author | wenzelm |
Fri, 08 Feb 2019 14:42:28 +0100 | |
changeset 69794 | a19fdf64726c |
parent 68745 | 345ce5f262ea |
child 70180 | 5beca7396282 |
permissions | -rw-r--r-- |
54552
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
blanchet
parents:
54551
diff
changeset
|
1 |
(* Title: HOL/Order_Relation.thy |
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
blanchet
parents:
54551
diff
changeset
|
2 |
Author: Tobias Nipkow |
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
3 |
Author: Andrei Popescu, TU Muenchen |
54552
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
blanchet
parents:
54551
diff
changeset
|
4 |
*) |
26273 | 5 |
|
60758 | 6 |
section \<open>Orders as Relations\<close> |
26273 | 7 |
|
8 |
theory Order_Relation |
|
55027 | 9 |
imports Wfrec |
26273 | 10 |
begin |
11 |
||
63572 | 12 |
subsection \<open>Orders on a set\<close> |
26295 | 13 |
|
30198 | 14 |
definition "preorder_on A r \<equiv> refl_on A r \<and> trans r" |
26295 | 15 |
|
16 |
definition "partial_order_on A r \<equiv> preorder_on A r \<and> antisym r" |
|
26273 | 17 |
|
26295 | 18 |
definition "linear_order_on A r \<equiv> partial_order_on A r \<and> total_on A r" |
19 |
||
20 |
definition "strict_linear_order_on A r \<equiv> trans r \<and> irrefl r \<and> total_on A r" |
|
21 |
||
22 |
definition "well_order_on A r \<equiv> linear_order_on A r \<and> wf(r - Id)" |
|
26273 | 23 |
|
26295 | 24 |
lemmas order_on_defs = |
25 |
preorder_on_def partial_order_on_def linear_order_on_def |
|
26 |
strict_linear_order_on_def well_order_on_def |
|
27 |
||
68745
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
28 |
lemma partial_order_onD: |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
29 |
assumes "partial_order_on A r" shows "refl_on A r" and "trans r" and "antisym r" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
30 |
using assms unfolding partial_order_on_def preorder_on_def by auto |
26273 | 31 |
|
26295 | 32 |
lemma preorder_on_empty[simp]: "preorder_on {} {}" |
63572 | 33 |
by (simp add: preorder_on_def trans_def) |
26295 | 34 |
|
35 |
lemma partial_order_on_empty[simp]: "partial_order_on {} {}" |
|
63572 | 36 |
by (simp add: partial_order_on_def) |
26273 | 37 |
|
26295 | 38 |
lemma lnear_order_on_empty[simp]: "linear_order_on {} {}" |
63572 | 39 |
by (simp add: linear_order_on_def) |
26295 | 40 |
|
41 |
lemma well_order_on_empty[simp]: "well_order_on {} {}" |
|
63572 | 42 |
by (simp add: well_order_on_def) |
26295 | 43 |
|
26273 | 44 |
|
63572 | 45 |
lemma preorder_on_converse[simp]: "preorder_on A (r\<inverse>) = preorder_on A r" |
46 |
by (simp add: preorder_on_def) |
|
26295 | 47 |
|
63572 | 48 |
lemma partial_order_on_converse[simp]: "partial_order_on A (r\<inverse>) = partial_order_on A r" |
49 |
by (simp add: partial_order_on_def) |
|
26273 | 50 |
|
63572 | 51 |
lemma linear_order_on_converse[simp]: "linear_order_on A (r\<inverse>) = linear_order_on A r" |
52 |
by (simp add: linear_order_on_def) |
|
26295 | 53 |
|
26273 | 54 |
|
63572 | 55 |
lemma strict_linear_order_on_diff_Id: "linear_order_on A r \<Longrightarrow> strict_linear_order_on A (r - Id)" |
56 |
by (simp add: order_on_defs trans_diff_Id) |
|
26295 | 57 |
|
63563
0bcd79da075b
prefer [simp] over [iff] as [iff] break HOL-UNITY
Andreas Lochbihler
parents:
63561
diff
changeset
|
58 |
lemma linear_order_on_singleton [simp]: "linear_order_on {x} {(x, x)}" |
63572 | 59 |
by (simp add: order_on_defs) |
63561
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
60 |
|
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
61 |
lemma linear_order_on_acyclic: |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
