| author | blanchet | 
| Sun, 01 May 2011 18:37:24 +0200 | |
| changeset 42528 | a15f0db2bcaf | 
| parent 41777 | 1f7cbe39d425 | 
| child 44011 | f67c93f52d13 | 
| permissions | -rw-r--r-- | 
| 41777 | 1 | (* Title: HOL/ZF/Games.thy | 
| 19203 | 2 | Author: Steven Obua | 
| 3 | ||
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 4 | An application of HOLZF: Partizan Games. See "Partizan Games in | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 5 | Isabelle/HOLZF", available from http://www4.in.tum.de/~obua/partizan | 
| 19203 | 6 | *) | 
| 7 | ||
| 8 | theory Games | |
| 9 | imports MainZF | |
| 10 | begin | |
| 11 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35028diff
changeset | 12 | definition fixgames :: "ZF set \<Rightarrow> ZF set" where | 
| 19203 | 13 |   "fixgames A \<equiv> { Opair l r | l r. explode l \<subseteq> A & explode r \<subseteq> A}"
 | 
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35028diff
changeset | 14 | |
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35028diff
changeset | 15 | definition games_lfp :: "ZF set" where | 
| 19203 | 16 | "games_lfp \<equiv> lfp fixgames" | 
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35028diff
changeset | 17 | |
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35028diff
changeset | 18 | definition games_gfp :: "ZF set" where | 
| 19203 | 19 | "games_gfp \<equiv> gfp fixgames" | 
| 20 | ||
| 21 | lemma mono_fixgames: "mono (fixgames)" | |
| 22 | apply (auto simp add: mono_def fixgames_def) | |
| 23 | apply (rule_tac x=l in exI) | |
| 24 | apply (rule_tac x=r in exI) | |
| 25 | apply auto | |
| 26 | done | |
| 27 | ||
| 28 | lemma games_lfp_unfold: "games_lfp = fixgames games_lfp" | |
| 29 | by (auto simp add: def_lfp_unfold games_lfp_def mono_fixgames) | |
| 30 | ||
| 31 | lemma games_gfp_unfold: "games_gfp = fixgames games_gfp" | |
| 32 | by (auto simp add: def_gfp_unfold games_gfp_def mono_fixgames) | |
| 33 | ||
| 34 | lemma games_lfp_nonempty: "Opair Empty Empty \<in> games_lfp" | |
| 35 | proof - | |
| 36 |   have "fixgames {} \<subseteq> games_lfp" 
 | |
| 37 | apply (subst games_lfp_unfold) | |
| 38 | apply (simp add: mono_fixgames[simplified mono_def, rule_format]) | |
| 39 | done | |
| 40 |   moreover have "fixgames {} = {Opair Empty Empty}"
 | |
| 41 | by (simp add: fixgames_def explode_Empty) | |
| 42 | finally show ?thesis | |
| 43 | by auto | |
| 44 | qed | |
| 45 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35028diff
changeset | 46 | definition left_option :: "ZF \<Rightarrow> ZF \<Rightarrow> bool" where | 
| 19203 | 47 | "left_option g opt \<equiv> (Elem opt (Fst g))" | 
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35028diff
changeset | 48 | |
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35028diff
changeset | 49 | definition right_option :: "ZF \<Rightarrow> ZF \<Rightarrow> bool" where | 
| 19203 | 50 | "right_option g opt \<equiv> (Elem opt (Snd g))" | 
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35028diff
changeset | 51 | |
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35028diff
changeset | 52 | definition is_option_of :: "(ZF * ZF) set" where | 
| 19203 | 53 |   "is_option_of \<equiv> { (opt, g) | opt g. g \<in> games_gfp \<and> (left_option g opt \<or> right_option g opt) }"
 | 
| 54 | ||
| 55 | lemma games_lfp_subset_gfp: "games_lfp \<subseteq> games_gfp" | |
| 56 | proof - | |
| 57 | have "games_lfp \<subseteq> fixgames games_lfp" | |
| 58 | by (simp add: games_lfp_unfold[symmetric]) | |
| 59 | then show ?thesis | |
| 60 | by (simp add: games_gfp_def gfp_upperbound) | |
| 61 | qed | |
| 62 | ||
| 63 | lemma games_option_stable: | |
| 64 | assumes fixgames: "games = fixgames games" | |
| 65 | and g: "g \<in> games" | |
| 66 | and opt: "left_option g opt \<or> right_option g opt" | |
| 67 | shows "opt \<in> games" | |
| 68 | proof - | |
| 69 | from g fixgames have "g \<in> fixgames games" by auto | |
| 70 | then have "\<exists> l r. g = Opair l r \<and> explode l \<subseteq> games \<and> explode r \<subseteq> games" | |
| 71 | by (simp add: fixgames_def) | |
| 72 | then obtain l where "\<exists> r. g = Opair l r \<and> explode l \<subseteq> games \<and> explode r \<subseteq> games" .. | |
| 73 | then obtain r where lr: "g = Opair l r \<and> explode l \<subseteq> games \<and> explode r \<subseteq> games" .. | |
| 74 | with opt show ?thesis | |
| 75 | by (auto intro: Elem_explode_in simp add: left_option_def right_option_def Fst Snd) | |
| 76 | qed | |
| 77 | ||
| 78 | lemma option2elem: "(opt,g) \<in> is_option_of \<Longrightarrow> \<exists> u v. Elem opt u \<and> Elem u v \<and> Elem v g" | |
| 79 | apply (simp add: is_option_of_def) | |
| 80 | apply (subgoal_tac "(g \<in> games_gfp) = (g \<in> (fixgames games_gfp))") | |
| 81 | prefer 2 | |
| 82 | apply (simp add: games_gfp_unfold[symmetric]) | |
| 83 | apply (auto simp add: fixgames_def left_option_def right_option_def Fst Snd) | |
| 84 | apply (rule_tac x=l in exI, insert Elem_Opair_exists, blast) | |
| 85 | apply (rule_tac x=r in exI, insert Elem_Opair_exists, blast) | |
| 86 | done | |
| 87 | ||
| 88 | lemma is_option_of_subset_is_Elem_of: "is_option_of \<subseteq> (is_Elem_of^+)" | |
| 89 | proof - | |
| 90 |   {
 | |
| 91 | fix opt | |
| 92 | fix g | |
| 93 | assume "(opt, g) \<in> is_option_of" | |
| 94 | then have "\<exists> u v. (opt, u) \<in> (is_Elem_of^+) \<and> (u,v) \<in> (is_Elem_of^+) \<and> (v,g) \<in> (is_Elem_of^+)" | |
| 95 | apply - | |
| 96 | apply (drule option2elem) | |
| 97 | apply (auto simp add: r_into_trancl' is_Elem_of_def) | |
| 98 | done | |
| 99 | then have "(opt, g) \<in> (is_Elem_of^+)" | |
