_def cong: if_cong) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
527 |
using euclidean_representation [of b] sum.cong [OF refl, of Basis "\<lambda>i. (b \<bullet> i) *\<^sub>R i"] by presburger |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
528 |
then have "content (cbox a b') \<le> 2 * content (cbox a b)" by simp |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
529 |
moreover |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
530 |
have eq: "(\<Sum>K\<in>\<D>. content (K \<inter> {x. x \<bullet> i \<le> b \<bullet> i}) / |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
531 |
(interval_upperbound (K \<inter> {x. x \<bullet> i \<le> b \<bullet> i}) \<bullet> i - interval_lowerbound (K \<inter> {x. x \<bullet> i \<le> b \<bullet> i}) \<bullet> i)) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
532 |
= (\<Sum>K\<in>\<D>. content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
533 |
(is "sum ?f _ = sum ?g _") |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
534 |
proof (rule sum.cong [OF refl]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
535 |
fix K assume "K \<in> \<D>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
536 |
then have "x \<bullet> i \<le> b \<bullet> i" if "x \<in> K" for x |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
537 |
by (metis S UnionI div division_ofD(6) i mem_box(2) subsetCE that) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
538 |
then have "K \<inter> {x. x \<bullet> i \<le> b \<bullet> i} = K" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
539 |
by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
540 |
then show "?f K = ?g K" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
541 |
by simp |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
542 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
543 |
ultimately show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
544 |
using lec c eq by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
545 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
546 |
next |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
547 |
case False |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
548 |
have prod_if: "(\<Prod>k\<in>Basis \<inter> - {i}. f k) = (\<Prod>k\<in>Basis. f k) / f i" if "f i \<noteq> (0::real)" for f |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
549 |
using that mk_disjoint_insert [OF i] |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
550 |
apply (clarsimp simp add: divide_simps) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
551 |
by (metis Int_insert_left_if0 finite_Basis finite_insert le_iff_inf mult.commute order_refl prod.insert subset_Compl_singleton) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
552 |
have abc: "a \<bullet> i < c" "c < b \<bullet> i" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
553 |
using False assms by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
554 |
then have "(\<Sum>K\<in>\<D>. ((\<lambda>K. content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i)) \<circ> ((\<lambda>K. K \<inter> {x. x \<bullet> i \<le> c}))) K) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
555 |
\<le> content(cbox a b') / (c - a \<bullet> i)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
556 |
"(\<Sum>K\<in>\<D>. ((\<lambda>K. content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i)) \<circ> ((\<lambda>K. K \<inter> {x. x \<bullet> i \<ge> c}))) K) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
557 |
\<le> content(cbox a' b) / (b \<bullet> i - c)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
558 |
using lec gec by (simp_all add: divide_simps mult.commute) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
559 |
moreover |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
560 |
have "(\<Sum>K\<in>\<D>. content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i)) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
561 |
\<le> (\<Sum>K\<in>\<D>. ((\<lambda>K. content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i)) \<circ> ((\<lambda>K. K \<inter> {x. x \<bullet> i \<le> c}))) K) + |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
562 |
(\<Sum>K\<in>\<D>. ((\<lambda>K. content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i)) \<circ> ((\<lambda>K. K \<inter> {x. x \<bullet> i \<ge> c}))) K)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
563 |
(is "?lhs \<le> ?rhs") |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
564 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
565 |
have "?lhs \<le> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
566 |
(\<Sum>K\<in>\<D>. ((\<lambda>K. content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i)) \<circ> ((\<lambda>K. K \<inter> {x. x \<bullet> i \<le> c}))) K + |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
567 |
((\<lambda>K. content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i)) \<circ> ((\<lambda>K. K \<inter> {x. x \<bullet> i \<ge> c}))) K)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
568 |
(is "sum ?f _ \<le> sum ?g _") |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
569 |
proof (rule sum_mono) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
570 |
fix K assume "K \<in> \<D>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
571 |
then obtain u v where uv: "K = cbox u v" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
572 |
using div by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
573 |
obtain u' v' where uv': "cbox u v \<inter> {x. x \<bullet> i \<le> c} = cbox u v'" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
574 |
"cbox u v \<inter> {x. c \<le> x \<bullet> i} = cbox u' v" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
575 |
"\<And>k. k \<in> Basis \<Longrightarrow> u' \<bullet> k = (if k = i then max (u \<bullet> i) c else u \<bullet> k)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
576 |
"\<And>k. k \<in> Basis \<Longrightarrow> v' \<bullet> k = (if k = i then min (v \<bullet> i) c else v \<bullet> k)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
577 |
using i by (auto simp: interval_split) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
578 |
have *: "\<lbrakk>content (cbox u v') = 0; content (cbox u' v) = 0\<rbrakk> \<Longrightarrow> content (cbox u v) = 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
579 |
"content (cbox u' v) \<noteq> 0 \<Longrightarrow> content (cbox u v) \<noteq> 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
580 |
"content (cbox u v') \<noteq> 0 \<Longrightarrow> content (cbox u v) \<noteq> 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
581 |
using i uv uv' by (auto simp: content_eq_0 le_max_iff_disj min_le_iff_disj split: if_split_asm intro: order_trans) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
582 |
show "?f K \<le> ?g K" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
583 |
using i uv uv' apply (clarsimp simp add: lemma0 * intro!: prod_nonneg) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
584 |
by (metis content_eq_0 le_less_linear order.strict_implies_order) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
585 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
586 |
also have "... = ?rhs" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
587 |
by (simp add: sum.distrib) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
588 |
finally show ?thesis . |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
589 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
590 |
moreover have "content (cbox a b') / (c - a \<bullet> i) = content (cbox a b) / (b \<bullet> i - a \<bullet> i)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
591 |
using i abc |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
592 |
apply (simp add: field_simps a'_def b'_def measure_lborel_cbox_eq inner_diff) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
593 |
apply (auto simp: if_distrib if_distrib [of "\<lambda>f. f x" for x] prod.If_cases [of Basis "\<lambda>x. x = i", simplified] prod_if field_simps) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
594 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
595 |
moreover have "content (cbox a' b) / (b \<bullet> i - c) = content (cbox a b) / (b \<bullet> i - a \<bullet> i)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
596 |
using i abc |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
597 |
apply (simp add: field_simps a'_def b'_def measure_lborel_cbox_eq inner_diff) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
598 |
apply (auto simp: if_distrib prod.If_cases [of Basis "\<lambda>x. x = i", simplified] prod_if field_simps) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
599 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
600 |
ultimately |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
601 |
have "(\<Sum>K\<in>\<D>. content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i)) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
602 |
\<le> 2 * content (cbox a b) / (b \<bullet> i - a \<bullet> i)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
603 |
by linarith |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
604 |
then show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
605 |
using abc by (simp add: divide_simps mult.commute) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
606 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
607 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
608 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
609 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
610 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
611 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
612 |
proposition bounded_equiintegral_over_thin_tagged_partial_division: |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
613 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
614 |
assumes F: "F equiintegrable_on cbox a b" and f: "f \<in> F" and "0 < \<epsilon>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
615 |
and norm_f: "\<And>h x. \<lbrakk>h \<in> F; x \<in> cbox a b\<rbrakk> \<Longrightarrow> norm(h x) \<le> norm(f x)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
616 |
obtains \<gamma> where "gauge \<gamma>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
617 |
"\<And>c i S h. \<lbrakk>c \<in> cbox a b; i \<in> Basis; S tagged_partial_division_of cbox a b; |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
618 |
\<gamma> fine S; h \<in> F; \<And>x K. (x,K) \<in> S \<Longrightarrow> (K \<inter> {x. x \<bullet> i = c \<bullet> i} \<noteq> {})\<rbrakk> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
619 |
\<Longrightarrow> (\<Sum>(x,K) \<in> S. norm (integral K h)) < \<epsilon>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
620 |
proof (cases "content(cbox a b) = 0") |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
621 |
case True |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
622 |
show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
623 |
proof |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
624 |
show "gauge (\<lambda>x. ball x 1)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
625 |
by (simp add: gauge_trivial) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
626 |
show "(\<Sum>(x,K) \<in> S. norm (integral K h)) < \<epsilon>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
627 |
if "S tagged_partial_division_of cbox a b" "(\<lambda>x. ball x 1) fine S" for S and h:: "'a \<Rightarrow> 'b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
628 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
629 |
have "(\<Sum>(x,K) \<in> S. norm (integral K h)) = 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
630 |
using that True content_0_subset |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
631 |
by (fastforce simp: tagged_partial_division_of_def intro: sum.neutral) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
632 |
with \<open>0 < \<epsilon>\<close> show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
633 |
by simp |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
634 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
635 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
636 |
next |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
637 |
case False |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
638 |
then have contab_gt0: "content(cbox a b) > 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
639 |
by (simp add: zero_less_measure_iff) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
640 |
then have a_less_b: "\<And>i. i \<in> Basis \<Longrightarrow> a\<bullet>i < b\<bullet>i" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
641 |
by (auto simp: content_pos_lt_eq) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
642 |
obtain \<gamma>0 where "gauge \<gamma>0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
643 |
and \<gamma>0: "\<And>S h. \<lbrakk>S tagged_partial_division_of cbox a b; \<gamma>0 fine S; h \<in> F\<rbrakk> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
644 |
\<Longrightarrow> (\<Sum>(x,K) \<in> S. norm (content K *\<^sub>R h x - integral K h)) < \<epsilon>/2" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
645 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
646 |
obtain \<gamma> where "gauge \<gamma>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
647 |
and \<gamma>: "\<And>f \<D>. \<lbrakk>f \<in> F; \<D> tagged_division_of cbox a b; \<gamma> fine \<D>\<rbrakk> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
648 |
\<Longrightarrow> norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - integral (cbox a b) f) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
649 |
< \<epsilon>/(5 * (Suc DIM('b)))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
650 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
651 |
have e5: "\<epsilon>/(5 * (Suc DIM('b))) > 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
652 |
using \<open>\<epsilon> > 0\<close> by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
653 |
then show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
654 |
using F that by (auto simp: equiintegrable_on_def) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
655 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
656 |
show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
657 |
proof |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
658 |
show "gauge \<gamma>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
659 |
by (rule \<open>gauge \<gamma>\<close>) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
660 |
show "(\<Sum>(x,K) \<in> S. norm (content K *\<^sub>R h x - integral K h)) < \<epsilon>/2" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
661 |
if "S tagged_partial_division_of cbox a b" "\<gamma> fine S" "h \<in> F" for S h |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
662 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
663 |
have "(\<Sum>(x,K) \<in> S. norm (content K *\<^sub>R h x - integral K h)) \<le> 2 * real DIM('b) * (\<epsilon>/(5 * Suc DIM('b)))" |
66497
18a6478a574c
More tidying, and renaming of theorems
paulson <lp15@cam.ac.uk>
parents:
66408
diff
changeset
|
664 |
proof (rule Henstock_lemma_part2 [of h a b]) |
66296
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
665 |
show "h integrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
666 |
using that F equiintegrable_on_def by metis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
667 |
show "gauge \<gamma>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
