author | nipkow |
Thu, 31 Aug 2017 09:50:11 +0200 | |
changeset 66566 | a14bbbaa628d |
parent 66394 | 32084d7e6b59 |
child 66589 | b884c42694e0 |
permissions | -rw-r--r-- |
65812 | 1 |
(* Title: HOL/Factoiral.thy |
2 |
Author: Jacques D. Fleuriot |
|
3 |
Author: Lawrence C Paulson |
|
4 |
Author: Jeremy Avigad |
|
5 |
Author: Chaitanya Mangla |
|
6 |
Author: Manuel Eberl |
|
7 |
*) |
|
8 |
||
9 |
section \<open>Factorial Function, Rising Factorials\<close> |
|
10 |
||
11 |
theory Factorial |
|
65813 | 12 |
imports Groups_List |
65812 | 13 |
begin |
14 |
||
15 |
subsection \<open>Factorial Function\<close> |
|
16 |
||
17 |
context semiring_char_0 |
|
18 |
begin |
|
19 |
||
20 |
definition fact :: "nat \<Rightarrow> 'a" |
|
21 |
where fact_prod: "fact n = of_nat (\<Prod>{1..n})" |
|
22 |
||
23 |
lemma fact_prod_Suc: "fact n = of_nat (prod Suc {0..<n})" |
|
24 |
by (cases n) |
|
25 |
(simp_all add: fact_prod prod.atLeast_Suc_atMost_Suc_shift |
|
26 |
atLeastLessThanSuc_atLeastAtMost) |
|
27 |
||
28 |
lemma fact_prod_rev: "fact n = of_nat (\<Prod>i = 0..<n. n - i)" |
|
29 |
using prod.atLeast_atMost_rev [of "\<lambda>i. i" 1 n] |
|
30 |
by (cases n) |
|
31 |
(simp_all add: fact_prod_Suc prod.atLeast_Suc_atMost_Suc_shift |
|
32 |
atLeastLessThanSuc_atLeastAtMost) |
|
33 |
||
34 |
lemma fact_0 [simp]: "fact 0 = 1" |
|
35 |
by (simp add: fact_prod) |
|
36 |
||
37 |
lemma fact_1 [simp]: "fact 1 = 1" |
|
38 |
by (simp add: fact_prod) |
|
39 |
||
40 |
lemma fact_Suc_0 [simp]: "fact (Suc 0) = 1" |
|
41 |
by (simp add: fact_prod) |
|
42 |
||
43 |
lemma fact_Suc [simp]: "fact (Suc n) = of_nat (Suc n) * fact n" |
|
44 |
by (simp add: fact_prod atLeastAtMostSuc_conv algebra_simps) |
|
45 |
||
46 |
lemma fact_2 [simp]: "fact 2 = 2" |
|
47 |
by (simp add: numeral_2_eq_2) |
|
48 |
||
49 |
lemma fact_split: "k \<le> n \<Longrightarrow> fact n = of_nat (prod Suc {n - k..<n}) * fact (n - k)" |
|
50 |
by (simp add: fact_prod_Suc prod.union_disjoint [symmetric] |
|
51 |
ivl_disj_un ac_simps of_nat_mult [symmetric]) |
|
52 |
||
53 |
end |
|
54 |
||
55 |
lemma of_nat_fact [simp]: "of_nat (fact n) = fact n" |
|
56 |
by (simp add: fact_prod) |
|
57 |
||
58 |
lemma of_int_fact [simp]: "of_int (fact n) = fact n" |
|
59 |
by (simp only: fact_prod of_int_of_nat_eq) |
|
60 |
||
61 |
lemma fact_reduce: "n > 0 \<Longrightarrow> fact n = of_nat n * fact (n - 1)" |
|
62 |
by (cases n) auto |
|
63 |
||
64 |
lemma fact_nonzero [simp]: "fact n \<noteq> (0::'a::{semiring_char_0,semiring_no_zero_divisors})" |
|
65 |
apply (induct n) |
|
66 |
apply auto |
|
67 |
