author | nipkow |
Thu, 31 Aug 2017 09:50:11 +0200 | |
changeset 66566 | a14bbbaa628d |
parent 66011 | f10bbfe07c41 |
child 67051 | e7e54a0b9197 |
permissions | -rw-r--r-- |
33192 | 1 |
(* Title: HOL/Nitpick.thy |
2 |
Author: Jasmin Blanchette, TU Muenchen |
|
35807
e4d1b5cbd429
added support for "specification" and "ax_specification" constructs to Nitpick
blanchet
parents:
35699
diff
changeset
|
3 |
Copyright 2008, 2009, 2010 |
33192 | 4 |
|
5 |
Nitpick: Yet another counterexample generator for Isabelle/HOL. |
|
6 |
*) |
|
7 |
||
60758 | 8 |
section \<open>Nitpick: Yet Another Counterexample Generator for Isabelle/HOL\<close> |
33192 | 9 |
|
10 |
theory Nitpick |
|
65555
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
64267
diff
changeset
|
11 |
imports Record GCD |
55539
0819931d652d
simplified data structure by reducing the incidence of clumsy indices
blanchet
parents:
55415
diff
changeset
|
12 |
keywords |
0819931d652d
simplified data structure by reducing the incidence of clumsy indices
blanchet
parents:
55415
diff
changeset
|
13 |
"nitpick" :: diag and |
0819931d652d
simplified data structure by reducing the incidence of clumsy indices
blanchet
parents:
55415
diff
changeset
|
14 |
"nitpick_params" :: thy_decl |
33192 | 15 |
begin |
16 |
||
58350
919149921e46
added 'extraction' plugins -- this might help 'HOL-Proofs'
blanchet
parents:
58335
diff
changeset
|
17 |
datatype (plugins only: extraction) (dead 'a, dead 'b) fun_box = FunBox "'a \<Rightarrow> 'b" |
919149921e46
added 'extraction' plugins -- this might help 'HOL-Proofs'
blanchet
parents:
58335
diff
changeset
|
18 |
datatype (plugins only: extraction) (dead 'a, dead 'b) pair_box = PairBox 'a 'b |
919149921e46
added 'extraction' plugins -- this might help 'HOL-Proofs'
blanchet
parents:
58335
diff
changeset
|
19 |
datatype (plugins only: extraction) (dead 'a) word = Word "'a set" |
33192 | 20 |
|
57992 | 21 |
typedecl bisim_iterator |
34124
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
33747
diff
changeset
|
22 |
typedecl unsigned_bit |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
33747
diff
changeset
|
23 |
typedecl signed_bit |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
33747
diff
changeset
|
24 |
|
57992 | 25 |
consts |
26 |
unknown :: 'a |
|
27 |
is_unknown :: "'a \<Rightarrow> bool" |
|
28 |
bisim :: "bisim_iterator \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" |
|
29 |
bisim_iterator_max :: bisim_iterator |
|
30 |
Quot :: "'a \<Rightarrow> 'b" |
|
31 |
safe_The :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" |
|
33192 | 32 |
|
60758 | 33 |
text \<open> |
33192 | 34 |
Alternative definitions. |
60758 | 35 |
\<close> |
33192 | 36 |
|
57992 | 37 |
lemma Ex1_unfold[nitpick_unfold]: "Ex1 P \<equiv> \<exists>x. {x. P x} = {x}" |
38 |
apply (rule eq_reflection) |
|
39 |
apply (simp add: Ex1_def set_eq_iff) |
|
40 |
apply (rule iffI) |
|
41 |
apply (erule exE) |
|
42 |
apply (erule conjE) |
|
43 |
apply (rule_tac x = x in exI) |
|
44 |
apply (rule allI) |
|
45 |
apply (rename_tac y) |
|
46 |
apply (erule_tac x = y in allE) |
|
47 |
by auto |
|
33192 | 48 |
|
57992 | 49 |