668 |
by (rule \<open>gauge \<gamma>\<close>) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
669 |
qed (use that \<open>\<epsilon> > 0\<close> \<gamma> in auto) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
670 |
also have "... < \<epsilon>/2" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
671 |
using \<open>\<epsilon> > 0\<close> by (simp add: divide_simps) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
672 |
finally show ?thesis . |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
673 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
674 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
675 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
676 |
define \<gamma> where "\<gamma> \<equiv> \<lambda>x. \<gamma>0 x \<inter> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
677 |
ball x ((\<epsilon>/8 / (norm(f x) + 1)) * (INF m:Basis. b \<bullet> m - a \<bullet> m) / content(cbox a b))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
678 |
have "gauge (\<lambda>x. ball x |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
679 |
(\<epsilon> * (INF m:Basis. b \<bullet> m - a \<bullet> m) / ((8 * norm (f x) + 8) * content (cbox a b))))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
680 |
using \<open>0 < content (cbox a b)\<close> \<open>0 < \<epsilon>\<close> a_less_b |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
681 |
apply (auto simp: gauge_def divide_simps mult_less_0_iff zero_less_mult_iff add_nonneg_eq_0_iff finite_less_Inf_iff) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
682 |
apply (meson add_nonneg_nonneg mult_nonneg_nonneg norm_ge_zero not_less zero_le_numeral) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
683 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
684 |
then have "gauge \<gamma>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
685 |
unfolding \<gamma>_def using \<open>gauge \<gamma>0\<close> gauge_Int by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
686 |
moreover |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
687 |
have "(\<Sum>(x,K) \<in> S. norm (integral K h)) < \<epsilon>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
688 |
if "c \<in> cbox a b" "i \<in> Basis" and S: "S tagged_partial_division_of cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
689 |
and "\<gamma> fine S" "h \<in> F" and ne: "\<And>x K. (x,K) \<in> S \<Longrightarrow> K \<inter> {x. x \<bullet> i = c \<bullet> i} \<noteq> {}" for c i S h |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
690 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
691 |
have "cbox c b \<subseteq> cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
692 |
by (meson mem_box(2) order_refl subset_box(1) that(1)) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
693 |
have "finite S" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
694 |
using S by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
695 |
have "\<gamma>0 fine S" and fineS: |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
696 |
"(\<lambda>x. ball x (\<epsilon> * (INF m:Basis. b \<bullet> m - a \<bullet> m) / ((8 * norm (f x) + 8) * content (cbox a b)))) fine S" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
697 |
using \<open>\<gamma> fine S\<close> by (auto simp: \<gamma>_def fine_Int) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
698 |
then have "(\<Sum>(x,K) \<in> S. norm (content K *\<^sub>R h x - integral K h)) < \<epsilon>/2" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
699 |
by (intro \<gamma>0 that fineS) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
700 |
moreover have "(\<Sum>(x,K) \<in> S. norm (integral K h) - norm (content K *\<^sub>R h x - integral K h)) \<le> \<epsilon>/2" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
701 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
702 |
have "(\<Sum>(x,K) \<in> S. norm (integral K h) - norm (content K *\<^sub>R h x - integral K h)) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
703 |
\<le> (\<Sum>(x,K) \<in> S. norm (content K *\<^sub>R h x))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
704 |
proof (clarify intro!: sum_mono) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
705 |
fix x K |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
706 |
assume xK: "(x,K) \<in> S" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
707 |
have "norm (integral K h) - norm (content K *\<^sub>R h x - integral K h) \<le> norm (integral K h - (integral K h - content K *\<^sub>R h x))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
708 |
by (metis norm_minus_commute norm_triangle_ineq2) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
709 |
also have "... \<le> norm (content K *\<^sub>R h x)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
710 |
by simp |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
711 |
finally show "norm (integral K h) - norm (content K *\<^sub>R h x - integral K h) \<le> norm (content K *\<^sub>R h x)" . |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
712 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
713 |
also have "... \<le> (\<Sum>(x,K) \<in> S. \<epsilon>/4 * (b \<bullet> i - a \<bullet> i) / content (cbox a b) * |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
714 |
content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
715 |
proof (clarify intro!: sum_mono) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
716 |
fix x K |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
717 |
assume xK: "(x,K) \<in> S" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
718 |
then have x: "x \<in> cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
719 |
using S unfolding tagged_partial_division_of_def by (meson subset_iff) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
720 |
let ?\<Delta> = "interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
721 |
show "norm (content K *\<^sub>R h x) \<le> \<epsilon>/4 * (b \<bullet> i - a \<bullet> i) / content (cbox a b) * content K / ?\<Delta>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
722 |
proof (cases "content K = 0") |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
723 |
case True |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
724 |
then show ?thesis by simp |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
725 |
next |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
726 |
case False |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
727 |
then have Kgt0: "content K > 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
728 |
using zero_less_measure_iff by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
729 |
moreover |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
730 |
obtain u v where uv: "K = cbox u v" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
731 |
using S \<open>(x,K) \<in> S\<close> by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
732 |
then have u_less_v: "\<And>i. i \<in> Basis \<Longrightarrow> u \<bullet> i < v \<bullet> i" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
733 |
using content_pos_lt_eq uv Kgt0 by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
734 |
then have dist_uv: "dist u v > 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
735 |
using that by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
736 |
ultimately have "norm (h x) \<le> (\<epsilon> * (b \<bullet> i - a \<bullet> i)) / (4 * content (cbox a b) * ?\<Delta>)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
737 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
738 |
have "dist x u < \<epsilon> * (INF m:Basis. b \<bullet> m - a \<bullet> m) / (4 * (norm (f x) + 1) * content (cbox a b)) / 2" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
739 |
"dist x v < \<epsilon> * (INF m:Basis. b \<bullet> m - a \<bullet> m) / (4 * (norm (f x) + 1) * content (cbox a b)) / 2" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
740 |
using fineS u_less_v uv xK |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
741 |
by (force simp: fine_def mem_box field_simps dest!: bspec)+ |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
742 |
moreover have "\<epsilon> * (INF m:Basis. b \<bullet> m - a \<bullet> m) / (4 * (norm (f x) + 1) * content (cbox a b)) / 2 |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
743 |
\<le> \<epsilon> * (b \<bullet> i - a \<bullet> i) / (4 * (norm (f x) + 1) * content (cbox a b)) / 2" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
744 |
apply (intro mult_left_mono divide_right_mono) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
745 |
using \<open>i \<in> Basis\<close> \<open>0 < \<epsilon>\<close> apply (auto simp: intro!: cInf_le_finite) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
746 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
747 |
ultimately |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
748 |
have "dist x u < \<epsilon> * (b \<bullet> i - a \<bullet> i) / (4 * (norm (f x) + 1) * content (cbox a b)) / 2" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
749 |
"dist x v < \<epsilon> * (b \<bullet> i - a \<bullet> i) / (4 * (norm (f x) + 1) * content (cbox a b)) / 2" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
750 |
by linarith+ |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
751 |
then have duv: "dist u v < \<epsilon> * (b \<bullet> i - a \<bullet> i) / (4 * (norm (f x) + 1) * content (cbox a b))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
752 |
using dist_triangle_half_r by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
753 |
have uvi: "\<bar>v \<bullet> i - u \<bullet> i\<bar> \<le> norm (v - u)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
754 |
by (metis inner_commute inner_diff_right \<open>i \<in> Basis\<close> Basis_le_norm) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
755 |
have "norm (h x) \<le> norm (f x)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
756 |
using x that by (auto simp: norm_f) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
757 |
also have "... < (norm (f x) + 1)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
758 |
by simp |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
759 |
also have "... < \<epsilon> * (b \<bullet> i - a \<bullet> i) / dist u v / (4 * content (cbox a b))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
760 |
using duv dist_uv contab_gt0 |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
761 |
apply (simp add: divide_simps algebra_simps mult_less_0_iff zero_less_mult_iff split: if_split_asm) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
762 |
by (meson add_nonneg_nonneg linorder_not_le measure_nonneg mult_nonneg_nonneg norm_ge_zero zero_le_numeral) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
763 |
also have "... = \<epsilon> * (b \<bullet> i - a \<bullet> i) / norm (v - u) / (4 * content (cbox a b))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
764 |
by (simp add: dist_norm norm_minus_commute) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
765 |
also have "... \<le> \<epsilon> * (b \<bullet> i - a \<bullet> i) / \<bar>v \<bullet> i - u \<bullet> i\<bar> / (4 * content (cbox a b))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
766 |
apply (intro mult_right_mono divide_left_mono divide_right_mono uvi) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
767 |
using \<open>0 < \<epsilon>\<close> a_less_b [OF \<open>i \<in> Basis\<close>] u_less_v [OF \<open>i \<in> Basis\<close>] contab_gt0 |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
768 |
by (auto simp: less_eq_real_def zero_less_mult_iff that) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
769 |
also have "... = \<epsilon> * (b \<bullet> i - a \<bullet> i) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
770 |
/ (4 * content (cbox a b) * ?\<Delta>)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
771 |
using uv False that(2) u_less_v by fastforce |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
772 |
finally show ?thesis by simp |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
773 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
774 |
with Kgt0 have "norm (content K *\<^sub>R h x) \<le> content K * ((\<epsilon>/4 * (b \<bullet> i - a \<bullet> i) / content (cbox a b)) / ?\<Delta>)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
775 |
using mult_left_mono by fastforce |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
776 |
also have "... = \<epsilon>/4 * (b \<bullet> i - a \<bullet> i) / content (cbox a b) * |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
777 |
content K / ?\<Delta>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
778 |
by (simp add: divide_simps) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
779 |
finally show ?thesis . |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
780 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
781 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
782 |
also have "... = (\<Sum>K\<in>snd ` S. \<epsilon>/4 * (b \<bullet> i - a \<bullet> i) / content (cbox a b) * content K |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
783 |
/ (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i))" |
66497
18a6478a574c
More tidying, and renaming of theorems
paulson <lp15@cam.ac.uk>
parents:
66408
diff
changeset
|
784 |
apply (rule sum.over_tagged_division_lemma [OF tagged_partial_division_of_Union_self [OF S]]) |
66296
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
785 |
apply (simp add: box_eq_empty(1) content_eq_0) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
786 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
787 |
also have "... = \<epsilon>/2 * ((b \<bullet> i - a \<bullet> i) / (2 * content (cbox a b)) * (\<Sum>K\<in>snd ` S. content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i)))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
788 |
by (simp add: sum_distrib_left mult.assoc) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
789 |
also have "... \<le> (\<epsilon>/2) * 1" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
790 |
proof (rule mult_left_mono) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
791 |
have "(b \<bullet> i - a \<bullet> i) * (\<Sum>K\<in>snd ` S. content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i)) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
792 |
\<le> 2 * content (cbox a b)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
793 |
proof (rule sum_content_area_over_thin_division) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
794 |
show "snd ` S division_of \<Union>(snd ` S)" |
66497
18a6478a574c
More tidying, and renaming of theorems
paulson <lp15@cam.ac.uk>
parents:
66408
diff
changeset
|
795 |
by (auto intro: S tagged_partial_division_of_Union_self division_of_tagged_division) |
66296
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
796 |
show "UNION S snd \<subseteq> cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
797 |
using S by force |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
798 |
show "a \<bullet> i \<le> c \<bullet> i" "c \<bullet> i \<le> b \<bullet> i" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
799 |
using mem_box(2) that by blast+ |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
800 |
qed (use that in auto) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
801 |
then show "(b \<bullet> i - a \<bullet> i) / (2 * content (cbox a b)) * (\<Sum>K\<in>snd ` S. content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i)) \<le> 1" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