using of_nat_eq_0_iff |
|
68 |
apply fastforce |
|
69 |
done |
|
70 |
||
71 |
lemma fact_mono_nat: "m \<le> n \<Longrightarrow> fact m \<le> (fact n :: nat)" |
|
72 |
by (induct n) (auto simp: le_Suc_eq) |
|
73 |
||
74 |
lemma fact_in_Nats: "fact n \<in> \<nat>" |
|
75 |
by (induct n) auto |
|
76 |
||
77 |
lemma fact_in_Ints: "fact n \<in> \<int>" |
|
78 |
by (induct n) auto |
|
79 |
||
80 |
context |
|
81 |
assumes "SORT_CONSTRAINT('a::linordered_semidom)" |
|
82 |
begin |
|
83 |
||
84 |
lemma fact_mono: "m \<le> n \<Longrightarrow> fact m \<le> (fact n :: 'a)" |
|
85 |
by (metis of_nat_fact of_nat_le_iff fact_mono_nat) |
|
86 |
||
87 |
lemma fact_ge_1 [simp]: "fact n \<ge> (1 :: 'a)" |
|
88 |
by (metis le0 fact_0 fact_mono) |
|
89 |
||
90 |
lemma fact_gt_zero [simp]: "fact n > (0 :: 'a)" |
|
91 |
using fact_ge_1 less_le_trans zero_less_one by blast |
|
92 |
||
93 |
lemma fact_ge_zero [simp]: "fact n \<ge> (0 :: 'a)" |
|
94 |
by (simp add: less_imp_le) |
|
95 |
||
96 |
lemma fact_not_neg [simp]: "\<not> fact n < (0 :: 'a)" |
|
97 |
by (simp add: not_less_iff_gr_or_eq) |
|
98 |
||
99 |
lemma fact_le_power: "fact n \<le> (of_nat (n^n) :: 'a)" |
|
100 |
proof (induct n) |
|
101 |
case 0 |
|
102 |
then show ?case by simp |
|
103 |
next |
|
104 |
case (Suc n) |
|
105 |
then have *: "fact n \<le> (of_nat (Suc n ^ n) ::'a)" |
|
106 |
by (rule order_trans) (simp add: power_mono del: of_nat_power) |
|
107 |
have "fact (Suc n) = (of_nat (Suc n) * fact n ::'a)" |
|
108 |
by (simp add: algebra_simps) |
|
109 |
also have "\<dots> \<le> of_nat (Suc n) * of_nat (Suc n ^ n)" |
|
110 |
by (simp add: * ordered_comm_semiring_class.comm_mult_left_mono del: of_nat_power) |
|
111 |
also have "\<dots> \<le> of_nat (Suc n ^ Suc n)" |
|
112 |
by (metis of_nat_mult order_refl power_Suc) |
|
113 |
finally show ?case . |
|
114 |
qed |
|
115 |
||
116 |
end |
|
117 |
||
118 |
lemma fact_less_mono_nat: "0 < m \<Longrightarrow> m < n \<Longrightarrow> fact m < (fact n :: nat)" |
|
119 |
by (induct n) (auto simp: less_Suc_eq) |
|
120 |
||
121 |
lemma fact_less_mono: "0 < m \<Longrightarrow> m < n \<Longrightarrow> fact m < (fact n :: 'a::linordered_semidom)" |
|
122 |
by (metis of_nat_fact of_nat_less_iff fact_less_mono_nat) |
|
123 |
||
124 |
lemma fact_ge_Suc_0_nat [simp]: "fact n \<ge> Suc 0" |
|
125 |
by (metis One_nat_def fact_ge_1) |
|
126 |
||
127 |
lemma dvd_fact: "1 \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> m dvd fact n" |
|
128 |
by (induct n) (auto simp: dvdI le_Suc_eq) |
|
129 |
||
130 |
lemma fact_ge_self: "fact n \<ge> n" |
|
131 |