| 100 | by (blast intro: trancl_into_rtrancl trancl_rtrancl_trancl) | |
| 101 | } | |
| 102 | then show ?thesis by auto | |
| 103 | qed | |
| 104 | ||
| 105 | lemma wfzf_is_option_of: "wfzf is_option_of" | |
| 106 | proof - | |
| 107 | have "wfzf (is_Elem_of^+)" by (simp add: wfzf_trancl wfzf_is_Elem_of) | |
| 108 | then show ?thesis | |
| 109 | apply (rule wfzf_subset) | |
| 110 | apply (rule is_option_of_subset_is_Elem_of) | |
| 111 | done | |
| 112 | qed | |
| 113 | ||
| 114 | lemma games_gfp_imp_lfp: "g \<in> games_gfp \<longrightarrow> g \<in> games_lfp" | |
| 115 | proof - | |
| 116 | have unfold_gfp: "\<And> x. x \<in> games_gfp \<Longrightarrow> x \<in> (fixgames games_gfp)" | |
| 117 | by (simp add: games_gfp_unfold[symmetric]) | |
| 118 | have unfold_lfp: "\<And> x. (x \<in> games_lfp) = (x \<in> (fixgames games_lfp))" | |
| 119 | by (simp add: games_lfp_unfold[symmetric]) | |
| 120 | show ?thesis | |
| 121 | apply (rule wf_induct[OF wfzf_implies_wf[OF wfzf_is_option_of]]) | |
| 122 | apply (auto simp add: is_option_of_def) | |
| 123 | apply (drule_tac unfold_gfp) | |
| 124 | apply (simp add: fixgames_def) | |
| 125 | apply (auto simp add: left_option_def Fst right_option_def Snd) | |
| 126 | apply (subgoal_tac "explode l \<subseteq> games_lfp") | |
| 127 | apply (subgoal_tac "explode r \<subseteq> games_lfp") | |
| 128 | apply (subst unfold_lfp) | |
| 129 | apply (auto simp add: fixgames_def) | |
| 130 | apply (simp_all add: explode_Elem Elem_explode_in) | |
| 131 | done | |
| 132 | qed | |
| 133 | ||
| 134 | theorem games_lfp_eq_gfp: "games_lfp = games_gfp" | |
| 135 | apply (auto simp add: games_gfp_imp_lfp) | |
| 136 | apply (insert games_lfp_subset_gfp) | |
| 137 | apply auto | |
| 138 | done | |
| 139 | ||
| 140 | theorem unique_games: "(g = fixgames g) = (g = games_lfp)" | |
| 141 | proof - | |
| 142 |   {
 | |
| 143 | fix g | |
| 144 | assume g: "g = fixgames g" | |
| 145 | from g have "fixgames g \<subseteq> g" by auto | |
| 146 | then have l:"games_lfp \<subseteq> g" | |
| 147 | by (simp add: games_lfp_def lfp_lowerbound) | |
| 148 | from g have "g \<subseteq> fixgames g" by auto | |
| 149 | then have u:"g \<subseteq> games_gfp" | |
| 150 | by (simp add: games_gfp_def gfp_upperbound) | |
| 151 | from l u games_lfp_eq_gfp[symmetric] have "g = games_lfp" | |
| 152 | by auto | |
| 153 | } | |
| 154 | note games = this | |
| 155 | show ?thesis | |
| 156 | apply (rule iff[rule_format]) | |
| 157 | apply (erule games) | |
| 158 | apply (simp add: games_lfp_unfold[symmetric]) | |
| 159 | done | |
| 160 | qed | |
| 161 | ||
| 162 | lemma games_lfp_option_stable: | |
| 163 | assumes g: "g \<in> games_lfp" | |
| 164 | and opt: "left_option g opt \<or> right_option g opt" | |
| 165 | shows "opt \<in> games_lfp" | |
| 166 | apply (rule games_option_stable[where g=g]) | |
| 167 | apply (simp add: games_lfp_unfold[symmetric]) | |
| 41528 | 168 | apply (simp_all add: assms) | 
| 19203 | 169 | done | 
| 170 | ||
| 171 | lemma is_option_of_imp_games: | |
| 172 | assumes hyp: "(opt, g) \<in> is_option_of" | |
| 173 | shows "opt \<in> games_lfp \<and> g \<in> games_lfp" | |
| 174 | proof - | |
| 175 | from hyp have g_game: "g \<in> games_lfp" | |
| 176 | by (simp add: is_option_of_def games_lfp_eq_gfp) | |
| 177 | from hyp have "left_option g opt \<or> right_option g opt" | |
| 178 | by (auto simp add: is_option_of_def) | |
| 179 | with g_game games_lfp_option_stable[OF g_game, OF this] show ?thesis | |
| 180 | by auto | |
| 181 | qed | |
| 182 | ||
| 183 | lemma games_lfp_represent: "x \<in> games_lfp \<Longrightarrow> \<exists> l r. x = Opair l r" | |
| 184 | apply (rule exI[where x="Fst x"]) | |
| 185 | apply (rule exI[where x="Snd x"]) | |
| 186 | apply (subgoal_tac "x \<in> (fixgames games_lfp)") | |
| 187 | apply (simp add: fixgames_def) | |
| 188 | apply (auto simp add: Fst Snd) | |
| 189 | apply (simp add: games_lfp_unfold[symmetric]) | |
| 190 | done | |
| 191 | ||
| 192 | typedef game = games_lfp | |
| 193 | by (blast intro: games_lfp_nonempty) | |
| 194 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35028diff
changeset | 195 | definition left_options :: "game \<Rightarrow> game zet" where | 
| 19203 | 196 | "left_options g \<equiv> zimage Abs_game (zexplode (Fst (Rep_game g)))" | 
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35028diff
changeset | 197 | |
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35028diff
changeset | 198 | definition right_options :: "game \<Rightarrow> game zet" where | 
| 19203 | 199 | "right_options g \<equiv> zimage Abs_game (zexplode (Snd (Rep_game g)))" | 
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35028diff
changeset | 200 | |
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35028diff
changeset | 201 | definition options :: "game \<Rightarrow> game zet" where | 
| 19203 | 202 | "options g \<equiv> zunion (left_options g) (right_options g)" | 
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35028diff
changeset | 203 | |
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35028diff
changeset | 204 | definition Game :: "game zet \<Rightarrow> game zet \<Rightarrow> game" where | 
| 19203 | 205 | "Game L R \<equiv> Abs_game (Opair (zimplode (zimage Rep_game L)) (zimplode (zimage Rep_game R)))" | 
| 206 | ||
| 207 | lemma Repl_Rep_game_Abs_game: "\<forall> e. Elem e z \<longrightarrow> e \<in> games_lfp \<Longrightarrow> Repl z (Rep_game o Abs_game) = z" | |
| 208 | apply (subst Ext) | |
| 209 | apply (simp add: Repl) | |
| 210 | apply auto | |
| 211 | apply (subst Abs_game_inverse, simp_all add: game_def) | |