802 |
by (simp add: contab_gt0) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
803 |
qed (use \<open>0 < \<epsilon>\<close> in auto) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
804 |
finally show ?thesis by simp |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
805 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
806 |
then have "(\<Sum>(x,K) \<in> S. norm (integral K h)) - (\<Sum>(x,K) \<in> S. norm (content K *\<^sub>R h x - integral K h)) \<le> \<epsilon>/2" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
807 |
by (simp add: Groups_Big.sum_subtractf [symmetric]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
808 |
ultimately show "(\<Sum>(x,K) \<in> S. norm (integral K h)) < \<epsilon>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
809 |
by linarith |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
810 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
811 |
ultimately show ?thesis using that by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
812 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
813 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
814 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
815 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
816 |
proposition equiintegrable_halfspace_restrictions_le: |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
817 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
818 |
assumes F: "F equiintegrable_on cbox a b" and f: "f \<in> F" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
819 |
and norm_f: "\<And>h x. \<lbrakk>h \<in> F; x \<in> cbox a b\<rbrakk> \<Longrightarrow> norm(h x) \<le> norm(f x)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
820 |
shows "(\<Union>i \<in> Basis. \<Union>c. \<Union>h \<in> F. {(\<lambda>x. if x \<bullet> i \<le> c then h x else 0)}) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
821 |
equiintegrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
822 |
proof (cases "content(cbox a b) = 0") |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
823 |
case True |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
824 |
then show ?thesis by simp |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
825 |
next |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
826 |
case False |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
827 |
then have "content(cbox a b) > 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
828 |
using zero_less_measure_iff by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
829 |
then have "a \<bullet> i < b \<bullet> i" if "i \<in> Basis" for i |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
830 |
using content_pos_lt_eq that by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
831 |
have int_F: "f integrable_on cbox a b" if "f \<in> F" for f |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
832 |
using F that by (simp add: equiintegrable_on_def) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
833 |
let ?CI = "\<lambda>K h x. content K *\<^sub>R h x - integral K h" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
834 |
show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
835 |
unfolding equiintegrable_on_def |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
836 |
proof (intro conjI; clarify) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
837 |
show int_lec: "\<lbrakk>i \<in> Basis; h \<in> F\<rbrakk> \<Longrightarrow> (\<lambda>x. if x \<bullet> i \<le> c then h x else 0) integrable_on cbox a b" for i c h |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
838 |
using integrable_restrict_Int [of "{x. x \<bullet> i \<le> c}" h] |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
839 |
apply (auto simp: interval_split Int_commute mem_box intro!: integrable_on_subcbox int_F) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
840 |
by (metis (full_types, hide_lams) min.bounded_iff) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
841 |
show "\<exists>\<gamma>. gauge \<gamma> \<and> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
842 |
(\<forall>f T. f \<in> (\<Union>i\<in>Basis. \<Union>c. \<Union>h\<in>F. {\<lambda>x. if x \<bullet> i \<le> c then h x else 0}) \<and> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
843 |
T tagged_division_of cbox a b \<and> \<gamma> fine T \<longrightarrow> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
844 |
norm ((\<Sum>(x,K) \<in> T. content K *\<^sub>R f x) - integral (cbox a b) f) < \<epsilon>)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
845 |
if "\<epsilon> > 0" for \<epsilon> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
846 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
847 |
obtain \<gamma>0 where "gauge \<gamma>0" and \<gamma>0: |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
848 |
"\<And>c i S h. \<lbrakk>c \<in> cbox a b; i \<in> Basis; S tagged_partial_division_of cbox a b; |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
849 |
\<gamma>0 fine S; h \<in> F; \<And>x K. (x,K) \<in> S \<Longrightarrow> (K \<inter> {x. x \<bullet> i = c \<bullet> i} \<noteq> {})\<rbrakk> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
850 |
\<Longrightarrow> (\<Sum>(x,K) \<in> S. norm (integral K h)) < \<epsilon>/12" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
851 |
apply (rule bounded_equiintegral_over_thin_tagged_partial_division [OF F f, of \<open>\<epsilon>/12\<close>]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
852 |
using \<open>\<epsilon> > 0\<close> by (auto simp: norm_f) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
853 |
obtain \<gamma>1 where "gauge \<gamma>1" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
854 |
and \<gamma>1: "\<And>h T. \<lbrakk>h \<in> F; T tagged_division_of cbox a b; \<gamma>1 fine T\<rbrakk> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
855 |
\<Longrightarrow> norm ((\<Sum>(x,K) \<in> T. content K *\<^sub>R h x) - integral (cbox a b) h) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
856 |
< \<epsilon>/(7 * (Suc DIM('b)))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
857 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
858 |
have e5: "\<epsilon>/(7 * (Suc DIM('b))) > 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
859 |
using \<open>\<epsilon> > 0\<close> by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
860 |
then show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
861 |
using F that by (auto simp: equiintegrable_on_def) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
862 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
863 |
have h_less3: "(\<Sum>(x,K) \<in> T. norm (?CI K h x)) < \<epsilon>/3" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
864 |
if "T tagged_partial_division_of cbox a b" "\<gamma>1 fine T" "h \<in> F" for T h |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
865 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
866 |
have "(\<Sum>(x,K) \<in> T. norm (?CI K h x)) \<le> 2 * real DIM('b) * (\<epsilon>/(7 * Suc DIM('b)))" |
66497
18a6478a574c
More tidying, and renaming of theorems
paulson <lp15@cam.ac.uk>
parents:
66408
diff
changeset
|
867 |
proof (rule Henstock_lemma_part2 [of h a b]) |
66296
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
868 |
show "h integrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
869 |
using that F equiintegrable_on_def by metis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
870 |
show "gauge \<gamma>1" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
871 |
by (rule \<open>gauge \<gamma>1\<close>) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
872 |
qed (use that \<open>\<epsilon> > 0\<close> \<gamma>1 in auto) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
873 |
also have "... < \<epsilon>/3" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
874 |
using \<open>\<epsilon> > 0\<close> by (simp add: divide_simps) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
875 |
finally show ?thesis . |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
876 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
877 |
have *: "norm ((\<Sum>(x,K) \<in> T. content K *\<^sub>R f x) - integral (cbox a b) f) < \<epsilon>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
878 |
if f: "f = (\<lambda>x. if x \<bullet> i \<le> c then h x else 0)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
879 |
and T: "T tagged_division_of cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
880 |
and fine: "(\<lambda>x. \<gamma>0 x \<inter> \<gamma>1 x) fine T" and "i \<in> Basis" "h \<in> F" for f T i c h |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
881 |
proof (cases "a \<bullet> i \<le> c \<and> c \<le> b \<bullet> i") |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
882 |
case True |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
883 |
have "finite T" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
884 |
using T by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
885 |
define T' where "T' \<equiv> {(x,K) \<in> T. K \<inter> {x. x \<bullet> i \<le> c} \<noteq> {}}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
886 |
then have "T' \<subseteq> T" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
887 |
by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
888 |
then have "finite T'" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
889 |
using \<open>finite T\<close> infinite_super by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
890 |
have T'_tagged: "T' tagged_partial_division_of cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
891 |
by (meson T \<open>T' \<subseteq> T\<close> tagged_division_of_def tagged_partial_division_subset) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
892 |
have fine': "\<gamma>0 fine T'" "\<gamma>1 fine T'" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
893 |
using \<open>T' \<subseteq> T\<close> fine_Int fine_subset fine by blast+ |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
894 |
have int_KK': "(\<Sum>(x,K) \<in> T. integral K f) = (\<Sum>(x,K) \<in> T'. integral K f)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
895 |
apply (rule sum.mono_neutral_right [OF \<open>finite T\<close> \<open>T' \<subseteq> T\<close>]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
896 |
using f \<open>finite T\<close> \<open>T' \<subseteq> T\<close> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
897 |
using integral_restrict_Int [of _ "{x. x \<bullet> i \<le> c}" h] |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
898 |
apply (auto simp: T'_def Int_commute) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
899 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
900 |
have "(\<Sum>(x,K) \<in> T. content K *\<^sub>R f x) = (\<Sum>(x,K) \<in> T'. content K *\<^sub>R f x)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
901 |
apply (rule sum.mono_neutral_right [OF \<open>finite T\<close> \<open>T' \<subseteq> T\<close>]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
902 |
using T f \<open>finite T\<close> \<open>T' \<subseteq> T\<close> apply (force simp: T'_def) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
903 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
904 |
moreover have "norm ((\<Sum>(x,K) \<in> T'. content K *\<^sub>R f x) - integral (cbox a b) f) < \<epsilon>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
905 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
906 |
have *: "norm y < \<epsilon>" if "norm x < \<epsilon>/3" "norm(x - y) \<le> 2 * \<epsilon>/3" for x y::'b |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
907 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
908 |
have "norm y \<le> norm x + norm(x - y)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
909 |
by (metis norm_minus_commute norm_triangle_sub) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
910 |
also have "\<dots> < \<epsilon>/3 + 2*\<epsilon>/3" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
911 |
using that by linarith |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
912 |
also have "... = \<epsilon>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
913 |
by simp |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
914 |
finally show ?thesis . |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
915 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
916 |
have "norm (\<Sum>(x,K) \<in> T'. ?CI K h x) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
917 |
\<le> (\<Sum>(x,K) \<in> T'. norm (?CI K h x))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
918 |
by (simp add: norm_sum split_def) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
919 |
also have "... < \<epsilon>/3" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
920 |
by (intro h_less3 T'_tagged fine' that) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
921 |
finally have "norm (\<Sum>(x,K) \<in> T'. ?CI K h x) < \<epsilon>/3" . |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
922 |
moreover have "integral (cbox a b) f = (\<Sum>(x,K) \<in> T. integral K f)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
923 |
using int_lec that by (auto simp: integral_combine_tagged_division_topdown) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
924 |
moreover have "norm (\<Sum>(x,K) \<in> T'. ?CI K h x - ?CI K f x) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
925 |
\<le> 2*\<epsilon>/3" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
926 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
927 |
define T'' where "T'' \<equiv> {(x,K) \<in> T'. ~ (K \<subseteq> {x. x \<bullet> i \<le> c})}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
928 |
then have "T'' \<subseteq> T'" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
929 |
by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
930 |
then have "finite T''" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
931 |
using \<open>finite T'\<close> infinite_super by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
932 |
have T''_tagged: "T'' tagged_partial_division_of cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
933 |
using T'_tagged \<open>T'' \<subseteq> T'\<close> tagged_partial_division_subset by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
934 |
have fine'': "\<gamma>0 fine T''" "\<gamma>1 fine T''" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
935 |
using \<open>T'' \<subseteq> T'\<close> fine' by (blast intro: fine_subset)+ |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
936 |
have "(\<Sum>(x,K) \<in> T'. ?CI K h x - ?CI K f x) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
937 |
= (\<Sum>(x,K) \<in> T''. ?CI K h x - ?CI K f x)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
938 |
proof (clarify intro!: sum.mono_neutral_right [OF \<open>finite T'\<close> \<open>T'' \<subseteq> T'\<close>]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
939 |
fix x K |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
940 |
assume "(x,K) \<in> T'" "(x,K) \<notin> T''" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
941 |
then have "x \<in> K" "x \<bullet> i \<le> c" "{x. x \<bullet> i \<le> c} \<inter> K = K" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
942 |
using T''_def T'_tagged by blast+ |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
943 |
then show "?CI K h x - ?CI K f x = 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
944 |
using integral_restrict_Int [of _ "{x. x \<bullet> i \<le> c}" h] by (auto simp: f) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