by (cases "n = 0") (simp_all add: dvd_imp_le dvd_fact) |
|
132 |
||
133 |
lemma fact_dvd: "n \<le> m \<Longrightarrow> fact n dvd (fact m :: 'a::{semiring_div,linordered_semidom})" |
|
134 |
by (induct m) (auto simp: le_Suc_eq) |
|
135 |
||
136 |
lemma fact_mod: "m \<le> n \<Longrightarrow> fact n mod (fact m :: 'a::{semiring_div,linordered_semidom}) = 0" |
|
137 |
by (auto simp add: fact_dvd) |
|
138 |
||
139 |
lemma fact_div_fact: |
|
140 |
assumes "m \<ge> n" |
|
141 |
shows "fact m div fact n = \<Prod>{n + 1..m}" |
|
142 |
proof - |
|
143 |
obtain d where "d = m - n" |
|
144 |
by auto |
|
145 |
with assms have "m = n + d" |
|
146 |
by auto |
|
147 |
have "fact (n + d) div (fact n) = \<Prod>{n + 1..n + d}" |
|
148 |
proof (induct d) |
|
149 |
case 0 |
|
150 |
show ?case by simp |
|
151 |
next |
|
152 |
case (Suc d') |
|
153 |
have "fact (n + Suc d') div fact n = Suc (n + d') * fact (n + d') div fact n" |
|
154 |
by simp |
|
155 |
also from Suc.hyps have "\<dots> = Suc (n + d') * \<Prod>{n + 1..n + d'}" |
|
156 |
unfolding div_mult1_eq[of _ "fact (n + d')"] by (simp add: fact_mod) |
|
157 |
also have "\<dots> = \<Prod>{n + 1..n + Suc d'}" |
|
158 |
by (simp add: atLeastAtMostSuc_conv) |
|
159 |
finally show ?case . |
|
160 |
qed |
|
161 |
with \<open>m = n + d\<close> show ?thesis by simp |
|
162 |
qed |
|
163 |
||
164 |
lemma fact_num_eq_if: "fact m = (if m = 0 then 1 else of_nat m * fact (m - 1))" |
|
165 |
by (cases m) auto |
|
166 |
||
167 |
lemma fact_div_fact_le_pow: |
|
168 |
assumes "r \<le> n" |
|
169 |
shows "fact n div fact (n - r) \<le> n ^ r" |
|
170 |
proof - |
|
171 |
have "r \<le> n \<Longrightarrow> \<Prod>{n - r..n} = (n - r) * \<Prod>{Suc (n - r)..n}" for r |
|
172 |
by (subst prod.insert[symmetric]) (auto simp: atLeastAtMost_insertL) |
|
173 |
with assms show ?thesis |
|
174 |
by (induct r rule: nat.induct) (auto simp add: fact_div_fact Suc_diff_Suc mult_le_mono) |
|
175 |
qed |
|
176 |
||
177 |
lemma fact_numeral: "fact (numeral k) = numeral k * fact (pred_numeral k)" |
|
178 |
\<comment> \<open>Evaluation for specific numerals\<close> |
|
179 |
by (metis fact_Suc numeral_eq_Suc of_nat_numeral) |
|
180 |
||
181 |
||
182 |
||
183 |
subsection \<open>Pochhammer's symbol: generalized rising factorial\<close> |
|
184 |
||
185 |
text \<open>See \<^url>\<open>http://en.wikipedia.org/wiki/Pochhammer_symbol\<close>.\<close> |
|
186 |
||
187 |
context comm_semiring_1 |
|
188 |
begin |
|
189 |
||
190 |
definition pochhammer :: "'a \<Rightarrow> nat \<Rightarrow> 'a" |
|
191 |
where pochhammer_prod: "pochhammer a n = prod (\<lambda>i. a + of_nat i) {0..<n}" |