lemma rtrancl_unfold[nitpick_unfold]: "r\<^sup>* \<equiv> (r\<^sup>+)\<^sup>=" |
45140 | 50 |
by (simp only: rtrancl_trancl_reflcl) |
33192 | 51 |
|
57992 | 52 |
lemma rtranclp_unfold[nitpick_unfold]: "rtranclp r a b \<equiv> (a = b \<or> tranclp r a b)" |
53 |
by (rule eq_reflection) (auto dest: rtranclpD) |
|
33192 | 54 |
|
57992 | 55 |
lemma tranclp_unfold[nitpick_unfold]: |
56 |
"tranclp r a b \<equiv> (a, b) \<in> trancl {(x, y). r x y}" |
|
57 |
by (simp add: trancl_def) |
|
33192 | 58 |
|
54148 | 59 |
lemma [nitpick_simp]: |
57992 | 60 |
"of_nat n = (if n = 0 then 0 else 1 + of_nat (n - 1))" |
61 |
by (cases n) auto |
|
47909
5f1afeebafbc
fixed "real" after they were redefined as a 'quotient_type'
blanchet
parents:
46950
diff
changeset
|
62 |
|
41046 | 63 |
definition prod :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<times> 'b) set" where |
57992 | 64 |
"prod A B = {(a, b). a \<in> A \<and> b \<in> B}" |
41046 | 65 |
|
44278
1220ecb81e8f
observe distinction between sets and predicates more properly
haftmann
parents:
44016
diff
changeset
|
66 |
definition refl' :: "('a \<times> 'a) set \<Rightarrow> bool" where |
57992 | 67 |
"refl' r \<equiv> \<forall>x. (x, x) \<in> r" |
33192 | 68 |
|
44278
1220ecb81e8f
observe distinction between sets and predicates more properly
haftmann
parents:
44016
diff
changeset
|
69 |
definition wf' :: "('a \<times> 'a) set \<Rightarrow> bool" where |
57992 | 70 |
"wf' r \<equiv> acyclic r \<and> (finite r \<or> unknown)" |
33192 | 71 |
|
44278
1220ecb81e8f
observe distinction between sets and predicates more properly
haftmann
parents:
44016
diff
changeset
|
72 |
definition card' :: "'a set \<Rightarrow> nat" where |
57992 | 73 |
"card' A \<equiv> if finite A then length (SOME xs. set xs = A \<and> distinct xs) else 0" |
33192 | 74 |
|
64267 | 75 |
definition sum' :: "('a \<Rightarrow> 'b::comm_monoid_add) \<Rightarrow> 'a set \<Rightarrow> 'b" where |
76 |
"sum' f A \<equiv> if finite A then sum_list (map f (SOME xs. set xs = A \<and> distinct xs)) else 0" |
|
33192 | 77 |
|
44278
1220ecb81e8f
observe distinction between sets and predicates more properly
haftmann
parents:
44016
diff
changeset
|
78 |
inductive fold_graph' :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> bool" where |
57992 | 79 |
"fold_graph' f z {} z" | |
80 |
"\<lbrakk>x \<in> A; fold_graph' f z (A - {x}) y\<rbrakk> \<Longrightarrow> fold_graph' f z A (f x y)" |
|
33192 | 81 |
|
60758 | 82 |
text \<open> |
33192 | 83 |
The following lemmas are not strictly necessary but they help the |
47909
5f1afeebafbc
fixed "real" after they were redefined as a 'quotient_type'
blanchet
parents:
46950
diff
changeset
|
84 |
\textit{specialize} optimization. |
60758 | 85 |
\<close> |
33192 | 86 |
|
57992 | 87 |
lemma The_psimp[nitpick_psimp]: "P = (op =) x \<Longrightarrow> The P = x" |
45970
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
haftmann
parents:
45140
diff
changeset
|
88 |
by auto |
33192 | 89 |
|
57992 | 90 |
lemma Eps_psimp[nitpick_psimp]: |
91 |
"\<lbrakk>P x; \<not> P y; Eps P = y\<rbrakk> \<Longrightarrow> Eps P = x" |
|
92 |
apply (cases "P (Eps P)") |
|
93 |
apply auto |
|
94 |
apply (erule contrapos_np) |
|
95 |
by (rule someI) |