945 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
946 |
moreover have "norm (\<Sum>(x,K) \<in> T''. ?CI K h x - ?CI K f x) \<le> 2*\<epsilon>/3" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
947 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
948 |
define A where "A \<equiv> {(x,K) \<in> T''. x \<bullet> i \<le> c}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
949 |
define B where "B \<equiv> {(x,K) \<in> T''. x \<bullet> i > c}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
950 |
then have "A \<subseteq> T''" "B \<subseteq> T''" and disj: "A \<inter> B = {}" and T''_eq: "T'' = A \<union> B" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
951 |
by (auto simp: A_def B_def) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
952 |
then have "finite A" "finite B" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
953 |
using \<open>finite T''\<close> by (auto intro: finite_subset) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
954 |
have A_tagged: "A tagged_partial_division_of cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
955 |
using T''_tagged \<open>A \<subseteq> T''\<close> tagged_partial_division_subset by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
956 |
have fineA: "\<gamma>0 fine A" "\<gamma>1 fine A" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
957 |
using \<open>A \<subseteq> T''\<close> fine'' by (blast intro: fine_subset)+ |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
958 |
have B_tagged: "B tagged_partial_division_of cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
959 |
using T''_tagged \<open>B \<subseteq> T''\<close> tagged_partial_division_subset by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
960 |
have fineB: "\<gamma>0 fine B" "\<gamma>1 fine B" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
961 |
using \<open>B \<subseteq> T''\<close> fine'' by (blast intro: fine_subset)+ |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
962 |
have "norm (\<Sum>(x,K) \<in> T''. ?CI K h x - ?CI K f x) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
963 |
\<le> (\<Sum>(x,K) \<in> T''. norm (?CI K h x - ?CI K f x))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
964 |
by (simp add: norm_sum split_def) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
965 |
also have "... = (\<Sum>(x,K) \<in> A. norm (?CI K h x - ?CI K f x)) + |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
966 |
(\<Sum>(x,K) \<in> B. norm (?CI K h x - ?CI K f x))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
967 |
by (simp add: sum.union_disjoint T''_eq disj \<open>finite A\<close> \<open>finite B\<close>) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
968 |
also have "... = (\<Sum>(x,K) \<in> A. norm (integral K h - integral K f)) + |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
969 |
(\<Sum>(x,K) \<in> B. norm (?CI K h x + integral K f))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
970 |
by (auto simp: A_def B_def f norm_minus_commute intro!: sum.cong arg_cong2 [where f= "op+"]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
971 |
also have "... \<le> (\<Sum>(x,K)\<in>A. norm (integral K h)) + |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
972 |
(\<Sum>(x,K)\<in>(\<lambda>(x,K). (x,K \<inter> {x. x \<bullet> i \<le> c})) ` A. norm (integral K h)) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
973 |
+ ((\<Sum>(x,K)\<in>B. norm (?CI K h x)) + |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
974 |
(\<Sum>(x,K)\<in>B. norm (integral K h)) + |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
975 |
(\<Sum>(x,K)\<in>(\<lambda>(x,K). (x,K \<inter> {x. c \<le> x \<bullet> i})) ` B. norm (integral K h)))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
976 |
proof (rule add_mono) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
977 |
show "(\<Sum>(x,K)\<in>A. norm (integral K h - integral K f)) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
978 |
\<le> (\<Sum>(x,K)\<in>A. norm (integral K h)) + |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
979 |
(\<Sum>(x,K)\<in>(\<lambda>(x,K). (x,K \<inter> {x. x \<bullet> i \<le> c})) ` A. |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
980 |
norm (integral K h))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
981 |
proof (subst sum.reindex_nontrivial [OF \<open>finite A\<close>], clarsimp) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
982 |
fix x K L |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
983 |
assume "(x,K) \<in> A" "(x,L) \<in> A" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
984 |
and int_ne0: "integral (L \<inter> {x. x \<bullet> i \<le> c}) h \<noteq> 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
985 |
and eq: "K \<inter> {x. x \<bullet> i \<le> c} = L \<inter> {x. x \<bullet> i \<le> c}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
986 |
have False if "K \<noteq> L" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
987 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
988 |
obtain u v where uv: "L = cbox u v" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
989 |
using T'_tagged \<open>(x, L) \<in> A\<close> \<open>A \<subseteq> T''\<close> \<open>T'' \<subseteq> T'\<close> by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
990 |
have "A tagged_division_of UNION A snd" |
66497
18a6478a574c
More tidying, and renaming of theorems
paulson <lp15@cam.ac.uk>
parents:
66408
diff
changeset
|
991 |
using A_tagged tagged_partial_division_of_Union_self by auto |
66296
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
992 |
then have "interior (K \<inter> {x. x \<bullet> i \<le> c}) = {}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
993 |
apply (rule tagged_division_split_left_inj [OF _ \<open>(x,K) \<in> A\<close> \<open>(x,L) \<in> A\<close>]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
994 |
using that eq \<open>i \<in> Basis\<close> by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
995 |
then show False |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
996 |
using interval_split [OF \<open>i \<in> Basis\<close>] int_ne0 content_eq_0_interior eq uv by fastforce |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
997 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
998 |
then show "K = L" by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
999 |
next |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1000 |
show "(\<Sum>(x,K) \<in> A. norm (integral K h - integral K f)) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1001 |
\<le> (\<Sum>(x,K) \<in> A. norm (integral K h)) + |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1002 |
sum ((\<lambda>(x,K). norm (integral K h)) \<circ> (\<lambda>(x,K). (x,K \<inter> {x. x \<bullet> i \<le> c}))) A" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1003 |
using integral_restrict_Int [of _ "{x. x \<bullet> i \<le> c}" h] f |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1004 |
by (auto simp: Int_commute A_def [symmetric] sum.distrib [symmetric] intro!: sum_mono norm_triangle_ineq4) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1005 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1006 |
next |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1007 |
show "(\<Sum>(x,K)\<in>B. norm (?CI K h x + integral K f)) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1008 |
\<le> (\<Sum>(x,K)\<in>B. norm (?CI K h x)) + (\<Sum>(x,K)\<in>B. norm (integral K h)) + |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1009 |
(\<Sum>(x,K)\<in>(\<lambda>(x,K). (x,K \<inter> {x. c \<le> x \<bullet> i})) ` B. norm (integral K h))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1010 |
proof (subst sum.reindex_nontrivial [OF \<open>finite B\<close>], clarsimp) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1011 |
fix x K L |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1012 |
assume "(x,K) \<in> B" "(x,L) \<in> B" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1013 |
and int_ne0: "integral (L \<inter> {x. c \<le> x \<bullet> i}) h \<noteq> 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1014 |
and eq: "K \<inter> {x. c \<le> x \<bullet> i} = L \<inter> {x. c \<le> x \<bullet> i}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1015 |
have False if "K \<noteq> L" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1016 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1017 |
obtain u v where uv: "L = cbox u v" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1018 |
using T'_tagged \<open>(x, L) \<in> B\<close> \<open>B \<subseteq> T''\<close> \<open>T'' \<subseteq> T'\<close> by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1019 |
have "B tagged_division_of UNION B snd" |
66497
18a6478a574c
More tidying, and renaming of theorems
paulson <lp15@cam.ac.uk>
parents:
66408
diff
changeset
|
1020 |
using B_tagged tagged_partial_division_of_Union_self by auto |
66296
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1021 |
then have "interior (K \<inter> {x. c \<le> x \<bullet> i}) = {}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1022 |
apply (rule tagged_division_split_right_inj [OF _ \<open>(x,K) \<in> B\<close> \<open>(x,L) \<in> B\<close>]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1023 |
using that eq \<open>i \<in> Basis\<close> by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1024 |
then show False |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1025 |
using interval_split [OF \<open>i \<in> Basis\<close>] int_ne0 |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1026 |
content_eq_0_interior eq uv by fastforce |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1027 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1028 |
then show "K = L" by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1029 |
next |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1030 |
show "(\<Sum>(x,K) \<in> B. norm (?CI K h x + integral K f)) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1031 |
\<le> (\<Sum>(x,K) \<in> B. norm (?CI K h x)) + |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1032 |
(\<Sum>(x,K) \<in> B. norm (integral K h)) + sum ((\<lambda>(x,K). norm (integral K h)) \<circ> (\<lambda>(x,K). (x,K \<inter> {x. c \<le> x \<bullet> i}))) B" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1033 |
proof (clarsimp simp: B_def [symmetric] sum.distrib [symmetric] intro!: sum_mono) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1034 |
fix x K |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1035 |
assume "(x,K) \<in> B" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1036 |
have *: "i = i1 + i2 \<Longrightarrow> norm(c + i1) \<le> norm c + norm i + norm(i2)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1037 |
for i::'b and c i1 i2 |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1038 |
by (metis add.commute add.left_commute add_diff_cancel_right' dual_order.refl norm_add_rule_thm norm_triangle_ineq4) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1039 |
obtain u v where uv: "K = cbox u v" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1040 |
using T'_tagged \<open>(x,K) \<in> B\<close> \<open>B \<subseteq> T''\<close> \<open>T'' \<subseteq> T'\<close> by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1041 |
have "h integrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1042 |
by (simp add: int_F \<open>h \<in> F\<close>) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1043 |
then have huv: "h integrable_on cbox u v" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1044 |
apply (rule integrable_on_subcbox) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1045 |
using B_tagged \<open>(x,K) \<in> B\<close> uv by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1046 |
have "integral K h = integral K f + integral (K \<inter> {x. c \<le> x \<bullet> i}) h" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1047 |
using integral_restrict_Int [of _ "{x. x \<bullet> i \<le> c}" h] f uv \<open>i \<in> Basis\<close> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1048 |
by (simp add: Int_commute integral_split [OF huv \<open>i \<in> Basis\<close>]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1049 |
then show "norm (?CI K h x + integral K f) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1050 |
\<le> norm (?CI K h x) + norm (integral K h) + norm (integral (K \<inter> {x. c \<le> x \<bullet> i}) h)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1051 |
by (rule *) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1052 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1053 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1054 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1055 |
also have "... \<le> 2*\<epsilon>/3" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1056 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1057 |
have overlap: "K \<inter> {x. x \<bullet> i = c} \<noteq> {}" if "(x,K) \<in> T''" for x K |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1058 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1059 |
obtain y y' where y: "y' \<in> K" "c < y' \<bullet> i" "y \<in> K" "y \<bullet> i \<le> c" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1060 |
using that T''_def T'_def \<open>(x,K) \<in> T''\<close> by fastforce |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1061 |
obtain u v where uv: "K = cbox u v" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1062 |
using T''_tagged \<open>(x,K) \<in> T''\<close> by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1063 |
then have "connected K" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1064 |
by (simp add: is_interval_cbox is_interval_connected) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1065 |
then have "(\<exists>z \<in> K. z \<bullet> i = c)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1066 |
using y connected_ivt_component by fastforce |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1067 |
then show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1068 |
by fastforce |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1069 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1070 |
have **: "\<lbrakk>x < \<epsilon>/12; y < \<epsilon>/12; z \<le> \<epsilon>/2\<rbrakk> \<Longrightarrow> x + y + z \<le> 2 * \<epsilon>/3" for x y z |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1071 |
by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1072 |
show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1073 |
proof (rule **) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1074 |
have cb_ab: "(\<Sum>j \<in> Basis. if j = i then c *\<^sub>R i else (a \<bullet> j) *\<^sub>R j) \<in> cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1075 |
using \<open>i \<in> Basis\<close> True \<open>\<And>i. i \<in> Basis \<Longrightarrow> a \<bullet> i < b \<bullet> i\<close> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1076 |
apply (clarsimp simp add: mem_box) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1077 |
apply (subst sum_if_inner | force)+ |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1078 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1079 |
show "(\<Sum>(x,K) \<in> A. norm (integral K h)) < \<epsilon>/12" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1080 |
apply (rule \<gamma>0 [OF cb_ab \<open>i \<in> Basis\<close> A_tagged fineA(1) \<open>h \<in> F\<close>]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1081 |