| 212 | apply (rule_tac x=za in exI) | |
| 213 | apply (subst Abs_game_inverse, simp_all add: game_def) | |
| 214 | done | |
| 215 | ||
| 216 | lemma game_split: "g = Game (left_options g) (right_options g)" | |
| 217 | proof - | |
| 218 | have "\<exists> l r. Rep_game g = Opair l r" | |
| 219 | apply (insert Rep_game[of g]) | |
| 220 | apply (simp add: game_def games_lfp_represent) | |
| 221 | done | |
| 222 | then obtain l r where lr: "Rep_game g = Opair l r" by auto | |
| 223 | have partizan_g: "Rep_game g \<in> games_lfp" | |
| 224 | apply (insert Rep_game[of g]) | |
| 225 | apply (simp add: game_def) | |
| 226 | done | |
| 227 | have "\<forall> e. Elem e l \<longrightarrow> left_option (Rep_game g) e" | |
| 228 | by (simp add: lr left_option_def Fst) | |
| 229 | then have partizan_l: "\<forall> e. Elem e l \<longrightarrow> e \<in> games_lfp" | |
| 230 | apply auto | |
| 231 | apply (rule games_lfp_option_stable[where g="Rep_game g", OF partizan_g]) | |
| 232 | apply auto | |
| 233 | done | |
| 234 | have "\<forall> e. Elem e r \<longrightarrow> right_option (Rep_game g) e" | |
| 235 | by (simp add: lr right_option_def Snd) | |
| 236 | then have partizan_r: "\<forall> e. Elem e r \<longrightarrow> e \<in> games_lfp" | |
| 237 | apply auto | |
| 238 | apply (rule games_lfp_option_stable[where g="Rep_game g", OF partizan_g]) | |
| 239 | apply auto | |
| 240 | done | |
| 241 | let ?L = "zimage (Abs_game) (zexplode l)" | |
| 242 | let ?R = "zimage (Abs_game) (zexplode r)" | |
| 243 | have L:"?L = left_options g" | |
| 244 | by (simp add: left_options_def lr Fst) | |
| 245 | have R:"?R = right_options g" | |
| 246 | by (simp add: right_options_def lr Snd) | |
| 247 | have "g = Game ?L ?R" | |
| 248 | apply (simp add: Game_def Rep_game_inject[symmetric] comp_zimage_eq zimage_zexplode_eq zimplode_zexplode) | |
| 249 | apply (simp add: Repl_Rep_game_Abs_game partizan_l partizan_r) | |
| 250 | apply (subst Abs_game_inverse) | |
| 251 | apply (simp_all add: lr[symmetric] Rep_game) | |
| 252 | done | |
| 253 | then show ?thesis | |
| 254 | by (simp add: L R) | |
| 255 | qed | |
| 256 | ||
| 257 | lemma Opair_in_games_lfp: | |
| 258 | assumes l: "explode l \<subseteq> games_lfp" | |
| 259 | and r: "explode r \<subseteq> games_lfp" | |
| 260 | shows "Opair l r \<in> games_lfp" | |
| 261 | proof - | |
| 262 | note f = unique_games[of games_lfp, simplified] | |
| 263 | show ?thesis | |
| 264 | apply (subst f) | |
| 265 | apply (simp add: fixgames_def) | |
| 266 | apply (rule exI[where x=l]) | |
| 267 | apply (rule exI[where x=r]) | |
| 268 | apply (auto simp add: l r) | |
| 269 | done | |
| 270 | qed | |
| 271 | ||
| 272 | lemma left_options[simp]: "left_options (Game l r) = l" | |
| 273 | apply (simp add: left_options_def Game_def) | |
| 274 | apply (subst Abs_game_inverse) | |
| 275 | apply (simp add: game_def) | |
| 276 | apply (rule Opair_in_games_lfp) | |
| 277 | apply (auto simp add: explode_Elem Elem_zimplode zimage_iff Rep_game[simplified game_def]) | |
| 278 | apply (simp add: Fst zexplode_zimplode comp_zimage_eq) | |
| 279 | apply (simp add: zet_ext_eq zimage_iff Rep_game_inverse) | |
| 280 | done | |
| 281 | ||
| 282 | lemma right_options[simp]: "right_options (Game l r) = r" | |
| 283 | apply (simp add: right_options_def Game_def) | |
| 284 | apply (subst Abs_game_inverse) | |
| 285 | apply (simp add: game_def) | |
| 286 | apply (rule Opair_in_games_lfp) | |
| 287 | apply (auto simp add: explode_Elem Elem_zimplode zimage_iff Rep_game[simplified game_def]) | |
| 288 | apply (simp add: Snd zexplode_zimplode comp_zimage_eq) | |
| 289 | apply (simp add: zet_ext_eq zimage_iff Rep_game_inverse) | |
| 290 | done | |
| 291 | ||
| 292 | lemma Game_ext: "(Game l1 r1 = Game l2 r2) = ((l1 = l2) \<and> (r1 = r2))" | |
| 293 | apply auto | |
| 294 | apply (subst left_options[where l=l1 and r=r1,symmetric]) | |
| 295 | apply (subst left_options[where l=l2 and r=r2,symmetric]) | |
| 296 | apply simp | |
| 297 | apply (subst right_options[where l=l1 and r=r1,symmetric]) | |
| 298 | apply (subst right_options[where l=l2 and r=r2,symmetric]) | |
| 299 | apply simp | |
| 300 | done | |
| 301 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35028diff
changeset | 302 | definition option_of :: "(game * game) set" where | 
| 19203 | 303 | "option_of \<equiv> image (\<lambda> (option, g). (Abs_game option, Abs_game g)) is_option_of" | 
| 304 | ||
| 305 | lemma option_to_is_option_of: "((option, g) \<in> option_of) = ((Rep_game option, Rep_game g) \<in> is_option_of)" | |
| 306 | apply (auto simp add: option_of_def) | |
| 307 | apply (subst Abs_game_inverse) | |
| 308 | apply (simp add: is_option_of_imp_games game_def) | |
| 309 | apply (subst Abs_game_inverse) | |
| 310 | apply (simp add: is_option_of_imp_games game_def) | |
| 311 | apply simp | |
| 312 | apply (auto simp add: Bex_def image_def) | |
| 313 | apply (rule exI[where x="Rep_game option"]) | |
| 314 | apply (rule exI[where x="Rep_game g"]) | |
| 315 | apply (simp add: Rep_game_inverse) | |
| 316 | done | |
| 317 | ||
| 318 | lemma wf_is_option_of: "wf is_option_of" | |
| 319 | apply (rule wfzf_implies_wf) | |
| 320 | apply (simp add: wfzf_is_option_of) | |
| 321 | done | |
| 322 | ||
| 323 | lemma wf_option_of[recdef_wf, simp, intro]: "wf option_of" | |
| 324 | proof - | |
| 325 | have option_of: "option_of = inv_image is_option_of Rep_game" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
35440diff
changeset | 326 | apply (rule set_eqI) | 
| 19203 | 327 | apply (case_tac "x") | 
| 19769 
c40ce2de2020
Added [simp]-lemmas "in_inv_image" and "in_lex_prod" in the spirit of "in_measure".