|
33192 | 96 |
|
57992 | 97 |
lemma case_unit_unfold[nitpick_unfold]: |
98 |
"case_unit x u \<equiv> x" |
|
99 |
apply (subgoal_tac "u = ()") |
|
100 |
apply (simp only: unit.case) |
|
101 |
by simp |
|
33192 | 102 |
|
57992 | 103 |
declare unit.case[nitpick_simp del] |
33556
cba22e2999d5
renamed Nitpick option "coalesce_type_vars" to "merge_type_vars" (shorter) and cleaned up old hacks that are no longer necessary
blanchet
parents:
33192
diff
changeset
|
104 |
|
57992 | 105 |
lemma case_nat_unfold[nitpick_unfold]: |
106 |
"case_nat x f n \<equiv> if n = 0 then x else f (n - 1)" |
|
107 |
apply (rule eq_reflection) |
|
108 |
by (cases n) auto |
|
33192 | 109 |
|
57992 | 110 |
declare nat.case[nitpick_simp del] |
33556
cba22e2999d5
renamed Nitpick option "coalesce_type_vars" to "merge_type_vars" (shorter) and cleaned up old hacks that are no longer necessary
blanchet
parents:
33192
diff
changeset
|
111 |
|
57992 | 112 |
lemma size_list_simp[nitpick_simp]: |
113 |
"size_list f xs = (if xs = [] then 0 else Suc (f (hd xs) + size_list f (tl xs)))" |
|
114 |
"size xs = (if xs = [] then 0 else Suc (size (tl xs)))" |
|
115 |
by (cases xs) auto |
|
33192 | 116 |
|
60758 | 117 |
text \<open> |
33192 | 118 |
Auxiliary definitions used to provide an alternative representation for |
61799 | 119 |
\<open>rat\<close> and \<open>real\<close>. |
60758 | 120 |
\<close> |
33192 | 121 |
|
66011 | 122 |
fun nat_gcd :: "nat \<Rightarrow> nat \<Rightarrow> nat" where |
57992 | 123 |
"nat_gcd x y = (if y = 0 then x else nat_gcd y (x mod y))" |
66011 | 124 |
|
65555
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
64267
diff
changeset
|
125 |
declare nat_gcd.simps [simp del] |
33192 | 126 |
|
127 |
definition nat_lcm :: "nat \<Rightarrow> nat \<Rightarrow> nat" where |
|
57992 | 128 |
"nat_lcm x y = x * y div (nat_gcd x y)" |
33192 | 129 |
|
66011 | 130 |
lemma gcd_eq_nitpick_gcd [nitpick_unfold]: |
131 |
"gcd x y = Nitpick.nat_gcd x y" |
|
65555
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
64267
diff
changeset
|
132 |
by (induct x y rule: nat_gcd.induct) |
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
64267
diff
changeset
|
133 |
(simp add: gcd_nat.simps Nitpick.nat_gcd.simps) |
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
64267
diff
changeset
|
134 |
|
66011 | 135 |
lemma lcm_eq_nitpick_lcm [nitpick_unfold]: |
136 |
"lcm x y = Nitpick.nat_lcm x y" |
|
65555
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
64267
diff
changeset
|
137 |
by (simp only: lcm_nat_def Nitpick.nat_lcm_def gcd_eq_nitpick_gcd) |
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
64267
diff
changeset
|
138 |
|
33192 | 139 |
definition Frac :: "int \<times> int \<Rightarrow> bool" where |
66011 | 140 |
"Frac \<equiv> \<lambda>(a, b). b > 0 \<and> gcd a b = 1" |
33192 | 141 |
|
57992 | 142 |
consts |
143 |
Abs_Frac :: "int \<times> int \<Rightarrow> 'a" |
|
56643
41d3596d8a64
move size hooks together, with new one preceding old one and sharing same theory data
blanchet
parents:
55642
diff
changeset
|
144 |
Rep_Frac :: "'a \<Rightarrow> int \<times> int" |
33192 | 145 |
|
146 |
definition zero_frac :: 'a where |
|