using \<open>i \<in> Basis\<close> \<open>A \<subseteq> T''\<close> overlap |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1082 |
apply (subst sum_if_inner | force)+ |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1083 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1084 |
have 1: "(\<lambda>(x,K). (x,K \<inter> {x. x \<bullet> i \<le> c})) ` A tagged_partial_division_of cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1085 |
using \<open>finite A\<close> \<open>i \<in> Basis\<close> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1086 |
apply (auto simp: tagged_partial_division_of_def) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1087 |
using A_tagged apply (auto simp: A_def) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1088 |
using interval_split(1) by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1089 |
have 2: "\<gamma>0 fine (\<lambda>(x,K). (x,K \<inter> {x. x \<bullet> i \<le> c})) ` A" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1090 |
using fineA(1) fine_def by fastforce |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1091 |
show "(\<Sum>(x,K) \<in> (\<lambda>(x,K). (x,K \<inter> {x. x \<bullet> i \<le> c})) ` A. norm (integral K h)) < \<epsilon>/12" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1092 |
apply (rule \<gamma>0 [OF cb_ab \<open>i \<in> Basis\<close> 1 2 \<open>h \<in> F\<close>]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1093 |
using \<open>i \<in> Basis\<close> apply (subst sum_if_inner | force)+ |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1094 |
using overlap apply (auto simp: A_def) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1095 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1096 |
have *: "\<lbrakk>x < \<epsilon>/3; y < \<epsilon>/12; z < \<epsilon>/12\<rbrakk> \<Longrightarrow> x + y + z \<le> \<epsilon>/2" for x y z |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1097 |
by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1098 |
show "(\<Sum>(x,K) \<in> B. norm (?CI K h x)) + |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1099 |
(\<Sum>(x,K) \<in> B. norm (integral K h)) + |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1100 |
(\<Sum>(x,K) \<in> (\<lambda>(x,K). (x,K \<inter> {x. c \<le> x \<bullet> i})) ` B. norm (integral K h)) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1101 |
\<le> \<epsilon>/2" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1102 |
proof (rule *) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1103 |
show "(\<Sum>(x,K) \<in> B. norm (?CI K h x)) < \<epsilon>/3" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1104 |
by (intro h_less3 B_tagged fineB that) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1105 |
show "(\<Sum>(x,K) \<in> B. norm (integral K h)) < \<epsilon>/12" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1106 |
apply (rule \<gamma>0 [OF cb_ab \<open>i \<in> Basis\<close> B_tagged fineB(1) \<open>h \<in> F\<close>]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1107 |
using \<open>i \<in> Basis\<close> \<open>B \<subseteq> T''\<close> overlap by (subst sum_if_inner | force)+ |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1108 |
have 1: "(\<lambda>(x,K). (x,K \<inter> {x. c \<le> x \<bullet> i})) ` B tagged_partial_division_of cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1109 |
using \<open>finite B\<close> \<open>i \<in> Basis\<close> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1110 |
apply (auto simp: tagged_partial_division_of_def) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1111 |
using B_tagged apply (auto simp: B_def) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1112 |
using interval_split(2) by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1113 |
have 2: "\<gamma>0 fine (\<lambda>(x,K). (x,K \<inter> {x. c \<le> x \<bullet> i})) ` B" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1114 |
using fineB(1) fine_def by fastforce |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1115 |
show "(\<Sum>(x,K) \<in> (\<lambda>(x,K). (x,K \<inter> {x. c \<le> x \<bullet> i})) ` B. norm (integral K h)) < \<epsilon>/12" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1116 |
apply (rule \<gamma>0 [OF cb_ab \<open>i \<in> Basis\<close> 1 2 \<open>h \<in> F\<close>]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1117 |
using \<open>i \<in> Basis\<close> apply (subst sum_if_inner | force)+ |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1118 |
using overlap apply (auto simp: B_def) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1119 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1120 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1121 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1122 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1123 |
finally show ?thesis . |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1124 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1125 |
ultimately show ?thesis by metis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1126 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1127 |
ultimately show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1128 |
by (simp add: sum_subtractf [symmetric] int_KK' *) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1129 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1130 |
ultimately show ?thesis by metis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1131 |
next |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1132 |
case False |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1133 |
then consider "c < a \<bullet> i" | "b \<bullet> i < c" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1134 |
by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1135 |
then show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1136 |
proof cases |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1137 |
case 1 |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1138 |
then have f0: "f x = 0" if "x \<in> cbox a b" for x |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1139 |
using that f \<open>i \<in> Basis\<close> mem_box(2) by force |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1140 |
then have int_f0: "integral (cbox a b) f = 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1141 |
by (simp add: integral_cong) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1142 |
have f0_tag: "f x = 0" if "(x,K) \<in> T" for x K |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1143 |
using T f0 that by (force simp: tagged_division_of_def) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1144 |
then have "(\<Sum>(x,K) \<in> T. content K *\<^sub>R f x) = 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1145 |
by (metis (mono_tags, lifting) real_vector.scale_eq_0_iff split_conv sum.neutral surj_pair) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1146 |
then show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1147 |
using \<open>0 < \<epsilon>\<close> by (simp add: int_f0) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1148 |
next |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1149 |
case 2 |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1150 |
then have fh: "f x = h x" if "x \<in> cbox a b" for x |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1151 |
using that f \<open>i \<in> Basis\<close> mem_box(2) by force |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1152 |
then have int_f: "integral (cbox a b) f = integral (cbox a b) h" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1153 |
using integral_cong by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1154 |
have fh_tag: "f x = h x" if "(x,K) \<in> T" for x K |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1155 |
using T fh that by (force simp: tagged_division_of_def) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1156 |
then have "(\<Sum>(x,K) \<in> T. content K *\<^sub>R f x) = (\<Sum>(x,K) \<in> T. content K *\<^sub>R h x)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1157 |
by (metis (mono_tags, lifting) split_cong sum.cong) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1158 |
with \<open>0 < \<epsilon>\<close> show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1159 |
apply (simp add: int_f) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1160 |
apply (rule less_trans [OF \<gamma>1]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1161 |
using that fine_Int apply (force simp: divide_simps)+ |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1162 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1163 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1164 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1165 |
have "gauge (\<lambda>x. \<gamma>0 x \<inter> \<gamma>1 x)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1166 |
by (simp add: \<open>gauge \<gamma>0\<close> \<open>gauge \<gamma>1\<close> gauge_Int) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1167 |
then show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1168 |
by (auto intro: *) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1169 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1170 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1171 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1172 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1173 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1174 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1175 |
corollary equiintegrable_halfspace_restrictions_ge: |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1176 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1177 |
assumes F: "F equiintegrable_on cbox a b" and f: "f \<in> F" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1178 |
and norm_f: "\<And>h x. \<lbrakk>h \<in> F; x \<in> cbox a b\<rbrakk> \<Longrightarrow> norm(h x) \<le> norm(f x)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1179 |
shows "(\<Union>i \<in> Basis. \<Union>c. \<Union>h \<in> F. {(\<lambda>x. if x \<bullet> i \<ge> c then h x else 0)}) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1180 |
equiintegrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1181 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1182 |
have *: "(\<Union>i\<in>Basis. \<Union>c. \<Union>h\<in>(\<lambda>f. f \<circ> uminus) ` F. {\<lambda>x. if x \<bullet> i \<le> c then h x else 0}) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1183 |
equiintegrable_on cbox (- b) (- a)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1184 |
proof (rule equiintegrable_halfspace_restrictions_le) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1185 |
show "(\<lambda>f. f \<circ> uminus) ` F equiintegrable_on cbox (- b) (- a)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1186 |
using F equiintegrable_reflect by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1187 |
show "f \<circ> uminus \<in> (\<lambda>f. f \<circ> uminus) ` F" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1188 |
using f by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1189 |
show "\<And>h x. \<lbrakk>h \<in> (\<lambda>f. f \<circ> uminus) ` F; x \<in> cbox (- b) (- a)\<rbrakk> \<Longrightarrow> norm (h x) \<le> norm ((f \<circ> uminus) x)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1190 |
using f apply (clarsimp simp:) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1191 |
by (metis add.inverse_inverse image_eqI norm_f uminus_interval_vector) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1192 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1193 |
have eq: "(\<lambda>f. f \<circ> uminus) ` |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1194 |
(\<Union>i\<in>Basis. \<Union>c. \<Union>h\<in>F. {\<lambda>x. if x \<bullet> i \<le> c then (h \<circ> uminus) x else 0}) = |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1195 |
(\<Union>i\<in>Basis. \<Union>c. \<Union>h\<in>F. {\<lambda>x. if c \<le> x \<bullet> i then h x else 0})" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1196 |
apply (auto simp: o_def cong: if_cong) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1197 |
using minus_le_iff apply fastforce |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1198 |
apply (rule_tac x="\<lambda>x. if c \<le> (-x) \<bullet> i then h(-x) else 0" in image_eqI) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1199 |
using le_minus_iff apply fastforce+ |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1200 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1201 |
show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1202 |
using equiintegrable_reflect [OF *] by (auto simp: eq) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1203 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1204 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1205 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1206 |
proposition equiintegrable_closed_interval_restrictions: |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1207 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1208 |
assumes f: "f integrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1209 |
shows "(\<Union>c d. {(\<lambda>x. if x \<in> cbox c d then f x else 0)}) equiintegrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1210 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1211 |
let ?g = "\<lambda>B c d x. if \<forall>i\<in>B. c \<bullet> i \<le> x \<bullet> i \<and> x \<bullet> i \<le> d \<bullet> i then f x else 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1212 |
have *: "insert f (\<Union>c d. {?g B c d}) equiintegrable_on cbox a b" if "B \<subseteq> Basis" for B |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1213 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1214 |
have "finite B" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1215 |
using finite_Basis finite_subset \<open>B \<subseteq> Basis\<close> by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1216 |
then show ?thesis using \<open>B \<subseteq> Basis\<close> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1217 |
proof (induction B) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1218 |
case empty |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1219 |
with f show ?case by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1220 |
next |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1221 |
case (insert i B) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1222 |
then have "i \<in> Basis" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1223 |
by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1224 |
have *: "norm (h x) \<le> norm (f x)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1225 |
if "h \<in> insert f (\<Union>c d. {?g B c d})" "x \<in> cbox a b" for h x |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1226 |
using that by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1227 |
have "(\<Union>i\<in>Basis. |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1228 |
\<Union>\<xi>. \<Union>h\<in>insert f (\<Union>i\<in>Basis. \<Union>\<psi>. \<Union>h\<in>insert f (\<Union>c d. {?g B c d}). {\<lambda>x. if x \<bullet> i \<le> \<psi> then h x else 0}). |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1229 |
{\<lambda>x. if \<xi> \<le> x \<bullet> i then h x else 0}) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1230 |
equiintegrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1231 |
proof (rule equiintegrable_halfspace_restrictions_ge [where f=f]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1232 |