|
192 |
||
193 |
lemma pochhammer_prod_rev: "pochhammer a n = prod (\<lambda>i. a + of_nat (n - i)) {1..n}" |
|
194 |
using prod.atLeast_lessThan_rev_at_least_Suc_atMost [of "\<lambda>i. a + of_nat i" 0 n] |
|
195 |
by (simp add: pochhammer_prod) |
|
196 |
||
197 |
lemma pochhammer_Suc_prod: "pochhammer a (Suc n) = prod (\<lambda>i. a + of_nat i) {0..n}" |
|
198 |
by (simp add: pochhammer_prod atLeastLessThanSuc_atLeastAtMost) |
|
199 |
||
200 |
lemma pochhammer_Suc_prod_rev: "pochhammer a (Suc n) = prod (\<lambda>i. a + of_nat (n - i)) {0..n}" |
|
201 |
by (simp add: pochhammer_prod_rev prod.atLeast_Suc_atMost_Suc_shift) |
|
202 |
||
203 |
lemma pochhammer_0 [simp]: "pochhammer a 0 = 1" |
|
204 |
by (simp add: pochhammer_prod) |
|
205 |
||
206 |
lemma pochhammer_1 [simp]: "pochhammer a 1 = a" |
|
207 |
by (simp add: pochhammer_prod lessThan_Suc) |
|
208 |
||
209 |
lemma pochhammer_Suc0 [simp]: "pochhammer a (Suc 0) = a" |
|
210 |
by (simp add: pochhammer_prod lessThan_Suc) |
|
211 |
||
212 |
lemma pochhammer_Suc: "pochhammer a (Suc n) = pochhammer a n * (a + of_nat n)" |
|
213 |
by (simp add: pochhammer_prod atLeast0_lessThan_Suc ac_simps) |
|
214 |
||
215 |
end |
|
216 |
||
217 |
lemma pochhammer_nonneg: |
|
218 |
fixes x :: "'a :: linordered_semidom" |
|
219 |
shows "x > 0 \<Longrightarrow> pochhammer x n \<ge> 0" |
|
220 |
by (induction n) (auto simp: pochhammer_Suc intro!: mult_nonneg_nonneg add_nonneg_nonneg) |
|
221 |
||
222 |
lemma pochhammer_pos: |
|
223 |
fixes x :: "'a :: linordered_semidom" |
|
224 |
shows "x > 0 \<Longrightarrow> pochhammer x n > 0" |
|
225 |
by (induction n) (auto simp: pochhammer_Suc intro!: mult_pos_pos add_pos_nonneg) |
|
226 |
||
227 |
lemma pochhammer_of_nat: "pochhammer (of_nat x) n = of_nat (pochhammer x n)" |
|
228 |
by (simp add: pochhammer_prod) |
|
229 |
||
230 |
lemma pochhammer_of_int: "pochhammer (of_int x) n = of_int (pochhammer x n)" |
|
231 |
by (simp add: pochhammer_prod) |
|
232 |
||
233 |
lemma pochhammer_rec: "pochhammer a (Suc n) = a * pochhammer (a + 1) n" |
|
234 |
by (simp add: pochhammer_prod prod.atLeast0_lessThan_Suc_shift ac_simps) |
|
235 |
||
236 |
lemma pochhammer_rec': "pochhammer z (Suc n) = (z + of_nat n) * pochhammer z n" |
|
237 |
by (simp add: pochhammer_prod prod.atLeast0_lessThan_Suc ac_simps) |
|
238 |
||
239 |
lemma pochhammer_fact: "fact n = pochhammer 1 n" |
|
240 |
by (simp add: pochhammer_prod fact_prod_Suc) |
|
241 |
||
242 |
lemma pochhammer_of_nat_eq_0_lemma: "k > n \<Longrightarrow> pochhammer (- (of_nat n :: 'a:: idom)) k = 0" |