57992 | 147 |
"zero_frac \<equiv> Abs_Frac (0, 1)" |
33192 | 148 |
|
149 |
definition one_frac :: 'a where |
|
57992 | 150 |
"one_frac \<equiv> Abs_Frac (1, 1)" |
33192 | 151 |
|
152 |
definition num :: "'a \<Rightarrow> int" where |
|
57992 | 153 |
"num \<equiv> fst o Rep_Frac" |
33192 | 154 |
|
155 |
definition denom :: "'a \<Rightarrow> int" where |
|
57992 | 156 |
"denom \<equiv> snd o Rep_Frac" |
33192 | 157 |
|
158 |
function norm_frac :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where |
|
57992 | 159 |
"norm_frac a b = |
160 |
(if b < 0 then norm_frac (- a) (- b) |
|
161 |
else if a = 0 \<or> b = 0 then (0, 1) |
|
66011 | 162 |
else let c = gcd a b in (a div c, b div c))" |
57992 | 163 |
by pat_completeness auto |
164 |
termination by (relation "measure (\<lambda>(_, b). if b < 0 then 1 else 0)") auto |
|
165 |
||
166 |
declare norm_frac.simps[simp del] |
|
33192 | 167 |
|
168 |
definition frac :: "int \<Rightarrow> int \<Rightarrow> 'a" where |
|
57992 | 169 |
"frac a b \<equiv> Abs_Frac (norm_frac a b)" |
33192 | 170 |
|
171 |
definition plus_frac :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where |
|
66011 | 172 |
[nitpick_simp]: "plus_frac q r = (let d = lcm (denom q) (denom r) in |
57992 | 173 |
frac (num q * (d div denom q) + num r * (d div denom r)) d)" |
33192 | 174 |
|
175 |
definition times_frac :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where |
|
57992 | 176 |
[nitpick_simp]: "times_frac q r = frac (num q * num r) (denom q * denom r)" |
33192 | 177 |
|
178 |
definition uminus_frac :: "'a \<Rightarrow> 'a" where |
|
57992 | 179 |
"uminus_frac q \<equiv> Abs_Frac (- num q, denom q)" |
33192 | 180 |
|
181 |
definition number_of_frac :: "int \<Rightarrow> 'a" where |
|
57992 | 182 |
"number_of_frac n \<equiv> Abs_Frac (n, 1)" |
33192 | 183 |
|
184 |
definition inverse_frac :: "'a \<Rightarrow> 'a" where |
|
57992 | 185 |
"inverse_frac q \<equiv> frac (denom q) (num q)" |
33192 | 186 |
|
37397
18000f9d783e
adjust Nitpick's handling of "<" on "rat"s and "reals"
blanchet
parents:
37213
diff
changeset
|
187 |
definition less_frac :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where |
57992 | 188 |
[nitpick_simp]: "less_frac q r \<longleftrightarrow> num (plus_frac q (uminus_frac r)) < 0" |
37397
18000f9d783e
adjust Nitpick's handling of "<" on "rat"s and "reals"
blanchet
parents:
37213
diff
changeset
|
189 |
|
33192 | 190 |
definition less_eq_frac :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where |
57992 | 191 |
[nitpick_simp]: "less_eq_frac q r \<longleftrightarrow> num (plus_frac q (uminus_frac r)) \<le> 0" |
33192 | 192 |
|
61076 | 193 |
definition of_frac :: "'a \<Rightarrow> 'b::{inverse,ring_1}" where |
57992 | 194 |
"of_frac q \<equiv> of_int (num q) / of_int (denom q)" |
33192 | 195 |
|
55017 | 196 |
axiomatization wf_wfrec :: "('a \<times> 'a) set \<Rightarrow> (('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" |
197 |
||
198 |
definition wf_wfrec' :: "('a \<times> 'a) set \<Rightarrow> (('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" where |
|
57992 | 199 |
[nitpick_simp]: "wf_wfrec' R F x = F (cut (wf_wfrec R F) R x) x" |
55017 | 200 |
|