 krauss parents: 
19203diff
changeset | 328 | by (simp add: option_to_is_option_of) | 
| 19203 | 329 | show ?thesis | 
| 330 | apply (simp add: option_of) | |
| 331 | apply (auto intro: wf_inv_image wf_is_option_of) | |
| 332 | done | |
| 333 | qed | |
| 334 | ||
| 335 | lemma right_option_is_option[simp, intro]: "zin x (right_options g) \<Longrightarrow> zin x (options g)" | |
| 336 | by (simp add: options_def zunion) | |
| 337 | ||
| 338 | lemma left_option_is_option[simp, intro]: "zin x (left_options g) \<Longrightarrow> zin x (options g)" | |
| 339 | by (simp add: options_def zunion) | |
| 340 | ||
| 341 | lemma zin_options[simp, intro]: "zin x (options g) \<Longrightarrow> (x, g) \<in> option_of" | |
| 342 | apply (simp add: options_def zunion left_options_def right_options_def option_of_def | |
| 343 | image_def is_option_of_def zimage_iff zin_zexplode_eq) | |
| 344 | apply (cases g) | |
| 345 | apply (cases x) | |
| 346 | apply (auto simp add: Abs_game_inverse games_lfp_eq_gfp[symmetric] game_def | |
| 347 | right_option_def[symmetric] left_option_def[symmetric]) | |
| 348 | done | |
| 349 | ||
| 35440 | 350 | function | 
| 19203 | 351 | neg_game :: "game \<Rightarrow> game" | 
| 35440 | 352 | where | 
| 353 | [simp del]: "neg_game g = Game (zimage neg_game (right_options g)) (zimage neg_game (left_options g))" | |
| 354 | by auto | |
| 355 | termination by (relation "option_of") auto | |
| 19203 | 356 | |
| 357 | lemma "neg_game (neg_game g) = g" | |
| 358 | apply (induct g rule: neg_game.induct) | |
| 359 | apply (subst neg_game.simps)+ | |
| 360 | apply (simp add: right_options left_options comp_zimage_eq) | |
| 361 | apply (subgoal_tac "zimage (neg_game o neg_game) (left_options g) = left_options g") | |
| 362 | apply (subgoal_tac "zimage (neg_game o neg_game) (right_options g) = right_options g") | |
| 363 | apply (auto simp add: game_split[symmetric]) | |
| 364 | apply (auto simp add: zet_ext_eq zimage_iff) | |
| 365 | done | |
| 366 | ||
| 35440 | 367 | function | 
| 19203 | 368 | ge_game :: "(game * game) \<Rightarrow> bool" | 
| 35440 | 369 | where | 
| 370 | [simp del]: "ge_game (G, H) = (\<forall> x. if zin x (right_options G) then ( | |
| 19203 | 371 | if zin x (left_options H) then \<not> (ge_game (H, x) \<or> (ge_game (x, G))) | 
| 372 | else \<not> (ge_game (H, x))) | |
| 373 | else (if zin x (left_options H) then \<not> (ge_game (x, G)) else True))" | |
| 35440 | 374 | by auto | 
| 375 | termination by (relation "(gprod_2_1 option_of)") | |
| 376 | (simp, auto simp: gprod_2_1_def) | |
| 19203 | 377 | |
| 26304 | 378 | lemma ge_game_eq: "ge_game (G, H) = (\<forall> x. (zin x (right_options G) \<longrightarrow> \<not> ge_game (H, x)) \<and> (zin x (left_options H) \<longrightarrow> \<not> ge_game (x, G)))" | 
| 19203 | 379 | apply (subst ge_game.simps[where G=G and H=H]) | 
| 380 | apply (auto) | |
| 381 | done | |
| 382 | ||
| 383 | lemma ge_game_leftright_refl[rule_format]: | |
| 384 | "\<forall> y. (zin y (right_options x) \<longrightarrow> \<not> ge_game (x, y)) \<and> (zin y (left_options x) \<longrightarrow> \<not> (ge_game (y, x))) \<and> ge_game (x, x)" | |
| 385 | proof (induct x rule: wf_induct[OF wf_option_of]) | |
| 386 | case (1 "g") | |
| 387 |   { 
 | |
| 388 | fix y | |
| 389 | assume y: "zin y (right_options g)" | |
| 390 | have "\<not> ge_game (g, y)" | |
| 391 | proof - | |
| 392 | have "(y, g) \<in> option_of" by (auto intro: y) | |
| 393 | with 1 have "ge_game (y, y)" by auto | |
| 26304 | 394 | with y show ?thesis by (subst ge_game_eq, auto) | 
| 19203 | 395 | qed | 
| 396 | } | |
| 397 | note right = this | |
| 398 |   { 
 | |
| 399 | fix y | |
| 400 | assume y: "zin y (left_options g)" | |
| 401 | have "\<not> ge_game (y, g)" | |
| 402 | proof - | |
| 403 | have "(y, g) \<in> option_of" by (auto intro: y) | |
| 404 | with 1 have "ge_game (y, y)" by auto | |
| 26304 | 405 | with y show ?thesis by (subst ge_game_eq, auto) | 
| 19203 | 406 | qed | 
| 407 | } | |
| 408 | note left = this | |
| 409 | from left right show ?case | |
| 26304 | 410 | by (auto, subst ge_game_eq, auto) | 
| 19203 | 411 | qed | 
| 412 | ||
| 413 | lemma ge_game_refl: "ge_game (x,x)" by (simp add: ge_game_leftright_refl) | |
| 414 | ||
| 415 | lemma "\<forall> y. (zin y (right_options x) \<longrightarrow> \<not> ge_game (x, y)) \<and> (zin y (left_options x) \<longrightarrow> \<not> (ge_game (y, x))) \<and> ge_game (x, x)" | |
| 416 | proof (induct x rule: wf_induct[OF wf_option_of]) | |
| 417 | case (1 "g") | |
| 418 | show ?case | |
| 419 | proof (auto) | |
| 420 |     {case (goal1 y) 
 | |
| 421 | from goal1 have "(y, g) \<in> option_of" by (auto) | |
| 422 | with 1 have "ge_game (y, y)" by auto | |
| 423 | with goal1 have "\<not> ge_game (g, y)" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 424 | by (subst ge_game_eq, auto) | 
| 19203 | 425 | with goal1 show ?case by auto} | 
| 426 | note right = this | |
| 427 |     {case (goal2 y)
 | |
| 428 | from goal2 have "(y, g) \<in> option_of" by (auto) | |
| 429 | with 1 have "ge_game (y, y)" by auto | |
| 430 | with goal2 have "\<not> ge_game (y, g)" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 431 | by (subst ge_game_eq, auto) | 
| 19203 | 432 | with goal2 show ?case by auto} | 
| 433 | note left = this | |
| 434 |     {case goal3
 | |
| 435 | from left right show ?case | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 436 | by (subst ge_game_eq, auto) | 
| 19203 | 437 | } | 
| 438 | qed | |
| 439 | qed | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 440 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35028diff
changeset | 441 | definition eq_game :: "game \<Rightarrow> game \<Rightarrow> bool" where | 
| 19203 | 442 | "eq_game G H \<equiv> ge_game (G, H) \<and> ge_game (H, G)" | 
| 443 | ||
| 444 | lemma eq_game_sym: "(eq_game G H) = (eq_game H G)" | |
| 445 | by (auto simp add: eq_game_def) | |
| 446 | ||
| 447 | lemma eq_game_refl: "eq_game G G" | |
| 448 | by (simp add: ge_game_refl eq_game_def) | |
| 449 | ||
| 23771 | 450 | lemma induct_game: "(\<And>x. \<forall>y. (y, x) \<in> lprod option_of \<longrightarrow> P y \<Longrightarrow> P x) \<Longrightarrow> P a" | 
| 451 | by (erule wf_induct[OF wf_lprod[OF wf_option_of]]) | |
| 19203 | 452 | |
| 453 | lemma ge_game_trans: | |
| 454 | assumes "ge_game (x, y)" "ge_game (y, z)" | |
| 455 | shows "ge_game (x, z)" | |
| 456 | proof - | |
| 457 |   { 
 | |
| 458 | fix a | |
| 459 | have "\<forall> x y z. a = [x,y,z] \<longrightarrow> ge_game (x,y) \<longrightarrow> ge_game (y,z) \<longrightarrow> ge_game (x, z)" | |
| 460 | proof (induct a rule: induct_game) | |
| 461 | case (1 a) | |
| 462 | show ?case | |
| 463 | proof (rule allI | rule impI)+ | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 464 | case (goal1 x y z) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 465 | show ?case | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 466 | proof - | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 467 |           { fix xr
 | 
| 19203 | 468 | assume xr:"zin xr (right_options x)" | 
| 41528 | 469 | assume a: "ge_game (z, xr)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 470 | have "ge_game (y, xr)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 471 | apply (rule 1[rule_format, where y="[y,z,xr]"]) | 