|
243 |
by (auto simp add: pochhammer_prod) |
|
244 |
||
245 |
lemma pochhammer_of_nat_eq_0_lemma': |
|
246 |
assumes kn: "k \<le> n" |
|
247 |
shows "pochhammer (- (of_nat n :: 'a::{idom,ring_char_0})) k \<noteq> 0" |
|
248 |
proof (cases k) |
|
249 |
case 0 |
|
250 |
then show ?thesis by simp |
|
251 |
next |
|
252 |
case (Suc h) |
|
253 |
then show ?thesis |
|
254 |
apply (simp add: pochhammer_Suc_prod) |
|
255 |
using Suc kn |
|
256 |
apply (auto simp add: algebra_simps) |
|
257 |
done |
|
258 |
qed |
|
259 |
||
260 |
lemma pochhammer_of_nat_eq_0_iff: |
|
261 |
"pochhammer (- (of_nat n :: 'a::{idom,ring_char_0})) k = 0 \<longleftrightarrow> k > n" |
|
262 |
(is "?l = ?r") |
|
263 |
using pochhammer_of_nat_eq_0_lemma[of n k, where ?'a='a] |
|
264 |
pochhammer_of_nat_eq_0_lemma'[of k n, where ?'a = 'a] |
|
265 |
by (auto simp add: not_le[symmetric]) |
|
266 |
||
66394
32084d7e6b59
Some facts about orders of zeros
eberlm <eberlm@in.tum.de>
parents:
65813
diff
changeset
|
267 |
lemma pochhammer_0_left: |
32084d7e6b59
Some facts about orders of zeros
eberlm <eberlm@in.tum.de>
parents:
65813
diff
changeset
|
268 |
"pochhammer 0 n = (if n = 0 then 1 else 0)" |
32084d7e6b59
Some facts about orders of zeros
eberlm <eberlm@in.tum.de>
parents:
65813
diff
changeset
|
269 |
by (induction n) (simp_all add: pochhammer_rec) |
32084d7e6b59
Some facts about orders of zeros
eberlm <eberlm@in.tum.de>
parents:
65813
diff
changeset
|
270 |
|
65812 | 271 |
lemma pochhammer_eq_0_iff: "pochhammer a n = (0::'a::field_char_0) \<longleftrightarrow> (\<exists>k < n. a = - of_nat k)" |
272 |
by (auto simp add: pochhammer_prod eq_neg_iff_add_eq_0) |
|
273 |
||
274 |
lemma pochhammer_eq_0_mono: |
|
275 |
"pochhammer a n = (0::'a::field_char_0) \<Longrightarrow> m \<ge> n \<Longrightarrow> pochhammer a m = 0" |
|
276 |
unfolding pochhammer_eq_0_iff by auto |
|
277 |
||
278 |
lemma pochhammer_neq_0_mono: |
|
279 |
"pochhammer a m \<noteq> (0::'a::field_char_0) \<Longrightarrow> m \<ge> n \<Longrightarrow> pochhammer a n \<noteq> 0" |
|
280 |
unfolding pochhammer_eq_0_iff by auto |
|
281 |
||
282 |
lemma pochhammer_minus: |
|
283 |
"pochhammer (- b) k = ((- 1) ^ k :: 'a::comm_ring_1) * pochhammer (b - of_nat k + 1) k" |
|
284 |
proof (cases k) |
|
285 |
case 0 |
|
286 |
then show ?thesis by simp |
|
287 |
next |
|
288 |
case (Suc h) |
|
289 |
have eq: "((- 1) ^ Suc h :: 'a) = (\<Prod>i = 0..h. - 1)" |
|
290 |
using prod_constant [where A="{0.. h}" and y="- 1 :: 'a"] |
|
291 |
by auto |
|
292 |
with Suc show ?thesis |
|
293 |