62 |
assumes "linear_order_on A r" |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
63 |
shows "acyclic (r - Id)" |
63572 | 64 |
using strict_linear_order_on_diff_Id[OF assms] |
65 |
by (auto simp add: acyclic_irrefl strict_linear_order_on_def) |
|
63561
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
66 |
|
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
67 |
lemma linear_order_on_well_order_on: |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
68 |
assumes "finite r" |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
69 |
shows "linear_order_on A r \<longleftrightarrow> well_order_on A r" |
63572 | 70 |
unfolding well_order_on_def |
71 |
using assms finite_acyclic_wf[OF _ linear_order_on_acyclic, of r] by blast |
|
63561
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
72 |
|
26295 | 73 |
|
63572 | 74 |
subsection \<open>Orders on the field\<close> |
26273 | 75 |
|
30198 | 76 |
abbreviation "Refl r \<equiv> refl_on (Field r) r" |
26295 | 77 |
|
78 |
abbreviation "Preorder r \<equiv> preorder_on (Field r) r" |
|
79 |
||
80 |
abbreviation "Partial_order r \<equiv> partial_order_on (Field r) r" |
|
26273 | 81 |
|
26295 | 82 |
abbreviation "Total r \<equiv> total_on (Field r) r" |
83 |
||
84 |
abbreviation "Linear_order r \<equiv> linear_order_on (Field r) r" |
|
85 |
||
86 |
abbreviation "Well_order r \<equiv> well_order_on (Field r) r" |
|
87 |
||
26273 | 88 |
|
89 |
lemma subset_Image_Image_iff: |
|
63572 | 90 |
"Preorder r \<Longrightarrow> A \<subseteq> Field r \<Longrightarrow> B \<subseteq> Field r \<Longrightarrow> |
91 |
r `` A \<subseteq> r `` B \<longleftrightarrow> (\<forall>a\<in>A.\<exists>b\<in>B. (b, a) \<in> r)" |
|
92 |
apply (simp add: preorder_on_def refl_on_def Image_def subset_eq) |
|
93 |
apply (simp only: trans_def) |
|
94 |
apply fast |
|
95 |
done |
|
26273 | 96 |
|
97 |
lemma subset_Image1_Image1_iff: |
|
63572 | 98 |
"Preorder r \<Longrightarrow> a \<in> Field r \<Longrightarrow> b \<in> Field r \<Longrightarrow> r `` {a} \<subseteq> r `` {b} \<longleftrightarrow> (b, a) \<in> r" |
99 |
by (simp add: subset_Image_Image_iff) |
|
26273 | 100 |
|
101 |
lemma Refl_antisym_eq_Image1_Image1_iff: |
|
63572 | 102 |
assumes "Refl r" |
103 |
and as: "antisym r" |
|
104 |
and abf: "a \<in> Field r" "b \<in> Field r" |
|
54552
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
blanchet
parents:
54551
diff
changeset
|
105 |
shows "r `` {a} = r `` {b} \<longleftrightarrow> a = b" |
63572 | 106 |
(is "?lhs \<longleftrightarrow> ?rhs") |
54552
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
blanchet
parents:
54551
diff
changeset
|
107 |
proof |
63572 | 108 |
assume ?lhs |
109 |
then have *: "\<And>x. (a, x) \<in> r \<longleftrightarrow> (b, x) \<in> r" |
|
110 |
by (simp add: set_eq_iff) |
|
111 |
have "(a, a) \<in> r" "(b, b) \<in> r" using \<open>Refl r\<close> abf by (simp_all add: refl_on_def) |
|
112 |
then have "(a, b) \<in> r" "(b, a) \<in> r" using *[of a] *[of b] by simp_all |
|
113 |
then show ?rhs |
|
114 |
using \<open>antisym r\<close>[unfolded antisym_def] by blast |
|
115 |
next |
|
116 |
assume ?rhs |
|
117 |
then show ?lhs by fast |
|
118 |
qed |
|
26273 | 119 |
|
120 |
lemma Partial_order_eq_Image1_Image1_iff: |
|
63572 | 121 |
"Partial_order r \<Longrightarrow> a \<in> Field r \<Longrightarrow> b \<in> Field r \<Longrightarrow> r `` {a} = r `` {b} \<longleftrightarrow> a = b" |
122 |
by (auto simp: order_on_defs Refl_antisym_eq_Image1_Image1_iff) |
|
26295 | 123 |
|
52182 | 124 |
lemma Total_Id_Field: |
63572 | 125 |
assumes "Total r" |
126 |
and not_Id: "\<not> r \<subseteq> Id" |
|
127 |
