src/HOL/Analysis/Lebesgue_Integral_Substitution.thy
author nipkow
Thu, 31 Aug 2017 09:50:11 +0200
changeset 66566 a14bbbaa628d
parent 66320 9786b06c7b5a
child 67976 75b94eb58c3d
permissions -rw-r--r--
merged
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
63627
6ddb43c6b711 rename HOL-Multivariate_Analysis to HOL-Analysis.
hoelzl
parents: 63626
diff changeset
     1
(*  Title:      HOL/Analysis/Lebesgue_Integral_Substitution.thy
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     2
    Author:     Manuel Eberl
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     3
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     4
    Provides lemmas for integration by substitution for the basic integral types.
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     5
    Note that the substitution function must have a nonnegative derivative.
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     6
    This could probably be weakened somehow.
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     7
*)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     8
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
     9
section \<open>Integration by Substition\<close>
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    10
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    11
theory Lebesgue_Integral_Substitution
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    12
imports Interval_Integral
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    13
begin
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    14
66317
a9bb833ee971 more tidying up
paulson
parents: 63627
diff changeset
    15
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    16
lemma nn_integral_substitution_aux:
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    17
  fixes f :: "real \<Rightarrow> ennreal"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    18
  assumes Mf: "f \<in> borel_measurable borel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    19
  assumes nonnegf: "\<And>x. f x \<ge> 0"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    20
  assumes derivg: "\<And>x. x \<in> {a..b} \<Longrightarrow> (g has_real_derivative g' x) (at x)"
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    21
  assumes contg': "continuous_on {a..b} g'"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    22
  assumes derivg_nonneg: "\<And>x. x \<in> {a..b} \<Longrightarrow> g' x \<ge> 0"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    23
  assumes "a < b"
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    24
  shows "(\<integral>\<^sup>+x. f x * indicator {g a..g b} x \<partial>lborel) =
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    25
             (\<integral>\<^sup>+x. f (g x) * g' x * indicator {a..b} x \<partial>lborel)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    26
proof-
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
    27
  from \<open>a < b\<close> have [simp]: "a \<le> b" by simp
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    28
  from derivg have contg: "continuous_on {a..b} g" by (rule has_real_derivative_imp_continuous_on)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    29
  from this and contg' have Mg: "set_borel_measurable borel {a..b} g" and
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    30
                             Mg': "set_borel_measurable borel {a..b} g'"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    31
      by (simp_all only: set_measurable_continuous_on_ivl)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    32
  from derivg have derivg': "\<And>x. x \<in> {a..b} \<Longrightarrow> (g has_vector_derivative g' x) (at x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    33
    by (simp only: has_field_derivative_iff_has_vector_derivative)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    34
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    35
  have real_ind[simp]: "\<And>A x. enn2real (indicator A x) = indicator A x"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    36
      by (auto split: split_indicator)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    37
  have ennreal_ind[simp]: "\<And>A x. ennreal (indicator A x) = indicator A x"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    38
      by (auto split: split_indicator)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    39
  have [simp]: "\<And>x A. indicator A (g x) = indicator (g -` A) x"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    40
      by (auto split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    41
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    42
  from derivg derivg_nonneg have monog: "\<And>x y. a \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<le> b \<Longrightarrow> g x \<le> g y"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    43
    by (rule deriv_nonneg_imp_mono) simp_all
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    44
  with monog have [simp]: "g a \<le> g b" by (auto intro: mono_onD)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    45
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    46
  show ?thesis
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    47
  proof (induction rule: borel_measurable_induct[OF Mf, case_names cong set mult add sup])
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    48
    case (cong f1 f2)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    49
    from cong.hyps(3) have "f1 = f2" by auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    50
    with cong show ?case by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    51
  next
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    52
    case (set A)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    53
    from set.hyps show ?case
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    54
    proof (induction rule: borel_set_induct)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    55
      case empty
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    56