| 41528 | 472 | apply (auto intro: xr lprod_3_1 simp add: goal1 a) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 473 | done | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 474 | moreover from xr have "\<not> ge_game (y, xr)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 475 | by (simp add: goal1(2)[simplified ge_game_eq[of x y], rule_format, of xr, simplified xr]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 476 | ultimately have "False" by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 477 | } | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 478 | note xr = this | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 479 |           { fix zl
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 480 | assume zl:"zin zl (left_options z)" | 
| 41528 | 481 | assume a: "ge_game (zl, x)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 482 | have "ge_game (zl, y)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 483 | apply (rule 1[rule_format, where y="[zl,x,y]"]) | 
| 41528 | 484 | apply (auto intro: zl lprod_3_2 simp add: goal1 a) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 485 | done | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 486 | moreover from zl have "\<not> ge_game (zl, y)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 487 | by (simp add: goal1(3)[simplified ge_game_eq[of y z], rule_format, of zl, simplified zl]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 488 | ultimately have "False" by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 489 | } | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 490 | note zl = this | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 491 | show ?thesis | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 492 | by (auto simp add: ge_game_eq[of x z] intro: xr zl) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 493 | qed | 
| 19203 | 494 | qed | 
| 495 | qed | |
| 496 | } | |
| 497 | note trans = this[of "[x, y, z]", simplified, rule_format] | |
| 41528 | 498 | with assms show ?thesis by blast | 
| 19203 | 499 | qed | 
| 500 | ||
| 501 | lemma eq_game_trans: "eq_game a b \<Longrightarrow> eq_game b c \<Longrightarrow> eq_game a c" | |
| 502 | by (auto simp add: eq_game_def intro: ge_game_trans) | |
| 503 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35028diff
changeset | 504 | definition zero_game :: game | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35028diff
changeset | 505 | where "zero_game \<equiv> Game zempty zempty" | 
| 19203 | 506 | |
| 35440 | 507 | function | 
| 508 | plus_game :: "game \<Rightarrow> game \<Rightarrow> game" | |
| 509 | where | |
| 510 | [simp del]: "plus_game G H = Game (zunion (zimage (\<lambda> g. plus_game g H) (left_options G)) | |
| 511 | (zimage (\<lambda> h. plus_game G h) (left_options H))) | |
| 512 | (zunion (zimage (\<lambda> g. plus_game g H) (right_options G)) | |
| 513 | (zimage (\<lambda> h. plus_game G h) (right_options H)))" | |
| 514 | by auto | |
| 515 | termination by (relation "gprod_2_2 option_of") | |
| 516 | (simp, auto simp: gprod_2_2_def) | |
| 19203 | 517 | |
| 35440 | 518 | lemma plus_game_comm: "plus_game G H = plus_game H G" | 
| 19203 | 519 | proof (induct G H rule: plus_game.induct) | 
| 520 | case (1 G H) | |
| 521 | show ?case | |
| 522 | by (auto simp add: | |
| 523 | plus_game.simps[where G=G and H=H] | |
| 524 | plus_game.simps[where G=H and H=G] | |
| 41528 | 525 | Game_ext zet_ext_eq zunion zimage_iff 1) | 
| 19203 | 526 | qed | 
| 527 | ||
| 528 | lemma game_ext_eq: "(G = H) = (left_options G = left_options H \<and> right_options G = right_options H)" | |
| 529 | proof - | |
| 530 | have "(G = H) = (Game (left_options G) (right_options G) = Game (left_options H) (right_options H))" | |
| 531 | by (simp add: game_split[symmetric]) | |
| 532 | then show ?thesis by auto | |
| 533 | qed | |
| 534 | ||
| 535 | lemma left_zero_game[simp]: "left_options (zero_game) = zempty" | |
| 536 | by (simp add: zero_game_def) | |
| 537 | ||
| 538 | lemma right_zero_game[simp]: "right_options (zero_game) = zempty" | |
| 539 | by (simp add: zero_game_def) | |
| 540 | ||
| 35440 | 541 | lemma plus_game_zero_right[simp]: "plus_game G zero_game = G" | 
| 19203 | 542 | proof - | 
| 543 |   { 
 | |
| 544 | fix G H | |
| 35440 | 545 | have "H = zero_game \<longrightarrow> plus_game G H = G " | 
| 19203 | 546 | proof (induct G H rule: plus_game.induct, rule impI) | 
| 547 | case (goal1 G H) | |
| 41528 | 548 | note induct_hyp = this[simplified goal1, simplified] and this | 
| 19203 | 549 | show ?case | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 550 | apply (simp only: plus_game.simps[where G=G and H=H]) | 
| 41528 | 551 | apply (simp add: game_ext_eq goal1) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 552 | apply (auto simp add: | 
| 35440 | 553 | zimage_cong[where f = "\<lambda> g. plus_game g zero_game" and g = "id"] | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 554 | induct_hyp) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 555 | done | 
| 19203 | 556 | qed | 
| 557 | } | |
| 558 | then show ?thesis by auto | |
| 559 | qed | |
| 560 | ||
| 35440 | 561 | lemma plus_game_zero_left: "plus_game zero_game G = G" | 
| 19203 | 562 | by (simp add: plus_game_comm) | 
| 563 | ||
| 564 | lemma left_imp_options[simp]: "zin opt (left_options g) \<Longrightarrow> zin opt (options g)" | |
| 565 | by (simp add: options_def zunion) | |
| 566 | ||
| 567 | lemma right_imp_options[simp]: "zin opt (right_options g) \<Longrightarrow> zin opt (options g)" | |
| 568 | by (simp add: options_def zunion) | |
| 569 | ||
| 570 | lemma left_options_plus: | |
| 35440 | 571 | "left_options (plus_game u v) = zunion (zimage (\<lambda>g. plus_game g v) (left_options u)) (zimage (\<lambda>h. plus_game u h) (left_options v))" | 
| 19203 | 572 | by (subst plus_game.simps, simp) | 
| 573 | ||
| 574 | lemma right_options_plus: | |
| 35440 | 575 | "right_options (plus_game u v) = zunion (zimage (\<lambda>g. plus_game g v) (right_options u)) (zimage (\<lambda>h. plus_game u h) (right_options v))" | 
| 19203 | 576 | by (subst plus_game.simps, simp) | 
| 577 | ||
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 578 | lemma left_options_neg: "left_options (neg_game u) = zimage neg_game (right_options u)" | 
| 19203 | 579 | by (subst neg_game.simps, simp) | 
| 580 | ||
| 581 | lemma right_options_neg: "right_options (neg_game u) = zimage neg_game (left_options u)" | |
| 582 | by (subst neg_game.simps, simp) | |
| 583 | ||
| 35440 | 584 | lemma plus_game_assoc: "plus_game (plus_game F G) H = plus_game F (plus_game G H)" | 
| 19203 | 585 | proof - | 
| 586 |   { 
 | |
| 587 | fix a | |
| 35440 | 588 | have "\<forall> F G H. a = [F, G, H] \<longrightarrow> plus_game (plus_game F G) H = plus_game F (plus_game G H)" | 
| 19203 | 589 | proof (induct a rule: induct_game, (rule impI | rule allI)+) | 
| 590 | case (goal1 x F G H) | |
| 35440 | 591 | let ?L = "plus_game (plus_game F G) H" | 
| 592 | let ?R = "plus_game F (plus_game G H)" | |
| 19203 | 593 | note options_plus = left_options_plus right_options_plus | 
| 594 |       {