201 |
definition wfrec' :: "('a \<times> 'a) set \<Rightarrow> (('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" where |
|
57992 | 202 |
"wfrec' R F x \<equiv> if wf R then wf_wfrec' R F x else THE y. wfrec_rel R (\<lambda>f x. F (cut f R x) x) x y" |
55017 | 203 |
|
48891 | 204 |
ML_file "Tools/Nitpick/kodkod.ML" |
205 |
ML_file "Tools/Nitpick/kodkod_sat.ML" |
|
206 |
ML_file "Tools/Nitpick/nitpick_util.ML" |
|
207 |
ML_file "Tools/Nitpick/nitpick_hol.ML" |
|
208 |
ML_file "Tools/Nitpick/nitpick_mono.ML" |
|
209 |
ML_file "Tools/Nitpick/nitpick_preproc.ML" |
|
210 |
ML_file "Tools/Nitpick/nitpick_scope.ML" |
|
211 |
ML_file "Tools/Nitpick/nitpick_peephole.ML" |
|
212 |
ML_file "Tools/Nitpick/nitpick_rep.ML" |
|
213 |
ML_file "Tools/Nitpick/nitpick_nut.ML" |
|
214 |
ML_file "Tools/Nitpick/nitpick_kodkod.ML" |
|
215 |
ML_file "Tools/Nitpick/nitpick_model.ML" |
|
216 |
ML_file "Tools/Nitpick/nitpick.ML" |
|
55199 | 217 |
ML_file "Tools/Nitpick/nitpick_commands.ML" |
48891 | 218 |
ML_file "Tools/Nitpick/nitpick_tests.ML" |
33192 | 219 |
|
60758 | 220 |
setup \<open> |
44016
51184010c609
replaced Nitpick's hardwired basic_ersatz_table by context data
krauss
parents:
44013
diff
changeset
|
221 |
Nitpick_HOL.register_ersatz_global |
51184010c609
replaced Nitpick's hardwired basic_ersatz_table by context data
krauss
parents:
44013
diff
changeset
|
222 |
[(@{const_name card}, @{const_name card'}), |
64267 | 223 |
(@{const_name sum}, @{const_name sum'}), |
44016
51184010c609
replaced Nitpick's hardwired basic_ersatz_table by context data
krauss
parents:
44013
diff
changeset
|
224 |
(@{const_name fold_graph}, @{const_name fold_graph'}), |
55017 | 225 |
(@{const_name wf}, @{const_name wf'}), |
226 |
(@{const_name wf_wfrec}, @{const_name wf_wfrec'}), |
|
227 |
(@{const_name wfrec}, @{const_name wfrec'})] |
|
60758 | 228 |
\<close> |
33561
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33556
diff
changeset
|
229 |
|
57992 | 230 |
hide_const (open) unknown is_unknown bisim bisim_iterator_max Quot safe_The FunBox PairBox Word prod |
66011 | 231 |
refl' wf' card' sum' fold_graph' nat_gcd nat_lcm Frac Abs_Frac Rep_Frac |
57992 | 232 |
zero_frac one_frac num denom norm_frac frac plus_frac times_frac uminus_frac number_of_frac |
233 |
inverse_frac less_frac less_eq_frac of_frac wf_wfrec wf_wfrec wfrec' |
|
234 |
||
46324 | 235 |
hide_type (open) bisim_iterator fun_box pair_box unsigned_bit signed_bit word |
57992 | 236 |
|
237 |
hide_fact (open) Ex1_unfold rtrancl_unfold rtranclp_unfold tranclp_unfold prod_def refl'_def wf'_def |
|
64267 | 238 |
card'_def sum'_def The_psimp Eps_psimp case_unit_unfold case_nat_unfold |
66011 | 239 |
size_list_simp nat_lcm_def Frac_def zero_frac_def one_frac_def |
61121
efe8b18306b7
do not expose low-level "_def" facts of 'function' definitions, to avoid potential confusion with the situation of plain 'definition';
wenzelm
parents:
61076
diff
changeset
|
240 |
num_def denom_def frac_def plus_frac_def times_frac_def uminus_frac_def |
57992 | 241 |
number_of_frac_def inverse_frac_def less_frac_def less_eq_frac_def of_frac_def wf_wfrec'_def |
242 |
wfrec'_def |
|
33192 | 243 |
|
244 |
end |