      thus ?case by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    57
    next
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    58
      case (interval c d)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    59
      {
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    60
        fix u v :: real assume asm: "{u..v} \<subseteq> {g a..g b}" "u \<le> v"
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    61
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    62
        obtain u' v' where u'v': "{a..b} \<inter> g-`{u..v} = {u'..v'}" "u' \<le> v'" "g u' = u" "g v' = v"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    63
             using asm by (rule_tac continuous_interval_vimage_Int[OF contg monog, of u v]) simp_all
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    64
        hence "{u'..v'} \<subseteq> {a..b}" "{u'..v'} \<subseteq> g -` {u..v}" by blast+
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    65
        with u'v'(2) have "u' \<in> g -` {u..v}" "v' \<in> g -` {u..v}" by auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    66
        from u'v'(1) have [simp]: "{a..b} \<inter> g -` {u..v} \<in> sets borel" by simp
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    67
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    68
        have A: "continuous_on {min u' v'..max u' v'} g'"
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    69
            by (simp only: u'v' max_absorb2 min_absorb1)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    70
               (intro continuous_on_subset[OF contg'], insert u'v', auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    71
        have "\<And>x. x \<in> {u'..v'} \<Longrightarrow> (g has_real_derivative g' x) (at x within {u'..v'})"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
    72
           using asm by (intro has_field_derivative_subset[OF derivg] set_mp[OF \<open>{u'..v'} \<subseteq> {a..b}\<close>]) auto
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    73
        hence B: "\<And>x. min u' v' \<le> x \<Longrightarrow> x \<le> max u' v' \<Longrightarrow>
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    74
                      (g has_vector_derivative g' x) (at x within {min u' v'..max u' v'})"
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    75
            by (simp only: u'v' max_absorb2 min_absorb1)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    76
               (auto simp: has_field_derivative_iff_has_vector_derivative)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    77
        have "integrable lborel (\<lambda>x. indicator ({a..b} \<inter> g -` {u..v}) x *\<^sub>R g' x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    78
          by (rule set_integrable_subset[OF borel_integrable_atLeastAtMost'[OF contg']]) simp_all
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    79
        hence "(\<integral>\<^sup>+x. ennreal (g' x) * indicator ({a..b} \<inter> g-` {u..v}) x \<partial>lborel) =
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    80
                   LBINT x:{a..b} \<inter> g-`{u..v}. g' x"
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    81
          by (subst nn_integral_eq_integral[symmetric])
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    82
             (auto intro!: derivg_nonneg nn_integral_cong split: split_indicator)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    83
        also from interval_integral_FTC_finite[OF A B]
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    84
            have "LBINT x:{a..b} \<inter> g-`{u..v}. g' x = v - u"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
    85
                by (simp add: u'v' interval_integral_Icc \<open>u \<le> v\<close>)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    86
        finally have "(\<integral>\<^sup>+ x. ennreal (g' x) * indicator ({a..b} \<inter> g -` {u..v}) x \<partial>lborel) =
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    87
                           ennreal (v - u)" .
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    88
      } note A = this
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    89
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    90
      have "(\<integral>\<^sup>+x. indicator {c..d} (g x) * ennreal (g' x) * indicator {a..b} x \<partial>lborel) =
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    91
               (\<integral>\<^sup>+ x. ennreal (g' x) * indicator ({a..b} \<inter> g -` {c..d}) x \<partial>lborel)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    92
        by (intro nn_integral_cong) (simp split: split_indicator)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    93
      also have "{a..b} \<inter> g-`{c..d} = {a..b} \<inter> g-`{max (g a) c..min (g b) d}"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
    94
        using \<open>a \<le> b\<close> \<open>c \<le> d\<close>
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    95
        by (auto intro!: monog intro: order.trans)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
    96
      also have "(\<integral>\<^sup>+ x. ennreal (g' x) * indicator ... x \<partial>lborel) =
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    97
        (if max (g a) c \<le> min (g b) d then min (g b) d - max (g a) c else 0)"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
    98
         using \<open>c \<le> d\<close> by (simp add: A)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    99
      also have "... = (\<integral>\<^sup>+ x. indicator ({g a..g b} \<inter> {c..d}) x \<partial>lborel)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   100
        by (subst nn_integral_indicator) (auto intro!: measurable_sets Mg simp:)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   101
      also have "... = (\<integral>\<^sup>+ x. indicator {c..d} x * indicator {g a..g b} x \<partial>lborel)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   102
        by (intro nn_integral_cong) (auto split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   103
      finally show ?case ..