 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 595 | fix opt | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 596 | note hyp = goal1(1)[simplified goal1(2), rule_format] | 
| 35440 | 597 | have F: "zin opt (options F) \<Longrightarrow> plus_game (plus_game opt G) H = plus_game opt (plus_game G H)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 598 | by (blast intro: hyp lprod_3_3) | 
| 35440 | 599 | have G: "zin opt (options G) \<Longrightarrow> plus_game (plus_game F opt) H = plus_game F (plus_game opt H)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 600 | by (blast intro: hyp lprod_3_4) | 
| 35440 | 601 | have H: "zin opt (options H) \<Longrightarrow> plus_game (plus_game F G) opt = plus_game F (plus_game G opt)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 602 | by (blast intro: hyp lprod_3_5) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 603 | note F and G and H | 
| 19203 | 604 | } | 
| 605 | note induct_hyp = this | |
| 606 | have "left_options ?L = left_options ?R \<and> right_options ?L = right_options ?R" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 607 | by (auto simp add: | 
| 35440 | 608 | plus_game.simps[where G="plus_game F G" and H=H] | 
| 609 | plus_game.simps[where G="F" and H="plus_game G H"] | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 610 | zet_ext_eq zunion zimage_iff options_plus | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 611 | induct_hyp left_imp_options right_imp_options) | 
| 19203 | 612 | then show ?case | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 613 | by (simp add: game_ext_eq) | 
| 19203 | 614 | qed | 
| 615 | } | |
| 616 | then show ?thesis by auto | |
| 617 | qed | |
| 618 | ||
| 35440 | 619 | lemma neg_plus_game: "neg_game (plus_game G H) = plus_game (neg_game G) (neg_game H)" | 
| 19203 | 620 | proof (induct G H rule: plus_game.induct) | 
| 621 | case (1 G H) | |
| 622 | note opt_ops = | |
| 623 | left_options_plus right_options_plus | |
| 624 | left_options_neg right_options_neg | |
| 625 | show ?case | |
| 626 | by (auto simp add: opt_ops | |
| 35440 | 627 | neg_game.simps[of "plus_game G H"] | 
| 19203 | 628 | plus_game.simps[of "neg_game G" "neg_game H"] | 
| 41528 | 629 | Game_ext zet_ext_eq zunion zimage_iff 1) | 
| 19203 | 630 | qed | 
| 631 | ||
| 35440 | 632 | lemma eq_game_plus_inverse: "eq_game (plus_game x (neg_game x)) zero_game" | 
| 19203 | 633 | proof (induct x rule: wf_induct[OF wf_option_of]) | 
| 634 | case (goal1 x) | |
| 635 |   { fix y
 | |
| 636 | assume "zin y (options x)" | |
| 35440 | 637 | then have "eq_game (plus_game y (neg_game y)) zero_game" | 
| 41528 | 638 | by (auto simp add: goal1) | 
| 19203 | 639 | } | 
| 640 | note ihyp = this | |
| 641 |   {
 | |
| 642 | fix y | |
| 643 | assume y: "zin y (right_options x)" | |
| 35440 | 644 | have "\<not> (ge_game (zero_game, plus_game y (neg_game x)))" | 
| 19203 | 645 | apply (subst ge_game.simps, simp) | 
| 35440 | 646 | apply (rule exI[where x="plus_game y (neg_game y)"]) | 
| 19203 | 647 | apply (auto simp add: ihyp[of y, simplified y right_imp_options eq_game_def]) | 
| 41528 | 648 | apply (auto simp add: left_options_plus left_options_neg zunion zimage_iff intro: y) | 
| 19203 | 649 | done | 
| 650 | } | |
| 651 | note case1 = this | |
| 652 |   {
 | |
| 653 | fix y | |
| 654 | assume y: "zin y (left_options x)" | |
| 35440 | 655 | have "\<not> (ge_game (zero_game, plus_game x (neg_game y)))" | 
| 19203 | 656 | apply (subst ge_game.simps, simp) | 
| 35440 | 657 | apply (rule exI[where x="plus_game y (neg_game y)"]) | 
| 19203 | 658 | apply (auto simp add: ihyp[of y, simplified y left_imp_options eq_game_def]) | 
| 41528 | 659 | apply (auto simp add: left_options_plus zunion zimage_iff intro: y) | 
| 19203 | 660 | done | 
| 661 | } | |
| 662 | note case2 = this | |
| 663 |   {
 | |
| 664 | fix y | |
| 665 | assume y: "zin y (left_options x)" | |
| 35440 | 666 | have "\<not> (ge_game (plus_game y (neg_game x), zero_game))" | 
| 19203 | 667 | apply (subst ge_game.simps, simp) | 
| 35440 | 668 | apply (rule exI[where x="plus_game y (neg_game y)"]) | 
| 19203 | 669 | apply (auto simp add: ihyp[of y, simplified y left_imp_options eq_game_def]) | 
| 41528 | 670 | apply (auto simp add: right_options_plus right_options_neg zunion zimage_iff intro: y) | 
| 19203 | 671 | done | 
| 672 | } | |
| 673 | note case3 = this | |
| 674 |   {
 | |
| 675 | fix y | |
| 676 | assume y: "zin y (right_options x)" | |
| 35440 | 677 | have "\<not> (ge_game (plus_game x (neg_game y), zero_game))" | 
| 19203 | 678 | apply (subst ge_game.simps, simp) | 
| 35440 | 679 | apply (rule exI[where x="plus_game y (neg_game y)"]) | 
| 19203 | 680 | apply (auto simp add: ihyp[of y, simplified y right_imp_options eq_game_def]) | 
| 41528 | 681 | apply (auto simp add: right_options_plus zunion zimage_iff intro: y) | 
| 19203 | 682 | done | 
| 683 | } | |
| 684 | note case4 = this | |
| 685 | show ?case | |
| 686 | apply (simp add: eq_game_def) | |
| 35440 | 687 | apply (simp add: ge_game.simps[of "plus_game x (neg_game x)" "zero_game"]) | 
| 688 | apply (simp add: ge_game.simps[of "zero_game" "plus_game x (neg_game x)"]) | |
| 19203 | 689 | apply (simp add: right_options_plus left_options_plus right_options_neg left_options_neg zunion zimage_iff) | 
| 690 | apply (auto simp add: case1 case2 case3 case4) | |
| 691 | done | |
| 692 | qed | |
| 693 | ||
| 35440 | 694 | lemma ge_plus_game_left: "ge_game (y,z) = ge_game (plus_game x y, plus_game x z)" | 
| 19203 | 695 | proof - | 
| 696 |   { fix a
 | |
| 35440 | 697 | have "\<forall> x y z. a = [x,y,z] \<longrightarrow> ge_game (y,z) = ge_game (plus_game x y, plus_game x z)" | 
| 19203 | 698 | proof (induct a rule: induct_game, (rule impI | rule allI)+) | 
| 699 | case (goal1 a x y z) | |
| 700 | note induct_hyp = goal1(1)[rule_format, simplified goal1(2)] | |
| 701 |       { 
 | |
| 35440 | 702 | assume hyp: "ge_game(plus_game x y, plus_game x z)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 703 | have "ge_game (y, z)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 704 | proof - | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 705 |           { fix yr
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 706 | assume yr: "zin yr (right_options y)" | 
| 35440 | 707 | from hyp have "\<not> (ge_game (plus_game x z, plus_game x yr))" | 
| 708 | by (auto simp add: ge_game_eq[of "plus_game x y" "plus_game x z"] | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 709 | right_options_plus zunion zimage_iff intro: yr) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 710 | then have "\<not> (ge_game (z, yr))" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 711 | apply (subst induct_hyp[where y="[x, z, yr]", of "x" "z" "yr"]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 712 | apply (simp_all add: yr lprod_3_6) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 713 | done | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 714 | } | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 715 | note yr = this | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 716 |           { fix zl
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 717 | assume zl: "zin zl (left_options z)" | 
| 35440 | 718 | from hyp have "\<not> (ge_game (plus_game x zl, plus_game x y))" | 