show "insert f (\<Union>i\<in>Basis. \<Union>\<xi>. \<Union>h\<in>insert f (\<Union>c d. {?g B c d}). |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1233 |
{\<lambda>x. if x \<bullet> i \<le> \<xi> then h x else 0}) equiintegrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1234 |
apply (intro * f equiintegrable_on_insert equiintegrable_halfspace_restrictions_le [OF insert.IH insertI1]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1235 |
using insert.prems apply auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1236 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1237 |
show"norm(h x) \<le> norm(f x)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1238 |
if "h \<in> insert f (\<Union>i\<in>Basis. \<Union>\<xi>. \<Union>h\<in>insert f (\<Union>c d. {?g B c d}). {\<lambda>x. if x \<bullet> i \<le> \<xi> then h x else 0})" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1239 |
"x \<in> cbox a b" for h x |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1240 |
using that by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1241 |
qed auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1242 |
then have "insert f (\<Union>i\<in>Basis. |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1243 |
\<Union>\<xi>. \<Union>h\<in>insert f (\<Union>i\<in>Basis. \<Union>\<psi>. \<Union>h\<in>insert f (\<Union>c d. {?g B c d}). {\<lambda>x. if x \<bullet> i \<le> \<psi> then h x else 0}). |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1244 |
{\<lambda>x. if \<xi> \<le> x \<bullet> i then h x else 0}) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1245 |
equiintegrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1246 |
by (blast intro: f equiintegrable_on_insert) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1247 |
then show ?case |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1248 |
apply (rule equiintegrable_on_subset, clarify) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1249 |
using \<open>i \<in> Basis\<close> apply simp |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1250 |
apply (drule_tac x=i in bspec, assumption) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1251 |
apply (drule_tac x="c \<bullet> i" in spec, clarify) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1252 |
apply (drule_tac x=i in bspec, assumption) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1253 |
apply (drule_tac x="d \<bullet> i" in spec) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1254 |
apply (clarsimp simp add: fun_eq_iff) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1255 |
apply (drule_tac x=c in spec) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1256 |
apply (drule_tac x=d in spec) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1257 |
apply (simp add: split: if_split_asm) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1258 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1259 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1260 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1261 |
show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1262 |
by (rule equiintegrable_on_subset [OF * [OF subset_refl]]) (auto simp: mem_box) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1263 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1264 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1265 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1266 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1267 |
subsection\<open>Continuity of the indefinite integral\<close> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1268 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1269 |
proposition indefinite_integral_continuous: |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1270 |
fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: euclidean_space" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1271 |
assumes int_f: "f integrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1272 |
and c: "c \<in> cbox a b" and d: "d \<in> cbox a b" "0 < \<epsilon>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1273 |
obtains \<delta> where "0 < \<delta>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1274 |
"\<And>c' d'. \<lbrakk>c' \<in> cbox a b; d' \<in> cbox a b; norm(c' - c) \<le> \<delta>; norm(d' - d) \<le> \<delta>\<rbrakk> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1275 |
\<Longrightarrow> norm(integral(cbox c' d') f - integral(cbox c d) f) < \<epsilon>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1276 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1277 |
{ assume "\<exists>c' d'. c' \<in> cbox a b \<and> d' \<in> cbox a b \<and> norm(c' - c) \<le> \<delta> \<and> norm(d' - d) \<le> \<delta> \<and> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1278 |
norm(integral(cbox c' d') f - integral(cbox c d) f) \<ge> \<epsilon>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1279 |
(is "\<exists>c' d'. ?\<Phi> c' d' \<delta>") if "0 < \<delta>" for \<delta> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1280 |
then have "\<exists>c' d'. ?\<Phi> c' d' (1 / Suc n)" for n |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1281 |
by simp |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1282 |
then obtain u v where "\<And>n. ?\<Phi> (u n) (v n) (1 / Suc n)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1283 |
by metis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1284 |
then have u: "u n \<in> cbox a b" and norm_u: "norm(u n - c) \<le> 1 / Suc n" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1285 |
and v: "v n \<in> cbox a b" and norm_v: "norm(v n - d) \<le> 1 / Suc n" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1286 |
and \<epsilon>: "\<epsilon> \<le> norm (integral (cbox (u n) (v n)) f - integral (cbox c d) f)" for n |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1287 |
by blast+ |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1288 |
then have False |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1289 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1290 |
have uvn: "cbox (u n) (v n) \<subseteq> cbox a b" for n |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1291 |
by (meson u v mem_box(2) subset_box(1)) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1292 |
define S where "S \<equiv> \<Union>i \<in> Basis. {x. x \<bullet> i = c \<bullet> i} \<union> {x. x \<bullet> i = d \<bullet> i}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1293 |
have "negligible S" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1294 |
unfolding S_def by force |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1295 |
then have int_f': "(\<lambda>x. if x \<in> S then 0 else f x) integrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1296 |
by (rule integrable_spike) (auto intro: assms) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1297 |
have get_n: "\<exists>n. \<forall>m\<ge>n. x \<in> cbox (u m) (v m) \<longleftrightarrow> x \<in> cbox c d" if x: "x \<notin> S" for x |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1298 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1299 |
define \<epsilon> where "\<epsilon> \<equiv> Min ((\<lambda>i. min \<bar>x \<bullet> i - c \<bullet> i\<bar> \<bar>x \<bullet> i - d \<bullet> i\<bar>) ` Basis)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1300 |
have "\<epsilon> > 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1301 |
using \<open>x \<notin> S\<close> by (auto simp: S_def \<epsilon>_def) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1302 |
then obtain n where "n \<noteq> 0" and n: "1 / (real n) < \<epsilon>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1303 |
by (metis inverse_eq_divide real_arch_inverse) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1304 |
have emin: "\<epsilon> \<le> min \<bar>x \<bullet> i - c \<bullet> i\<bar> \<bar>x \<bullet> i - d \<bullet> i\<bar>" if "i \<in> Basis" for i |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1305 |
unfolding \<epsilon>_def |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1306 |
apply (rule Min.coboundedI) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1307 |
using that by force+ |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1308 |
have "1 / real (Suc n) < \<epsilon>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1309 |
using n \<open>n \<noteq> 0\<close> \<open>\<epsilon> > 0\<close> by (simp add: field_simps) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1310 |
have "x \<in> cbox (u m) (v m) \<longleftrightarrow> x \<in> cbox c d" if "m \<ge> n" for m |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1311 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1312 |
have *: "\<lbrakk>\<bar>u - c\<bar> \<le> n; \<bar>v - d\<bar> \<le> n; N < \<bar>x - c\<bar>; N < \<bar>x - d\<bar>; n \<le> N\<rbrakk> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1313 |
\<Longrightarrow> u \<le> x \<and> x \<le> v \<longleftrightarrow> c \<le> x \<and> x \<le> d" for N n u v c d and x::real |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1314 |
by linarith |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1315 |
have "(u m \<bullet> i \<le> x \<bullet> i \<and> x \<bullet> i \<le> v m \<bullet> i) = (c \<bullet> i \<le> x \<bullet> i \<and> x \<bullet> i \<le> d \<bullet> i)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1316 |
if "i \<in> Basis" for i |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1317 |
proof (rule *) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1318 |
show "\<bar>u m \<bullet> i - c \<bullet> i\<bar> \<le> 1 / Suc m" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1319 |
using norm_u [of m] |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1320 |
by (metis (full_types) order_trans Basis_le_norm inner_commute inner_diff_right that) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1321 |
show "\<bar>v m \<bullet> i - d \<bullet> i\<bar> \<le> 1 / real (Suc m)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1322 |
using norm_v [of m] |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1323 |
by (metis (full_types) order_trans Basis_le_norm inner_commute inner_diff_right that) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1324 |
show "1/n < \<bar>x \<bullet> i - c \<bullet> i\<bar>" "1/n < \<bar>x \<bullet> i - d \<bullet> i\<bar>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1325 |
using n \<open>n \<noteq> 0\<close> emin [OF \<open>i \<in> Basis\<close>] |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1326 |
by (simp_all add: inverse_eq_divide) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1327 |
show "1 / real (Suc m) \<le> 1 / real n" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1328 |
using \<open>n \<noteq> 0\<close> \<open>m \<ge> n\<close> by (simp add: divide_simps) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1329 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1330 |
then show ?thesis by (simp add: mem_box) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1331 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1332 |
then show ?thesis by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1333 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1334 |
have 1: "range (\<lambda>n x. if x \<in> cbox (u n) (v n) then if x \<in> S then 0 else f x else 0) equiintegrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1335 |
by (blast intro: equiintegrable_on_subset [OF equiintegrable_closed_interval_restrictions [OF int_f']]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1336 |
have 2: "(\<lambda>n. if x \<in> cbox (u n) (v n) then if x \<in> S then 0 else f x else 0) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1337 |
\<longlonglongrightarrow> (if x \<in> cbox c d then if x \<in> S then 0 else f x else 0)" for x |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1338 |
by (fastforce simp: dest: get_n intro: Lim_eventually eventually_sequentiallyI) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1339 |
have [simp]: "cbox c d \<inter> cbox a b = cbox c d" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1340 |
using c d by (force simp: mem_box) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1341 |
have [simp]: "cbox (u n) (v n) \<inter> cbox a b = cbox (u n) (v n)" for n |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1342 |
using u v by (fastforce simp: mem_box intro: order.trans) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1343 |
have "\<And>y A. y \<in> A - S \<Longrightarrow> f y = (\<lambda>x. if x \<in> S then 0 else f x) y" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1344 |
by simp |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1345 |
then have "\<And>A. integral A (\<lambda>x. if x \<in> S then 0 else f (x)) = integral A (\<lambda>x. f (x))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1346 |
by (blast intro: integral_spike [OF \<open>negligible S\<close>]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1347 |
moreover |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1348 |
obtain N where "dist (integral (cbox (u N) (v N)) (\<lambda>x. if x \<in> S then 0 else f x)) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1349 |
(integral (cbox c d) (\<lambda>x. if x \<in> S then 0 else f x)) < \<epsilon>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1350 |
using equiintegrable_limit [OF 1 2] \<open>0 < \<epsilon>\<close> by (force simp: integral_restrict_Int lim_sequentially) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1351 |
ultimately have "dist (integral (cbox (u N) (v N)) f) (integral (cbox c d) f) < \<epsilon>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1352 |
by simp |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1353 |
then show False |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1354 |
by (metis dist_norm not_le \<epsilon>) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1355 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1356 |
} |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1357 |
then show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1358 |
by (meson not_le that) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1359 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1360 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1361 |
corollary indefinite_integral_uniformly_continuous: |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1362 |
fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: euclidean_space" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1363 |
assumes "f integrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1364 |
shows "uniformly_continuous_on (cbox (Pair a a) (Pair b b)) (\<lambda>y. integral (cbox (fst y) (snd y)) f)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1365 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1366 |
show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1367 |
proof (rule compact_uniformly_continuous, clarsimp simp add: continuous_on_iff) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1368 |
fix c d and \<epsilon>::real |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1369 |
assume c: "c \<in> cbox a b" and d: "d \<in> cbox a b" and "0 < \<epsilon>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1370 |
obtain \<delta> where "0 < \<delta>" and \<delta>: |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1371 |
"\<And>c' d'. \<lbrakk>c' \<in> cbox a b; d' \<in> cbox a b; norm(c' - c) \<le> \<delta>; norm(d' - d) \<le> \<delta>\<rbrakk> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1372 |