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   104
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   105
      next
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   106
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   107
      case (compl A)
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   108
      note \<open>A \<in> sets borel\<close>[measurable]
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   109
      from emeasure_mono[of "A \<inter> {g a..g b}" "{g a..g b}" lborel]
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   110
      have [simp]: "emeasure lborel (A \<inter> {g a..g b}) \<noteq> top" by (auto simp: top_unique)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   111
      have [simp]: "g -` A \<inter> {a..b} \<in> sets borel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   112
        by (rule set_borel_measurable_sets[OF Mg]) auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   113
      have [simp]: "g -` (-A) \<inter> {a..b} \<in> sets borel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   114
        by (rule set_borel_measurable_sets[OF Mg]) auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   115
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   116
      have "(\<integral>\<^sup>+x. indicator (-A) x * indicator {g a..g b} x \<partial>lborel) =
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   117
                (\<integral>\<^sup>+x. indicator (-A \<inter> {g a..g b}) x \<partial>lborel)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   118
        by (rule nn_integral_cong) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   119
      also from compl have "... = emeasure lborel ({g a..g b} - A)" using derivg_nonneg
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   120
        by (simp add: vimage_Compl diff_eq Int_commute[of "-A"])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   121
      also have "{g a..g b} - A = {g a..g b} - A \<inter> {g a..g b}" by blast
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   122
      also have "emeasure lborel ... = g b - g a - emeasure lborel (A \<inter> {g a..g b})"
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   123
             using \<open>A \<in> sets borel\<close> by (subst emeasure_Diff) (auto simp: )
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   124
     also have "emeasure lborel (A \<inter> {g a..g b}) =
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   125
                    \<integral>\<^sup>+x. indicator A x * indicator {g a..g b} x \<partial>lborel"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   126
       using \<open>A \<in> sets borel\<close>
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   127
       by (subst nn_integral_indicator[symmetric], simp, intro nn_integral_cong)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   128
          (simp split: split_indicator)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   129
      also have "... = \<integral>\<^sup>+ x. indicator (g-`A \<inter> {a..b}) x * ennreal (g' x * indicator {a..b} x) \<partial>lborel" (is "_ = ?I")
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   130
        by (subst compl.IH, intro nn_integral_cong) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   131
      also have "g b - g a = LBINT x:{a..b}. g' x" using derivg'
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   132
        by (intro integral_FTC_atLeastAtMost[symmetric])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   133
           (auto intro: continuous_on_subset[OF contg'] has_field_derivative_subset[OF derivg]
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   134
                 has_vector_derivative_at_within)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   135
      also have "ennreal ... = \<integral>\<^sup>+ x. g' x * indicator {a..b} x \<partial>lborel"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   136
        using borel_integrable_atLeastAtMost'[OF contg']
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   137
        by (subst nn_integral_eq_integral)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   138
           (simp_all add: mult.commute derivg_nonneg split: split_indicator)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   139
      also have Mg'': "(\<lambda>x. indicator (g -` A \<inter> {a..b}) x * ennreal (g' x * indicator {a..b} x))
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   140
                            \<in> borel_measurable borel" using Mg'
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   141
        by (intro borel_measurable_times_ennreal borel_measurable_indicator)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   142
           (simp_all add: mult.commute)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   143
      have le: "(\<integral>\<^sup>+x. indicator (g-`A \<inter> {a..b}) x * ennreal (g' x * indicator {a..b} x) \<partial>lborel) \<le>
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   144
                        (\<integral>\<^sup>+x. ennreal (g' x) * indicator {a..b} x \<partial>lborel)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   145
         by (intro nn_integral_mono) (simp split: split_indicator add: derivg_nonneg)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   146
      note integrable = borel_integrable_atLeastAtMost'[OF contg']
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   147
      with le have notinf: "(\<integral>\<^sup>+x. indicator (g-`A \<inter> {a..b}) x * ennreal (g' x * indicator {a..b} x) \<partial>lborel) \<noteq> top"
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   148
          by (auto simp: real_integrable_def nn_integral_set_ennreal mult.commute top_unique)
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   149
      have "(\<integral>\<^sup>+ x. g' x * indicator {a..b} x \<partial>lborel) - ?I =
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   150
                  \<integral>\<^sup>+ x. ennreal (g' x * indicator {a..b} x) -
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   151
                        indicator (g -` A \<inter> {a..b}) x * ennreal (g' x * indicator {a..b} x) \<partial>lborel"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   152
        apply (intro nn_integral_diff[symmetric])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   153
        apply (insert Mg', simp add: mult.commute) []
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   154
        apply (insert Mg'', simp) []
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   155
        apply (simp split: split_indicator add: derivg_nonneg)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   156
        apply (rule notinf)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   157
        apply (simp split: split_indicator add: derivg_nonneg)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   158
        done
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   159
      also have "... = \<integral>\<^sup>+ x. indicator (-A) (g x) * ennreal (g' x) * indicator {a..b} x \<partial>lborel"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   160
        by (intro nn_integral_cong) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   161
      finally show ?case .