using pochhammer_Suc_prod_rev [of "b - of_nat k + 1"] |
|
294 |
by (auto simp add: pochhammer_Suc_prod prod.distrib [symmetric] eq of_nat_diff) |
|
295 |
qed |
|
296 |
||
297 |
lemma pochhammer_minus': |
|
298 |
"pochhammer (b - of_nat k + 1) k = ((- 1) ^ k :: 'a::comm_ring_1) * pochhammer (- b) k" |
|
299 |
apply (simp only: pochhammer_minus [where b = b]) |
|
300 |
apply (simp only: mult.assoc [symmetric]) |
|
301 |
apply (simp only: power_add [symmetric]) |
|
302 |
apply simp |
|
303 |
done |
|
304 |
||
305 |
lemma pochhammer_same: "pochhammer (- of_nat n) n = |
|
306 |
((- 1) ^ n :: 'a::{semiring_char_0,comm_ring_1,semiring_no_zero_divisors}) * fact n" |
|
307 |
unfolding pochhammer_minus |
|
308 |
by (simp add: of_nat_diff pochhammer_fact) |
|
309 |
||
310 |
lemma pochhammer_product': "pochhammer z (n + m) = pochhammer z n * pochhammer (z + of_nat n) m" |
|
311 |
proof (induct n arbitrary: z) |
|
312 |
case 0 |
|
313 |
then show ?case by simp |
|
314 |
next |
|
315 |
case (Suc n z) |
|
316 |
have "pochhammer z (Suc n) * pochhammer (z + of_nat (Suc n)) m = |
|
317 |
z * (pochhammer (z + 1) n * pochhammer (z + 1 + of_nat n) m)" |
|
318 |
by (simp add: pochhammer_rec ac_simps) |
|
319 |
also note Suc[symmetric] |
|
320 |
also have "z * pochhammer (z + 1) (n + m) = pochhammer z (Suc (n + m))" |
|
321 |
by (subst pochhammer_rec) simp |
|
322 |
finally show ?case |
|
323 |
by simp |
|
324 |
qed |
|
325 |
||
326 |
lemma pochhammer_product: |
|
327 |
"m \<le> n \<Longrightarrow> pochhammer z n = pochhammer z m * pochhammer (z + of_nat m) (n - m)" |
|
328 |
using pochhammer_product'[of z m "n - m"] by simp |
|
329 |
||
330 |
lemma pochhammer_times_pochhammer_half: |
|
331 |
fixes z :: "'a::field_char_0" |
|
332 |
shows "pochhammer z (Suc n) * pochhammer (z + 1/2) (Suc n) = (\<Prod>k=0..2*n+1. z + of_nat k / 2)" |
|
333 |
proof (induct n) |
|
334 |
case 0 |
|
335 |
then show ?case |
|
336 |
by (simp add: atLeast0_atMost_Suc) |
|
337 |
next |
|
338 |
case (Suc n) |
|
339 |
define n' where "n' = Suc n" |
|
340 |
have "pochhammer z (Suc n') * pochhammer (z + 1 / 2) (Suc n') = |
|
341 |
(pochhammer z n' * pochhammer (z + 1 / 2) n') * ((z + of_nat n') * (z + 1/2 + of_nat n'))" |
|
342 |
(is "_ = _ * ?A") |
|
343 |
by (simp_all add: pochhammer_rec' mult_ac) |
|
344 |
also have "?A = (z + of_nat (Suc (2 * n + 1)) / 2) * (z + of_nat (Suc (Suc (2 * n + 1))) / 2)" |
|
345 |
(is "_ = ?B") |
|
346 |
by (simp add: field_simps n'_def) |
|
347 |
also note Suc[folded n'_def] |
|
348 |
also have "(\<Prod>k=0..2 * n + 1. z + of_nat k / 2) * ?B = (\<Prod>k=0..2 * Suc n + 1. z + of_nat k / 2)" |