\<Longrightarrow> norm(integral(cbox c' d') f - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1373 |
integral(cbox c d) f) < \<epsilon>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1374 |
using indefinite_integral_continuous \<open>0 < \<epsilon>\<close> assms c d by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1375 |
show "\<exists>\<delta> > 0. \<forall>x' \<in> cbox (a, a) (b, b). |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1376 |
dist x' (c, d) < \<delta> \<longrightarrow> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1377 |
dist (integral (cbox (fst x') (snd x')) f) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1378 |
(integral (cbox c d) f) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1379 |
< \<epsilon>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1380 |
using \<open>0 < \<delta>\<close> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1381 |
by (force simp: dist_norm intro: \<delta> order_trans [OF norm_fst_le] order_trans [OF norm_snd_le] less_imp_le) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1382 |
qed auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1383 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1384 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1385 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1386 |
corollary bounded_integrals_over_subintervals: |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1387 |
fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: euclidean_space" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1388 |
assumes "f integrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1389 |
shows "bounded {integral (cbox c d) f |c d. cbox c d \<subseteq> cbox a b}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1390 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1391 |
have "bounded ((\<lambda>y. integral (cbox (fst y) (snd y)) f) ` cbox (a, a) (b, b))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1392 |
(is "bounded ?I") |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1393 |
by (blast intro: bounded_cbox bounded_uniformly_continuous_image indefinite_integral_uniformly_continuous [OF assms]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1394 |
then obtain B where "B > 0" and B: "\<And>x. x \<in> ?I \<Longrightarrow> norm x \<le> B" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1395 |
by (auto simp: bounded_pos) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1396 |
have "norm x \<le> B" if "x = integral (cbox c d) f" "cbox c d \<subseteq> cbox a b" for x c d |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1397 |
proof (cases "cbox c d = {}") |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1398 |
case True |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1399 |
with \<open>0 < B\<close> that show ?thesis by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1400 |
next |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1401 |
case False |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1402 |
show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1403 |
apply (rule B) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1404 |
using that \<open>B > 0\<close> False apply (clarsimp simp: image_def) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1405 |
by (metis cbox_Pair_iff interval_subset_is_interval is_interval_cbox prod.sel) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1406 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1407 |
then show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1408 |
by (blast intro: boundedI) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1409 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1410 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1411 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1412 |
text\<open>An existence theorem for "improper" integrals. |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1413 |
Hake's theorem implies that if the integrals over subintervals have a limit, the integral exists. |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1414 |
We only need to assume that the integrals are bounded, and we get absolute integrability, |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1415 |
but we also need a (rather weak) bound assumption on the function.\<close> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1416 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1417 |
theorem absolutely_integrable_improper: |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1418 |
fixes f :: "'M::euclidean_space \<Rightarrow> 'N::euclidean_space" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1419 |
assumes int_f: "\<And>c d. cbox c d \<subseteq> box a b \<Longrightarrow> f integrable_on cbox c d" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1420 |
and bo: "bounded {integral (cbox c d) f |c d. cbox c d \<subseteq> box a b}" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1421 |
and absi: "\<And>i. i \<in> Basis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1422 |
\<Longrightarrow> \<exists>g. g absolutely_integrable_on cbox a b \<and> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1423 |
((\<forall>x \<in> cbox a b. f x \<bullet> i \<le> g x) \<or> (\<forall>x \<in> cbox a b. f x \<bullet> i \<ge> g x))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1424 |
shows "f absolutely_integrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1425 |
proof (cases "content(cbox a b) = 0") |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1426 |
case True |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1427 |
then show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1428 |
by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1429 |
next |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1430 |
case False |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1431 |
then have pos: "content(cbox a b) > 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1432 |
using zero_less_measure_iff by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1433 |
show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1434 |
unfolding absolutely_integrable_componentwise_iff [where f = f] |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1435 |
proof |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1436 |
fix j::'N |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1437 |
assume "j \<in> Basis" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1438 |
then obtain g where absint_g: "g absolutely_integrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1439 |
and g: "(\<forall>x \<in> cbox a b. f x \<bullet> j \<le> g x) \<or> (\<forall>x \<in> cbox a b. f x \<bullet> j \<ge> g x)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1440 |
using absi by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1441 |
have int_gab: "g integrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1442 |
using absint_g set_lebesgue_integral_eq_integral(1) by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1443 |
have 1: "cbox (a + (b - a) /\<^sub>R real (Suc n)) (b - (b - a) /\<^sub>R real (Suc n)) \<subseteq> box a b" for n |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1444 |
apply (rule subset_box_imp) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1445 |
using pos apply (auto simp: content_pos_lt_eq algebra_simps) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1446 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1447 |
have 2: "cbox (a + (b - a) /\<^sub>R real (Suc n)) (b - (b - a) /\<^sub>R real (Suc n)) \<subseteq> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1448 |
cbox (a + (b - a) /\<^sub>R real (Suc n + 1)) (b - (b - a) /\<^sub>R real (Suc n + 1))" for n |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1449 |
apply (rule subset_box_imp) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1450 |
using pos apply (simp add: content_pos_lt_eq algebra_simps) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1451 |
apply (simp add: divide_simps) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1452 |
apply (auto simp: field_simps) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1453 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1454 |
have getN: "\<exists>N::nat. \<forall>k. k \<ge> N \<longrightarrow> x \<in> cbox (a + (b - a) /\<^sub>R real k) (b - (b - a) /\<^sub>R real k)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1455 |
if x: "x \<in> box a b" for x |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1456 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1457 |
let ?\<Delta> = "(\<Union>i \<in> Basis. {((x - a) \<bullet> i) / ((b - a) \<bullet> i), (b - x) \<bullet> i / ((b - a) \<bullet> i)})" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1458 |
obtain N where N: "real N > 1 / Inf ?\<Delta>" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1459 |
using reals_Archimedean2 by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1460 |
moreover have \<Delta>: "Inf ?\<Delta> > 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1461 |
using that by (auto simp: finite_less_Inf_iff mem_box algebra_simps divide_simps) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1462 |
ultimately have "N > 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1463 |
using of_nat_0_less_iff by fastforce |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1464 |
show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1465 |
proof (intro exI impI allI) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1466 |
fix k assume "N \<le> k" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1467 |
with \<open>0 < N\<close> have "k > 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1468 |
by linarith |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1469 |
have xa_gt: "(x - a) \<bullet> i > ((b - a) \<bullet> i) / (real k)" if "i \<in> Basis" for i |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1470 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1471 |
have *: "Inf ?\<Delta> \<le> ((x - a) \<bullet> i) / ((b - a) \<bullet> i)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1472 |
using that by (force intro: cInf_le_finite) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1473 |
have "1 / Inf ?\<Delta> \<ge> ((b - a) \<bullet> i) / ((x - a) \<bullet> i)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1474 |
using le_imp_inverse_le [OF * \<Delta>] |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1475 |
by (simp add: field_simps) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1476 |
with N have "k > ((b - a) \<bullet> i) / ((x - a) \<bullet> i)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1477 |
using \<open>N \<le> k\<close> by linarith |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1478 |
with x that show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1479 |
by (auto simp: mem_box algebra_simps divide_simps) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1480 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1481 |
have bx_gt: "(b - x) \<bullet> i > ((b - a) \<bullet> i) / k" if "i \<in> Basis" for i |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1482 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1483 |
have *: "Inf ?\<Delta> \<le> ((b - x) \<bullet> i) / ((b - a) \<bullet> i)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1484 |
using that by (force intro: cInf_le_finite) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1485 |
have "1 / Inf ?\<Delta> \<ge> ((b - a) \<bullet> i) / ((b - x) \<bullet> i)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1486 |
using le_imp_inverse_le [OF * \<Delta>] |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1487 |
by (simp add: field_simps) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1488 |
with N have "k > ((b - a) \<bullet> i) / ((b - x) \<bullet> i)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1489 |
using \<open>N \<le> k\<close> by linarith |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1490 |
with x that show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1491 |
by (auto simp: mem_box algebra_simps divide_simps) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1492 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1493 |
show "x \<in> cbox (a + (b - a) /\<^sub>R k) (b - (b - a) /\<^sub>R k)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1494 |
using that \<Delta> \<open>k > 0\<close> |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1495 |
by (auto simp: mem_box algebra_simps divide_inverse dest: xa_gt bx_gt) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1496 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1497 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1498 |
obtain Bf where "Bf > 0" and Bf: "\<And>c d. cbox c d \<subseteq> box a b \<Longrightarrow> norm (integral (cbox c d) f) \<le> Bf" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1499 |
using bo unfolding bounded_pos by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1500 |
obtain Bg where "Bg > 0" and Bg:"\<And>c d. cbox c d \<subseteq> cbox a b \<Longrightarrow> \<bar>integral (cbox c d) g\<bar> \<le> Bg" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1501 |
using bounded_integrals_over_subintervals [OF int_gab] unfolding bounded_pos real_norm_def by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1502 |
show "(\<lambda>x. f x \<bullet> j) absolutely_integrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1503 |
using g |
66304 | 1504 |
proof \<comment>\<open>A lot of duplication in the two proofs\<close> |
66296
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1505 |
assume fg [rule_format]: "\<forall>x\<in>cbox a b. f x \<bullet> j \<le> g x" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1506 |
have "(\<lambda>x. (f x \<bullet> j)) = (\<lambda>x. g x - (g x - (f x \<bullet> j)))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1507 |
by simp |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1508 |
moreover have "(\<lambda>x. g x - (g x - (f x \<bullet> j))) integrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1509 |
proof (rule Henstock_Kurzweil_Integration.integrable_diff [OF int_gab]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1510 |
let ?\<phi> = "\<lambda>k x. if x \<in> cbox (a + (b - a) /\<^sub>R (Suc k)) (b - (b - a) /\<^sub>R (Suc k)) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1511 |
then g x - f x \<bullet> j else 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1512 |
have "(\<lambda>x. g x - f x \<bullet> j) integrable_on box a b" |
66408
46cfd348c373
general rationalisation of Analysis
paulson <lp15@cam.ac.uk>
parents:
66304
diff
changeset
|
1513 |
proof (rule monotone_convergence_increasing [of ?\<phi>, THEN conjunct1]) |
66296
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1514 |
have *: "cbox (a + (b - a) /\<^sub>R (1 + real k)) (b - (b - a) /\<^sub>R (1 + real k)) \<inter> box a b |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1515 |
= cbox (a + (b - a) /\<^sub>R (1 + real k)) (b - (b - a) /\<^sub>R (1 + real k))" for k |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1516 |
using box_subset_cbox "1" by fastforce |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1517 |
show "?\<phi> k integrable_on box a b" for k |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1518 |
apply (simp add: integrable_restrict_Int integral_restrict_Int *) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1519 |