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   162
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   163
    next
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   164
      case (union f)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   165
      then have [simp]: "\<And>i. {a..b} \<inter> g -` f i \<in> sets borel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   166
        by (subst Int_commute, intro set_borel_measurable_sets[OF Mg]) auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   167
      have "g -` (\<Union>i. f i) \<inter> {a..b} = (\<Union>i. {a..b} \<inter> g -` f i)" by auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   168
      hence "g -` (\<Union>i. f i) \<inter> {a..b} \<in> sets borel" by (auto simp del: UN_simps)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   169
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   170
      have "(\<integral>\<^sup>+x. indicator (\<Union>i. f i) x * indicator {g a..g b} x \<partial>lborel) =
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   171
                \<integral>\<^sup>+x. indicator (\<Union>i. {g a..g b} \<inter> f i) x \<partial>lborel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   172
          by (intro nn_integral_cong) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   173
      also from union have "... = emeasure lborel (\<Union>i. {g a..g b} \<inter> f i)" by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   174
      also from union have "... = (\<Sum>i. emeasure lborel ({g a..g b} \<inter> f i))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   175
        by (intro suminf_emeasure[symmetric]) (auto simp: disjoint_family_on_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   176
      also from union have "... = (\<Sum>i. \<integral>\<^sup>+x. indicator ({g a..g b} \<inter> f i) x \<partial>lborel)" by simp
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   177
      also have "(\<lambda>i. \<integral>\<^sup>+x. indicator ({g a..g b} \<inter> f i) x \<partial>lborel) =
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   178
                           (\<lambda>i. \<integral>\<^sup>+x. indicator (f i) x * indicator {g a..g b} x \<partial>lborel)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   179
        by (intro ext nn_integral_cong) (simp split: split_indicator)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   180
      also from union.IH have "(\<Sum>i. \<integral>\<^sup>+x. indicator (f i) x * indicator {g a..g b} x \<partial>lborel) =
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   181
          (\<Sum>i. \<integral>\<^sup>+ x. indicator (f i) (g x) * ennreal (g' x) * indicator {a..b} x \<partial>lborel)" by simp
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   182
      also have "(\<lambda>i. \<integral>\<^sup>+ x. indicator (f i) (g x) * ennreal (g' x) * indicator {a..b} x \<partial>lborel) =
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   183
                         (\<lambda>i. \<integral>\<^sup>+ x. ennreal (g' x * indicator {a..b} x) * indicator ({a..b} \<inter> g -` f i) x \<partial>lborel)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   184
        by (intro ext nn_integral_cong) (simp split: split_indicator)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   185
      also have "(\<Sum>i. ... i) = \<integral>\<^sup>+ x. (\<Sum>i. ennreal (g' x * indicator {a..b} x) * indicator ({a..b} \<inter> g -` f i) x) \<partial>lborel"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   186
        using Mg'
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   187
        apply (intro nn_integral_suminf[symmetric])
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   188
        apply (rule borel_measurable_times_ennreal, simp add: mult.commute)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   189
        apply (rule borel_measurable_indicator, subst sets_lborel)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   190
        apply (simp_all split: split_indicator add: derivg_nonneg)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   191
        done
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   192
      also have "(\<lambda>x i. ennreal (g' x * indicator {a..b} x) * indicator ({a..b} \<inter> g -` f i) x) =
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   193
                      (\<lambda>x i. ennreal (g' x * indicator {a..b} x) * indicator (g -` f i) x)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   194
        by (intro ext) (simp split: split_indicator)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   195
      also have "(\<integral>\<^sup>+ x. (\<Sum>i. ennreal (g' x * indicator {a..b} x) * indicator (g -` f i) x) \<partial>lborel) =
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   196
                     \<integral>\<^sup>+ x. ennreal (g' x * indicator {a..b} x) * (\<Sum>i. indicator (g -` f i) x) \<partial>lborel"
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   197
        by (intro nn_integral_cong) (auto split: split_indicator simp: derivg_nonneg)
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   198
      also from union have "(\<lambda>x. \<Sum>i. indicator (g -` f i) x :: ennreal) = (\<lambda>x. indicator (\<Union>i. g -` f i) x)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   199
        by (intro ext suminf_indicator) (auto simp: disjoint_family_on_def)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   200
      also have "(\<integral>\<^sup>+x. ennreal (g' x * indicator {a..b} x) * ... x \<partial>lborel) =
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   201
                    (\<integral>\<^sup>+x. indicator (\<Union>i. f i) (g x) * ennreal (g' x) * indicator {a..b} x \<partial>lborel)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   202
       by (intro nn_integral_cong) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   203
      finally show ?case .