|
349 |
by (simp add: atLeast0_atMost_Suc) |
|
350 |
finally show ?case |
|
351 |
by (simp add: n'_def) |
|
352 |
qed |
|
353 |
||
354 |
lemma pochhammer_double: |
|
355 |
fixes z :: "'a::field_char_0" |
|
356 |
shows "pochhammer (2 * z) (2 * n) = of_nat (2^(2*n)) * pochhammer z n * pochhammer (z+1/2) n" |
|
357 |
proof (induct n) |
|
358 |
case 0 |
|
359 |
then show ?case by simp |
|
360 |
next |
|
361 |
case (Suc n) |
|
362 |
have "pochhammer (2 * z) (2 * (Suc n)) = pochhammer (2 * z) (2 * n) * |
|
363 |
(2 * (z + of_nat n)) * (2 * (z + of_nat n) + 1)" |
|
364 |
by (simp add: pochhammer_rec' ac_simps) |
|
365 |
also note Suc |
|
366 |
also have "of_nat (2 ^ (2 * n)) * pochhammer z n * pochhammer (z + 1/2) n * |
|
367 |
(2 * (z + of_nat n)) * (2 * (z + of_nat n) + 1) = |
|
368 |
of_nat (2 ^ (2 * (Suc n))) * pochhammer z (Suc n) * pochhammer (z + 1/2) (Suc n)" |
|
369 |
by (simp add: field_simps pochhammer_rec') |
|
370 |
finally show ?case . |
|
371 |
qed |
|
372 |
||
373 |
lemma fact_double: |
|
374 |
"fact (2 * n) = (2 ^ (2 * n) * pochhammer (1 / 2) n * fact n :: 'a::field_char_0)" |
|
375 |
using pochhammer_double[of "1/2::'a" n] by (simp add: pochhammer_fact) |
|
376 |
||
377 |
lemma pochhammer_absorb_comp: "(r - of_nat k) * pochhammer (- r) k = r * pochhammer (-r + 1) k" |
|
378 |
(is "?lhs = ?rhs") |
|
379 |
for r :: "'a::comm_ring_1" |
|
380 |
proof - |
|
381 |
have "?lhs = - pochhammer (- r) (Suc k)" |
|
382 |
by (subst pochhammer_rec') (simp add: algebra_simps) |
|
383 |
also have "\<dots> = ?rhs" |
|
384 |
by (subst pochhammer_rec) simp |
|
385 |
finally show ?thesis . |
|
386 |
qed |
|
387 |
||
388 |
||
389 |
subsection \<open>Misc\<close> |
|
390 |
||
391 |
lemma fact_code [code]: |
|
392 |
"fact n = (of_nat (fold_atLeastAtMost_nat (op *) 2 n 1) :: 'a::semiring_char_0)" |
|
393 |
proof - |
|
394 |
have "fact n = (of_nat (\<Prod>{1..n}) :: 'a)" |
|
395 |
by (simp add: fact_prod) |
|
396 |
also have "\<Prod>{1..n} = \<Prod>{2..n}" |
|
397 |
by (intro prod.mono_neutral_right) auto |
|
398 |
also have "\<dots> = fold_atLeastAtMost_nat (op *) 2 n 1" |
|
399 |
by (simp add: prod_atLeastAtMost_code) |
|
400 |
finally show ?thesis . |
|
401 |
qed |
|
402 |
||
403 |
lemma pochhammer_code [code]: |
|
404 |
"pochhammer a n = |
|
405 |
(if n = 0 then 1 |
|
406 |
else fold_atLeastAtMost_nat (\<lambda>n acc. (a + of_nat n) * acc) 0 (n - 1) 1)" |
|
407 |
by (cases n) |
|
408 |
(simp_all add: pochhammer_prod prod_atLeastAtMost_code [symmetric] |
|
409 |
atLeastLessThanSuc_atLeastAtMost) |
|
410 |
||
411 |
end |