| 719 | by (auto simp add: ge_game_eq[of "plus_game x y" "plus_game x z"] | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 720 | left_options_plus zunion zimage_iff intro: zl) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 721 | then have "\<not> (ge_game (zl, y))" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 722 | apply (subst goal1(1)[rule_format, where y="[x, zl, y]", of "x" "zl" "y"]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 723 | apply (simp_all add: goal1(2) zl lprod_3_7) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 724 | done | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 725 | } | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 726 | note zl = this | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 727 | show "ge_game (y, z)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 728 | apply (subst ge_game_eq) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 729 | apply (auto simp add: yr zl) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 730 | done | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 731 | qed | 
| 19203 | 732 | } | 
| 733 | note right_imp_left = this | |
| 734 |       {
 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 735 | assume yz: "ge_game (y, z)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 736 |         {
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 737 | fix x' | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 738 | assume x': "zin x' (right_options x)" | 
| 35440 | 739 | assume hyp: "ge_game (plus_game x z, plus_game x' y)" | 
| 740 | then have n: "\<not> (ge_game (plus_game x' y, plus_game x' z))" | |
| 741 | by (auto simp add: ge_game_eq[of "plus_game x z" "plus_game x' y"] | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 742 | right_options_plus zunion zimage_iff intro: x') | 
| 35440 | 743 | have t: "ge_game (plus_game x' y, plus_game x' z)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 744 | apply (subst induct_hyp[symmetric]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 745 | apply (auto intro: lprod_3_3 x' yz) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 746 | done | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 747 | from n t have "False" by blast | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 748 | } | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 749 | note case1 = this | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 750 |         {
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 751 | fix x' | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 752 | assume x': "zin x' (left_options x)" | 
| 35440 | 753 | assume hyp: "ge_game (plus_game x' z, plus_game x y)" | 
| 754 | then have n: "\<not> (ge_game (plus_game x' y, plus_game x' z))" | |
| 755 | by (auto simp add: ge_game_eq[of "plus_game x' z" "plus_game x y"] | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 756 | left_options_plus zunion zimage_iff intro: x') | 
| 35440 | 757 | have t: "ge_game (plus_game x' y, plus_game x' z)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 758 | apply (subst induct_hyp[symmetric]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 759 | apply (auto intro: lprod_3_3 x' yz) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 760 | done | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 761 | from n t have "False" by blast | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 762 | } | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 763 | note case3 = this | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 764 |         {
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 765 | fix y' | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 766 | assume y': "zin y' (right_options y)" | 
| 35440 | 767 | assume hyp: "ge_game (plus_game x z, plus_game x y')" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 768 | then have "ge_game(z, y')" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 769 | apply (subst induct_hyp[of "[x, z, y']" "x" "z" "y'"]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 770 | apply (auto simp add: hyp lprod_3_6 y') | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 771 | done | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 772 | with yz have "ge_game (y, y')" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 773 | by (blast intro: ge_game_trans) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 774 | with y' have "False" by (auto simp add: ge_game_leftright_refl) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 775 | } | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 776 | note case2 = this | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 777 |         {
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 778 | fix z' | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 779 | assume z': "zin z' (left_options z)" | 
| 35440 | 780 | assume hyp: "ge_game (plus_game x z', plus_game x y)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 781 | then have "ge_game(z', y)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 782 | apply (subst induct_hyp[of "[x, z', y]" "x" "z'" "y"]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 783 | apply (auto simp add: hyp lprod_3_7 z') | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 784 | done | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 785 | with yz have "ge_game (z', z)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 786 | by (blast intro: ge_game_trans) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 787 | with z' have "False" by (auto simp add: ge_game_leftright_refl) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 788 | } | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 789 | note case4 = this | 
| 35440 | 790 | have "ge_game(plus_game x y, plus_game x z)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 791 | apply (subst ge_game_eq) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 792 | apply (auto simp add: right_options_plus left_options_plus zunion zimage_iff) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 793 | apply (auto intro: case1 case2 case3 case4) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 794 | done | 
| 19203 | 795 | } | 
| 796 | note left_imp_right = this | |
| 797 | show ?case by (auto intro: right_imp_left left_imp_right) | |
| 798 | qed | |
| 799 | } | |
| 800 | note a = this[of "[x, y, z]"] | |
| 801 | then show ?thesis by blast | |
| 802 | qed | |
| 803 | ||
| 35440 | 804 | lemma ge_plus_game_right: "ge_game (y,z) = ge_game(plus_game y x, plus_game z x)" | 
| 19203 | 805 | by (simp add: ge_plus_game_left plus_game_comm) | 
| 806 | ||
| 807 | lemma ge_neg_game: "ge_game (neg_game x, neg_game y) = ge_game (y, x)" | |
| 808 | proof - | |
| 809 |   { fix a
 | |
| 810 | have "\<forall> x y. a = [x, y] \<longrightarrow> ge_game (neg_game x, neg_game y) = ge_game (y, x)" | |
| 811 | proof (induct a rule: induct_game, (rule impI | rule allI)+) | |
| 812 | case (goal1 a x y) | |
| 813 | note ihyp = goal1(1)[rule_format, simplified goal1(2)] | |
| 814 |       { fix xl