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   204
  qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   205
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   206
next
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   207
  case (mult f c)
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   208
    note Mf[measurable] = \<open>f \<in> borel_measurable borel\<close>
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   209
    let ?I = "indicator {a..b}"
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   210
    have "(\<lambda>x. f (g x * ?I x) * ennreal (g' x * ?I x)) \<in> borel_measurable borel" using Mg Mg'
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   211
      by (intro borel_measurable_times_ennreal measurable_compose[OF _ Mf])
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   212
         (simp_all add: mult.commute)
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   213
    also have "(\<lambda>x. f (g x * ?I x) * ennreal (g' x * ?I x)) = (\<lambda>x. f (g x) * ennreal (g' x) * ?I x)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   214
      by (intro ext) (simp split: split_indicator)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   215
    finally have Mf': "(\<lambda>x. f (g x) * ennreal (g' x) * ?I x) \<in> borel_measurable borel" .
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   216
    with mult show ?case
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   217
      by (subst (1 2 3) mult_ac, subst (1 2) nn_integral_cmult) (simp_all add: mult_ac)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   218
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   219
next
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   220
  case (add f2 f1)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   221
    let ?I = "indicator {a..b}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   222
    {
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   223
      fix f :: "real \<Rightarrow> ennreal" assume Mf: "f \<in> borel_measurable borel"
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   224
      have "(\<lambda>x. f (g x * ?I x) * ennreal (g' x * ?I x)) \<in> borel_measurable borel" using Mg Mg'
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   225
        by (intro borel_measurable_times_ennreal measurable_compose[OF _ Mf])
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   226
           (simp_all add:  mult.commute)
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   227
      also have "(\<lambda>x. f (g x * ?I x) * ennreal (g' x * ?I x)) = (\<lambda>x. f (g x) * ennreal (g' x) * ?I x)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   228
        by (intro ext) (simp split: split_indicator)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   229
      finally have "(\<lambda>x. f (g x) * ennreal (g' x) * ?I x) \<in> borel_measurable borel" .
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   230
    } note Mf' = this[OF \<open>f1 \<in> borel_measurable borel\<close>] this[OF \<open>f2 \<in> borel_measurable borel\<close>]
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   231
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   232
    have "(\<integral>\<^sup>+ x. (f1 x + f2 x) * indicator {g a..g b} x \<partial>lborel) =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   233
             (\<integral>\<^sup>+ x. f1 x * indicator {g a..g b} x + f2 x * indicator {g a..g b} x \<partial>lborel)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   234
      by (intro nn_integral_cong) (simp split: split_indicator)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   235
    also from add have "... = (\<integral>\<^sup>+ x. f1 (g x) * ennreal (g' x) * indicator {a..b} x \<partial>lborel) +
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   236
                                (\<integral>\<^sup>+ x. f2 (g x) * ennreal (g' x) * indicator {a..b} x \<partial>lborel)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   237
      by (simp_all add: nn_integral_add)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   238
    also from add have "... = (\<integral>\<^sup>+ x. f1 (g x) * ennreal (g' x) * indicator {a..b} x +
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   239
                                      f2 (g x) * ennreal (g' x) * indicator {a..b} x \<partial>lborel)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   240
      by (intro nn_integral_add[symmetric])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   241
         (auto simp add: Mf' derivg_nonneg split: split_indicator)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   242
    also have "... = \<integral>\<^sup>+ x. (f1 (g x) + f2 (g x)) * ennreal (g' x) * indicator {a..b} x \<partial>lborel"
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   243
      by (intro nn_integral_cong) (simp split: split_indicator add: distrib_right)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   244
    finally show ?case .