apply (rule integrable_diff [OF integrable_on_subcbox [OF int_gab]]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1520 |
using "*" box_subset_cbox apply blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1521 |
by (metis "1" int_f integrable_component of_nat_Suc) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1522 |
have cb12: "cbox (a + (b - a) /\<^sub>R (1 + real k)) (b - (b - a) /\<^sub>R (1 + real k)) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1523 |
\<subseteq> cbox (a + (b - a) /\<^sub>R (2 + real k)) (b - (b - a) /\<^sub>R (2 + real k))" for k |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1524 |
using False content_eq_0 |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1525 |
apply (simp add: subset_box algebra_simps) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1526 |
apply (simp add: divide_simps) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1527 |
apply (fastforce simp: field_simps) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1528 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1529 |
show "?\<phi> k x \<le> ?\<phi> (Suc k) x" if "x \<in> box a b" for k x |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1530 |
using cb12 box_subset_cbox that by (force simp: intro!: fg) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1531 |
show "(\<lambda>k. ?\<phi> k x) \<longlonglongrightarrow> g x - f x \<bullet> j" if x: "x \<in> box a b" for x |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1532 |
proof (rule Lim_eventually) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1533 |
obtain N::nat where N: "\<And>k. k \<ge> N \<Longrightarrow> x \<in> cbox (a + (b - a) /\<^sub>R real k) (b - (b - a) /\<^sub>R real k)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1534 |
using getN [OF x] by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1535 |
show "\<forall>\<^sub>F k in sequentially. ?\<phi> k x = g x - f x \<bullet> j" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1536 |
proof |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1537 |
fix k::nat assume "N \<le> k" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1538 |
have "x \<in> cbox (a + (b - a) /\<^sub>R (Suc k)) (b - (b - a) /\<^sub>R (Suc k))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1539 |
by (metis \<open>N \<le> k\<close> le_Suc_eq N) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1540 |
then show "?\<phi> k x = g x - f x \<bullet> j" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1541 |
by simp |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1542 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1543 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1544 |
have "\<bar>integral (box a b) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1545 |
(\<lambda>x. if x \<in> cbox (a + (b - a) /\<^sub>R (1 + real k)) (b - (b - a) /\<^sub>R (1 + real k)) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1546 |
then g x - f x \<bullet> j else 0)\<bar> \<le> Bg + Bf" for k |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1547 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1548 |
let ?I = "cbox (a + (b - a) /\<^sub>R (1 + real k)) (b - (b - a) /\<^sub>R (1 + real k))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1549 |
have I_int [simp]: "?I \<inter> box a b = ?I" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1550 |
using 1 by (simp add: Int_absorb2) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1551 |
have int_fI: "f integrable_on ?I" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1552 |
apply (rule integrable_subinterval [OF int_f order_refl]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1553 |
using "*" box_subset_cbox by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1554 |
then have "(\<lambda>x. f x \<bullet> j) integrable_on ?I" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1555 |
by (simp add: integrable_component) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1556 |
moreover have "g integrable_on ?I" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1557 |
apply (rule integrable_subinterval [OF int_gab]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1558 |
using "*" box_subset_cbox by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1559 |
moreover |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1560 |
have "\<bar>integral ?I (\<lambda>x. f x \<bullet> j)\<bar> \<le> norm (integral ?I f)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1561 |
by (simp add: Basis_le_norm int_fI \<open>j \<in> Basis\<close>) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1562 |
with 1 I_int have "\<bar>integral ?I (\<lambda>x. f x \<bullet> j)\<bar> \<le> Bf" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1563 |
by (blast intro: order_trans [OF _ Bf]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1564 |
ultimately show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1565 |
apply (simp add: integral_restrict_Int integral_diff) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1566 |
using "*" box_subset_cbox by (blast intro: Bg add_mono order_trans [OF abs_triangle_ineq4]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1567 |
qed |
66408
46cfd348c373
general rationalisation of Analysis
paulson <lp15@cam.ac.uk>
parents:
66304
diff
changeset
|
1568 |
then show "bounded (range (\<lambda>k. integral (box a b) (?\<phi> k)))" |
66296
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1569 |
apply (simp add: bounded_pos) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1570 |
apply (rule_tac x="Bg+Bf" in exI) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1571 |
using \<open>0 < Bf\<close> \<open>0 < Bg\<close> apply auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1572 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1573 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1574 |
then show "(\<lambda>x. g x - f x \<bullet> j) integrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1575 |
by (simp add: integrable_on_open_interval) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1576 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1577 |
ultimately have "(\<lambda>x. f x \<bullet> j) integrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1578 |
by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1579 |
then show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1580 |
apply (rule absolutely_integrable_component_ubound [OF _ absint_g]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1581 |
by (simp add: fg) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1582 |
next |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1583 |
assume gf [rule_format]: "\<forall>x\<in>cbox a b. g x \<le> f x \<bullet> j" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1584 |
have "(\<lambda>x. (f x \<bullet> j)) = (\<lambda>x. ((f x \<bullet> j) - g x) + g x)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1585 |
by simp |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1586 |
moreover have "(\<lambda>x. (f x \<bullet> j - g x) + g x) integrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1587 |
proof (rule Henstock_Kurzweil_Integration.integrable_add [OF _ int_gab]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1588 |
let ?\<phi> = "\<lambda>k x. if x \<in> cbox (a + (b - a) /\<^sub>R (Suc k)) (b - (b - a) /\<^sub>R (Suc k)) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1589 |
then f x \<bullet> j - g x else 0" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1590 |
have "(\<lambda>x. f x \<bullet> j - g x) integrable_on box a b" |
66408
46cfd348c373
general rationalisation of Analysis
paulson <lp15@cam.ac.uk>
parents:
66304
diff
changeset
|
1591 |
proof (rule monotone_convergence_increasing [of ?\<phi>, THEN conjunct1]) |
66296
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1592 |
have *: "cbox (a + (b - a) /\<^sub>R (1 + real k)) (b - (b - a) /\<^sub>R (1 + real k)) \<inter> box a b |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1593 |
= cbox (a + (b - a) /\<^sub>R (1 + real k)) (b - (b - a) /\<^sub>R (1 + real k))" for k |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1594 |
using box_subset_cbox "1" by fastforce |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1595 |
show "?\<phi> k integrable_on box a b" for k |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1596 |
apply (simp add: integrable_restrict_Int integral_restrict_Int *) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1597 |
apply (rule integrable_diff) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1598 |
apply (metis "1" int_f integrable_component of_nat_Suc) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1599 |
apply (rule integrable_on_subcbox [OF int_gab]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1600 |
using "*" box_subset_cbox apply blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1601 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1602 |
have cb12: "cbox (a + (b - a) /\<^sub>R (1 + real k)) (b - (b - a) /\<^sub>R (1 + real k)) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1603 |
\<subseteq> cbox (a + (b - a) /\<^sub>R (2 + real k)) (b - (b - a) /\<^sub>R (2 + real k))" for k |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1604 |
using False content_eq_0 |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1605 |
apply (simp add: subset_box algebra_simps) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1606 |
apply (simp add: divide_simps) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1607 |
apply (fastforce simp: field_simps) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1608 |
done |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1609 |
show "?\<phi> k x \<le> ?\<phi> (Suc k) x" if "x \<in> box a b" for k x |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1610 |
using cb12 box_subset_cbox that by (force simp: intro!: gf) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1611 |
show "(\<lambda>k. ?\<phi> k x) \<longlonglongrightarrow> f x \<bullet> j - g x" if x: "x \<in> box a b" for x |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1612 |
proof (rule Lim_eventually) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1613 |
obtain N::nat where N: "\<And>k. k \<ge> N \<Longrightarrow> x \<in> cbox (a + (b - a) /\<^sub>R real k) (b - (b - a) /\<^sub>R real k)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1614 |
using getN [OF x] by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1615 |
show "\<forall>\<^sub>F k in sequentially. ?\<phi> k x = f x \<bullet> j - g x" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1616 |
proof |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1617 |
fix k::nat assume "N \<le> k" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1618 |
have "x \<in> cbox (a + (b - a) /\<^sub>R (Suc k)) (b - (b - a) /\<^sub>R (Suc k))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1619 |
by (metis \<open>N \<le> k\<close> le_Suc_eq N) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1620 |
then show "?\<phi> k x = f x \<bullet> j - g x" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1621 |
by simp |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1622 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1623 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1624 |
have "\<bar>integral (box a b) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1625 |
(\<lambda>x. if x \<in> cbox (a + (b - a) /\<^sub>R (1 + real k)) (b - (b - a) /\<^sub>R (1 + real k)) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1626 |
then f x \<bullet> j - g x else 0)\<bar> \<le> Bf + Bg" for k |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1627 |
proof - |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1628 |
let ?I = "cbox (a + (b - a) /\<^sub>R (1 + real k)) (b - (b - a) /\<^sub>R (1 + real k))" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1629 |
have I_int [simp]: "?I \<inter> box a b = ?I" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1630 |
using 1 by (simp add: Int_absorb2) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1631 |
have int_fI: "f integrable_on ?I" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1632 |
apply (rule integrable_subinterval [OF int_f order_refl]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1633 |
using "*" box_subset_cbox by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1634 |
then have "(\<lambda>x. f x \<bullet> j) integrable_on ?I" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1635 |
by (simp add: integrable_component) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1636 |
moreover have "g integrable_on ?I" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1637 |
apply (rule integrable_subinterval [OF int_gab]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1638 |
using "*" box_subset_cbox by blast |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1639 |
moreover |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1640 |
have "\<bar>integral ?I (\<lambda>x. f x \<bullet> j)\<bar> \<le> norm (integral ?I f)" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1641 |
by (simp add: Basis_le_norm int_fI \<open>j \<in> Basis\<close>) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1642 |
with 1 I_int have "\<bar>integral ?I (\<lambda>x. f x \<bullet> j)\<bar> \<le> Bf" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1643 |
by (blast intro: order_trans [OF _ Bf]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1644 |
ultimately show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1645 |
apply (simp add: integral_restrict_Int integral_diff) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1646 |
using "*" box_subset_cbox by (blast intro: Bg add_mono order_trans [OF abs_triangle_ineq4]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1647 |
qed |
66408
46cfd348c373
general rationalisation of Analysis
paulson <lp15@cam.ac.uk>
parents:
66304
diff
changeset
|
1648 |
then show "bounded (range (\<lambda>k. integral (box a b) (?\<phi> k)))" |
66296
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1649 |
apply (simp add: bounded_pos) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1650 |
apply (rule_tac x="Bf+Bg" in exI) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1651 |
using \<open>0 < Bf\<close> \<open>0 < Bg\<close> by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1652 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1653 |
then show "(\<lambda>x. f x \<bullet> j - g x) integrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1654 |
by (simp add: integrable_on_open_interval) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1655 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1656 |
ultimately have "(\<lambda>x. f x \<bullet> j) integrable_on cbox a b" |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1657 |
by auto |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1658 |
then show ?thesis |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1659 |
apply (rule absolutely_integrable_component_lbound [OF absint_g]) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1660 |
by (simp add: gf) |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1661 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1662 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1663 |
qed |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1664 |
|
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1665 |
end |
33a47f2d9edc
New theory of Equiintegrability / Continuity of the indefinite integral / improper integration
paulson <lp15@cam.ac.uk>
parents:
diff
changeset
|
1666 |