 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 815 | assume xl: "zin xl (left_options x)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 816 | have "ge_game (neg_game y, neg_game xl) = ge_game (xl, y)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 817 | apply (subst ihyp) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 818 | apply (auto simp add: lprod_2_1 xl) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 819 | done | 
| 19203 | 820 | } | 
| 821 | note xl = this | |
| 822 |       { fix yr
 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 823 | assume yr: "zin yr (right_options y)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 824 | have "ge_game (neg_game yr, neg_game x) = ge_game (x, yr)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 825 | apply (subst ihyp) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 826 | apply (auto simp add: lprod_2_2 yr) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 827 | done | 
| 19203 | 828 | } | 
| 829 | note yr = this | |
| 830 | show ?case | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 831 | by (auto simp add: ge_game_eq[of "neg_game x" "neg_game y"] ge_game_eq[of "y" "x"] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30198diff
changeset | 832 | right_options_neg left_options_neg zimage_iff xl yr) | 
| 19203 | 833 | qed | 
| 834 | } | |
| 835 | note a = this[of "[x,y]"] | |
| 836 | then show ?thesis by blast | |
| 837 | qed | |
| 838 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35028diff
changeset | 839 | definition eq_game_rel :: "(game * game) set" where | 
| 19203 | 840 |   "eq_game_rel \<equiv> { (p, q) . eq_game p q }"
 | 
| 841 | ||
| 842 | typedef Pg = "UNIV//eq_game_rel" | |
| 843 | by (auto simp add: quotient_def) | |
| 844 | ||
| 845 | lemma equiv_eq_game[simp]: "equiv UNIV eq_game_rel" | |
| 30198 | 846 | by (auto simp add: equiv_def refl_on_def sym_def trans_def eq_game_rel_def | 
| 19203 | 847 | eq_game_sym intro: eq_game_refl eq_game_trans) | 
| 848 | ||
| 25764 | 849 | instantiation Pg :: "{ord, zero, plus, minus, uminus}"
 | 
| 850 | begin | |
| 851 | ||
| 852 | definition | |
| 853 |   Pg_zero_def: "0 = Abs_Pg (eq_game_rel `` {zero_game})"
 | |
| 854 | ||
| 855 | definition | |
| 856 | Pg_le_def: "G \<le> H \<longleftrightarrow> (\<exists> g h. g \<in> Rep_Pg G \<and> h \<in> Rep_Pg H \<and> ge_game (h, g))" | |
| 857 | ||
| 858 | definition | |
| 859 | Pg_less_def: "G < H \<longleftrightarrow> G \<le> H \<and> G \<noteq> (H::Pg)" | |
| 19203 | 860 | |
| 25764 | 861 | definition | 
| 39910 | 862 |   Pg_minus_def: "- G = the_elem (\<Union> g \<in> Rep_Pg G. {Abs_Pg (eq_game_rel `` {neg_game g})})"
 | 
| 25764 | 863 | |
| 864 | definition | |
| 39910 | 865 |   Pg_plus_def: "G + H = the_elem (\<Union> g \<in> Rep_Pg G. \<Union> h \<in> Rep_Pg H. {Abs_Pg (eq_game_rel `` {plus_game g h})})"
 | 
| 25764 | 866 | |
| 867 | definition | |
| 868 | Pg_diff_def: "G - H = G + (- (H::Pg))" | |
| 869 | ||
| 870 | instance .. | |
| 871 | ||
| 872 | end | |
| 19203 | 873 | |
| 874 | lemma Rep_Abs_eq_Pg[simp]: "Rep_Pg (Abs_Pg (eq_game_rel `` {g})) = eq_game_rel `` {g}"
 | |
| 875 | apply (subst Abs_Pg_inverse) | |
| 876 | apply (auto simp add: Pg_def quotient_def) | |
| 877 | done | |
| 878 | ||
| 879 | lemma char_Pg_le[simp]: "(Abs_Pg (eq_game_rel `` {g}) \<le> Abs_Pg (eq_game_rel `` {h})) = (ge_game (h, g))"
 | |
| 880 | apply (simp add: Pg_le_def) | |
| 881 | apply (auto simp add: eq_game_rel_def eq_game_def intro: ge_game_trans ge_game_refl) | |
| 882 | done | |
| 883 | ||
| 884 | lemma char_Pg_eq[simp]: "(Abs_Pg (eq_game_rel `` {g}) = Abs_Pg (eq_game_rel `` {h})) = (eq_game g h)"
 | |
| 885 | apply (simp add: Rep_Pg_inject [symmetric]) | |
| 886 | apply (subst eq_equiv_class_iff[of UNIV]) | |
| 887 | apply (simp_all) | |
| 888 | apply (simp add: eq_game_rel_def) | |
| 889 | done | |
| 890 | ||
| 35440 | 891 | lemma char_Pg_plus[simp]: "Abs_Pg (eq_game_rel `` {g}) + Abs_Pg (eq_game_rel `` {h}) = Abs_Pg (eq_game_rel `` {plus_game g h})"
 | 
| 19203 | 892 | proof - | 
| 35440 | 893 |   have "(\<lambda> g h. {Abs_Pg (eq_game_rel `` {plus_game g h})}) respects2 eq_game_rel" 
 | 
| 19203 | 894 | apply (simp add: congruent2_def) | 
| 895 | apply (auto simp add: eq_game_rel_def eq_game_def) | |
| 40824 | 896 | apply (rule_tac y="plus_game a ba" in ge_game_trans) | 
| 19203 | 897 | apply (simp add: ge_plus_game_left[symmetric] ge_plus_game_right[symmetric])+ | 
| 40824 | 898 | apply (rule_tac y="plus_game b aa" in ge_game_trans) | 
| 19203 | 899 | apply (simp add: ge_plus_game_left[symmetric] ge_plus_game_right[symmetric])+ | 
| 900 | done | |
| 901 | then show ?thesis | |
| 902 | by (simp add: Pg_plus_def UN_equiv_class2[OF equiv_eq_game equiv_eq_game]) | |
| 903 | qed | |
| 904 | ||
| 905 | lemma char_Pg_minus[simp]: "- Abs_Pg (eq_game_rel `` {g}) = Abs_Pg (eq_game_rel `` {neg_game g})"
 | |
| 906 | proof - | |
| 907 |   have "(\<lambda> g. {Abs_Pg (eq_game_rel `` {neg_game g})}) respects eq_game_rel"
 | |
| 908 | apply (simp add: congruent_def) | |
| 909 | apply (auto simp add: eq_game_rel_def eq_game_def ge_neg_game) | |
| 910 | done | |
| 911 | then show ?thesis | |
| 912 | by (simp add: Pg_minus_def UN_equiv_class[OF equiv_eq_game]) | |
| 913 | qed | |
| 914 | ||
| 915 | lemma eq_Abs_Pg[rule_format, cases type: Pg]: "(\<forall> g. z = Abs_Pg (eq_game_rel `` {g}) \<longrightarrow> P) \<longrightarrow> P"
 | |
| 916 | apply (cases z, simp) | |
| 917 | apply (simp add: Rep_Pg_inject[symmetric]) | |
| 918 | apply (subst Abs_Pg_inverse, simp) | |
| 919 | apply (auto simp add: Pg_def quotient_def) | |
| 920 | done | |
| 921 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32960diff
changeset | 922 | instance Pg :: ordered_ab_group_add | 
| 19203 | 923 | proof | 
| 924 | fix a b c :: Pg | |
| 925 | show "a - b = a + (- b)" by (simp add: Pg_diff_def) | |
| 926 |   {
 | |
| 927 | assume ab: "a \<le> b" | |
| 928 | assume ba: "b \<le> a" | |
| 929 | from ab ba show "a = b" | |
| 930 | apply (cases a, cases b) | |
| 931 | apply (simp add: eq_game_def) | |
| 932 | done | |
| 933 | } | |
| 27679 | 934 | then show "(a < b) = (a \<le> b \<and> \<not> b \<le> a)" by (auto simp add: Pg_less_def) | 
| 19203 | 935 | show "a + b = b + a" | 
| 936 | apply (cases a, cases b) | |
| 937 | apply (simp add: eq_game_def plus_game_comm) | |
| 938 | done | |
| 939 | show "a + b + c = a + (b + c)" | |
| 940 | apply (cases a, cases b, cases c) | |
| 941 | apply (simp add: eq_game_def plus_game_assoc) | |
| 942 | done | |
| 943 | show "0 + a = a" | |
| 944 | apply (cases a) | |
| 945 | apply (simp add: Pg_zero_def plus_game_zero_left) | |
| 946 | done | |
| 947 | show "- a + a = 0" | |
| 948 | apply (cases a) | |
| 949 | apply (simp add: Pg_zero_def eq_game_plus_inverse plus_game_comm) | |
| 950 | done | |
| 951 | show "a \<le> a" | |
| 952 | apply (cases a) | |
| 953 | apply (simp add: ge_game_refl) | |
| 954 | done | |
| 955 |   {
 | |
| 956 | assume ab: "a \<le> b" | |
| 957 | assume bc: "b \<le> c" | |
| 958 | from ab bc show "a \<le> c" | |
| 959 | apply (cases a, cases b, cases c) | |
| 960 | apply (auto intro: ge_game_trans) | |
| 961 | done | |
| 962 | } | |
| 963 |   {
 | |
| 964 | assume ab: "a \<le> b" | |
| 965 | from ab show "c + a \<le> c + b" | |
| 966 | apply (cases a, cases b, cases c) | |
| 967 | apply (simp add: ge_plus_game_left[symmetric]) | |
| 968 | done | |
| 969 | } | |
| 970 | qed | |
| 971 | ||
| 972 | end |