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   245
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   246
next
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   247
  case (sup F)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   248
  {
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   249
    fix i
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   250
    let ?I = "indicator {a..b}"
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   251
    have "(\<lambda>x. F i (g x * ?I x) * ennreal (g' x * ?I x)) \<in> borel_measurable borel" using Mg Mg'
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   252
      by (rule_tac borel_measurable_times_ennreal, rule_tac measurable_compose[OF _ sup.hyps(1)])
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   253
         (simp_all add: mult.commute)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   254
    also have "(\<lambda>x. F i (g x * ?I x) * ennreal (g' x * ?I x)) = (\<lambda>x. F i (g x) * ennreal (g' x) * ?I x)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   255
      by (intro ext) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   256
     finally have "... \<in> borel_measurable borel" .
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   257
  } note Mf' = this
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   258
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   259
    have "(\<integral>\<^sup>+x. (SUP i. F i x) * indicator {g a..g b} x \<partial>lborel) =
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   260
               \<integral>\<^sup>+x. (SUP i. F i x* indicator {g a..g b} x) \<partial>lborel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   261
      by (intro nn_integral_cong) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   262
    also from sup have "... = (SUP i. \<integral>\<^sup>+x. F i x* indicator {g a..g b} x \<partial>lborel)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   263
      by (intro nn_integral_monotone_convergence_SUP)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   264
         (auto simp: incseq_def le_fun_def split: split_indicator)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   265
    also from sup have "... = (SUP i. \<integral>\<^sup>+x. F i (g x) * ennreal (g' x) * indicator {a..b} x \<partial>lborel)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   266
      by simp
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   267
    also from sup have "... =  \<integral>\<^sup>+x. (SUP i. F i (g x) * ennreal (g' x) * indicator {a..b} x) \<partial>lborel"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   268
      by (intro nn_integral_monotone_convergence_SUP[symmetric])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   269
         (auto simp: incseq_def le_fun_def derivg_nonneg Mf' split: split_indicator
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   270
               intro!: mult_right_mono)
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   271
    also from sup have "... = \<integral>\<^sup>+x. (SUP i. F i (g x)) * ennreal (g' x) * indicator {a..b} x \<partial>lborel"
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   272
      by (subst mult.assoc, subst mult.commute, subst SUP_mult_left_ennreal)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   273
         (auto split: split_indicator simp: derivg_nonneg mult_ac)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   274
    finally show ?case by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   275
  qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   276
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   277
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   278
lemma nn_integral_substitution:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   279
  fixes f :: "real \<Rightarrow> real"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   280
  assumes Mf[measurable]: "set_borel_measurable borel {g a..g b} f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   281
  assumes derivg: "\<And>x. x \<in> {a..b} \<Longrightarrow> (g has_real_derivative g' x) (at x)"
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   282
  assumes contg': "continuous_on {a..b} g'"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   283
  assumes derivg_nonneg: "\<And>x. x \<in> {a..b} \<Longrightarrow> g' x \<ge> 0"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   284
  assumes "a \<le> b"
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   285
  shows "(\<integral>\<^sup>+x. f x * indicator {g a..g b} x \<partial>lborel) =
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   286
             (\<integral>\<^sup>+x. f (g x) * g' x * indicator {a..b} x \<partial>lborel)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   287
proof (cases "a = b")
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   288
  assume "a \<noteq> b"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   289
  with \<open>a \<le> b\<close> have "a < b" by auto
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   290
  let ?f' = "\<lambda>x. f x * indicator {g a..g b} x"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   291
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   292
  from derivg derivg_nonneg have monog: "\<And>x y. a \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<le> b \<Longrightarrow> g x \<le> g y"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   293
    by (rule deriv_nonneg_imp_mono) simp_all
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   294
  have bounds: "\<And>x. x \<ge> a \<Longrightarrow> x \<le> b \<Longrightarrow> g x \<ge> g a" "\<And>x. x \<ge> a \<Longrightarrow> x \<le> b \<Longrightarrow> g x \<le> g b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   295
    by (auto intro: monog)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   296
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   297
  from derivg_nonneg have nonneg:
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   298
    "\<And>f x. x \<ge> a \<Longrightarrow> x \<le> b \<Longrightarrow> g' x \<noteq> 0 \<Longrightarrow> f x * ennreal (g' x) \<ge> 0 \<Longrightarrow> f x \<ge> 0"
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   299
    by (force simp: field_simps)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   300
  have nonneg': "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> \<not> 0 \<le> f (g x) \<Longrightarrow> 0 \<le> f (g x) * g' x \<Longrightarrow> g' x = 0"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   301
    by (metis atLeastAtMost_iff derivg_nonneg eq_iff mult_eq_0_iff mult_le_0_iff)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   302
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   303
  have "(\<integral>\<^sup>+x. f x * indicator {g a..g b} x \<partial>lborel) =
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   304
            (\<integral>\<^sup>+x. ennreal (?f' x) * indicator {g a..g b} x \<partial>lborel)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   305
    by (intro nn_integral_cong)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   306
       (auto split: split_indicator split_max simp: zero_ennreal.rep_eq ennreal_neg)
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   307
  also have "... = \<integral>\<^sup>+ x. ?f' (g x) * ennreal (g' x) * indicator {a..b} x \<partial>lborel" using Mf
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   308
    by (subst nn_integral_substitution_aux[OF _ _ derivg contg' derivg_nonneg \<open>a < b\<close>])
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   309
       (auto simp add: mult.commute)
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   310
  also have "... = \<integral>\<^sup>+ x. f (g x) * ennreal (g' x) * indicator {a..b} x \<partial>lborel"
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   311
    by (intro nn_integral_cong) (auto split: split_indicator simp: max_def dest: bounds)
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   312
  also have "... = \<integral>\<^sup>+x. ennreal (f (g x) * g' x * indicator {a..b} x) \<partial>lborel"
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   313
    by (intro nn_integral_cong) (auto simp: mult.commute derivg_nonneg ennreal_mult' split: split_indicator)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   314
  finally show ?thesis .
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   315
qed auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   316
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   317
lemma integral_substitution:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   318
  assumes integrable: "set_integrable lborel {g a..g b} f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   319
  assumes derivg: "\<And>x. x \<in> {a..b} \<Longrightarrow> (g has_real_derivative g' x) (at x)"
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   320
  assumes contg': "continuous_on {a..b} g'"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   321
  assumes derivg_nonneg: "\<And>x. x \<in> {a..b} \<Longrightarrow> g' x \<ge> 0"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   322
  assumes "a \<le> b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   323
  shows "set_integrable lborel {a..b} (\<lambda>x. f (g x) * g' x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   324
    and "(LBINT x. f x * indicator {g a..g b} x) = (LBINT x. f (g x) * g' x * indicator {a..b} x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   325
proof-
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   326
  from derivg have contg: "continuous_on {a..b} g" by (rule has_real_derivative_imp_continuous_on)
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 62975
diff changeset
   327
  with contg' have Mg: "set_borel_measurable borel {a..b} g"
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 62975
diff changeset
   328
    and Mg': "set_borel_measurable borel {a..b} g'"
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 62975
diff changeset
   329
    by (simp_all only: set_measurable_continuous_on_ivl)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   330
  from derivg derivg_nonneg have monog: "\<And>x y. a \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<le> b \<Longrightarrow> g x \<le> g y"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   331
    by (rule deriv_nonneg_imp_mono) simp_all
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   332
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   333
  have "(\<lambda>x. ennreal (f x) * indicator {g a..g b} x) =
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   334
           (\<lambda>x. ennreal (f x * indicator {g a..g b} x))"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   335
    by (intro ext) (simp split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   336
  with integrable have M1: "(\<lambda>x. f x * indicator {g a..g b} x) \<in> borel_measurable borel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   337
    unfolding real_integrable_def by (force simp: mult.commute)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   338
  from integrable have M2: "(\<lambda>x. -f x * indicator {g a..g b} x) \<in> borel_measurable borel"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   339
    unfolding real_integrable_def by (force simp: mult.commute)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   340
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   341
  have "LBINT x. (f x :: real) * indicator {g a..g b} x =
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   342
          enn2real (\<integral>\<^sup>+ x. ennreal (f x) * indicator {g a..g b} x \<partial>lborel) -
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   343
          enn2real (\<integral>\<^sup>+ x. ennreal (- (f x)) * indicator {g a..g b} x \<partial>lborel)" using integrable
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   344
    by (subst real_lebesgue_integral_def) (simp_all add: nn_integral_set_ennreal mult.commute)
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 62975
diff changeset
   345
  also have *: "(\<integral>\<^sup>+x. ennreal (f x) * indicator {g a..g b} x \<partial>lborel) =
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 62975
diff changeset
   346
      (\<integral>\<^sup>+x. ennreal (f x * indicator {g a..g b} x) \<partial>lborel)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   347
    by (intro nn_integral_cong) (simp split: split_indicator)
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 62975
diff changeset
   348
  also from M1 * have A: "(\<integral>\<^sup>+ x. ennreal (f x * indicator {g a..g b} x) \<partial>lborel) =
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   349
                            (\<integral>\<^sup>+ x. ennreal (f (g x) * g' x * indicator {a..b} x) \<partial>lborel)"
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   350
    by (subst nn_integral_substitution[OF _ derivg contg' derivg_nonneg \<open>a \<le> b\<close>])
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   351
       (auto simp: nn_integral_set_ennreal mult.commute)
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 62975
diff changeset
   352
  also have **: "(\<integral>\<^sup>+ x. ennreal (- (f x)) * indicator {g a..g b} x \<partial>lborel) =
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 62975
diff changeset
   353
      (\<integral>\<^sup>+ x. ennreal (- (f x) * indicator {g a..g b} x) \<partial>lborel)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   354
    by (intro nn_integral_cong) (simp split: split_indicator)
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 62975
diff changeset
   355
  also from M2 ** have B: "(\<integral>\<^sup>+ x. ennreal (- (f x) * indicator {g a..g b} x) \<partial>lborel) =
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 62975
diff changeset
   356
        (\<integral>\<^sup>+ x. ennreal (- (f (g x)) * g' x * indicator {a..b} x) \<partial>lborel)"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   357
    by (subst nn_integral_substitution[OF _ derivg contg' derivg_nonneg \<open>a \<le> b\<close>])
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   358
       (auto simp: nn_integral_set_ennreal mult.commute)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   359
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   360
  also {
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   361
    from integrable have Mf: "set_borel_measurable borel {g a..g b} f"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   362
      unfolding real_integrable_def by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   363
    from borel_measurable_times[OF measurable_compose[OF Mg Mf] Mg']
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   364
      have "(\<lambda>x. f (g x * indicator {a..b} x) * indicator {g a..g b} (g x * indicator {a..b} x) *
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   365
                     (g' x * indicator {a..b} x)) \<in> borel_measurable borel"  (is "?f \<in> _")
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   366
      by (simp add: mult.commute)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   367
    also have "?f = (\<lambda>x. f (g x) * g' x * indicator {a..b} x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   368
      using monog by (intro ext) (auto split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   369
    finally show "set_integrable lborel {a..b} (\<lambda>x. f (g x) * g' x)"
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   370
      using A B integrable unfolding real_integrable_def
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   371
      by (simp_all add: nn_integral_set_ennreal mult.commute)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   372
  } note integrable' = this
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   373
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   374
  have "enn2real (\<integral>\<^sup>+ x. ennreal (f (g x) * g' x * indicator {a..b} x) \<partial>lborel) -
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   375
                  enn2real (\<integral>\<^sup>+ x. ennreal (-f (g x) * g' x * indicator {a..b} x) \<partial>lborel) =
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   376
                (LBINT x. f (g x) * g' x * indicator {a..b} x)" using integrable'
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   377
    by (subst real_lebesgue_integral_def) (simp_all add: field_simps)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   378
  finally show "(LBINT x. f x * indicator {g a..g b} x) =
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   379
                     (LBINT x. f (g x) * g' x * indicator {a..b} x)" .
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   380
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   381
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   382
lemma interval_integral_substitution:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   383
  assumes integrable: "set_integrable lborel {g a..g b} f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   384
  assumes derivg: "\<And>x. x \<in> {a..b} \<Longrightarrow> (g has_real_derivative g' x) (at x)"
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62083
diff changeset
   385
  assumes contg': "continuous_on {a..b} g'"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   386
  assumes derivg_nonneg: "\<And>x. x \<in> {a..b} \<Longrightarrow> g' x \<ge> 0"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   387
  assumes "a \<le> b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   388
  shows "set_integrable lborel {a..b} (\<lambda>x. f (g x) * g' x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   389
    and "(LBINT x=g a..g b. f x) = (LBINT x=a..b. f (g x) * g' x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   390
  apply (rule integral_substitution[OF assms], simp, simp)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   391
  apply (subst (1 2) interval_integral_Icc, fact)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   392
  apply (rule deriv_nonneg_imp_mono[OF derivg derivg_nonneg], simp, simp, fact)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   393
  using integral_substitution(2)[OF assms]
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   394
  apply (simp add: mult.commute)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   395
  done
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   396
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   397
lemma set_borel_integrable_singleton[simp]:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   398
  "set_integrable lborel {x} (f :: real \<Rightarrow> real)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   399
  by (subst integrable_discrete_difference[where X="{x}" and g="\<lambda>_. 0"]) auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   400
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   401
end