shows "Field r = Field (r - Id)" |
|
128 |
using mono_Field[of "r - Id" r] Diff_subset[of r Id] |
|
129 |
proof auto |
|
52182 | 130 |
fix a assume *: "a \<in> Field r" |
63572 | 131 |
from not_Id have "r \<noteq> {}" by fast |
132 |
with not_Id obtain b and c where "b \<noteq> c \<and> (b,c) \<in> r" by auto |
|
133 |
then have "b \<noteq> c \<and> {b, c} \<subseteq> Field r" by (auto simp: Field_def) |
|
134 |
with * obtain d where "d \<in> Field r" "d \<noteq> a" by auto |
|
135 |
with * \<open>Total r\<close> have "(a, d) \<in> r \<or> (d, a) \<in> r" by (simp add: total_on_def) |
|
136 |
with \<open>d \<noteq> a\<close> show "a \<in> Field (r - Id)" unfolding Field_def by blast |
|
52182 | 137 |
qed |
138 |
||
68745
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
139 |
subsection\<open>Relations given by a predicate and the field\<close> |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
140 |
|
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
141 |
definition relation_of :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> ('a \<times> 'a) set" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
142 |
where "relation_of P A \<equiv> { (a, b) \<in> A \<times> A. P a b }" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
143 |
|
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
144 |
lemma Field_relation_of: |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
145 |
assumes "refl_on A (relation_of P A)" shows "Field (relation_of P A) = A" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
146 |
using assms unfolding refl_on_def Field_def by auto |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
147 |
|
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
148 |
lemma partial_order_on_relation_ofI: |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
149 |
assumes refl: "\<And>a. a \<in> A \<Longrightarrow> P a a" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
150 |
and trans: "\<And>a b c. \<lbrakk> a \<in> A; b \<in> A; c \<in> A \<rbrakk> \<Longrightarrow> P a b \<Longrightarrow> P b c \<Longrightarrow> P a c" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
151 |
and antisym: "\<And>a b. \<lbrakk> a \<in> A; b \<in> A \<rbrakk> \<Longrightarrow> P a b \<Longrightarrow> P b a \<Longrightarrow> a = b" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
152 |
shows "partial_order_on A (relation_of P A)" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
153 |
proof - |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
154 |
from refl have "refl_on A (relation_of P A)" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
155 |
unfolding refl_on_def relation_of_def by auto |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
156 |
moreover have "trans (relation_of P A)" and "antisym (relation_of P A)" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
157 |
unfolding relation_of_def |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
158 |
by (auto intro: transI dest: trans, auto intro: antisymI dest: antisym) |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
159 |
ultimately show ?thesis |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
160 |
unfolding partial_order_on_def preorder_on_def by simp |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
161 |
qed |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
162 |
|
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
163 |
lemma Partial_order_relation_ofI: |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
164 |
assumes "partial_order_on A (relation_of P A)" shows "Partial_order (relation_of P A)" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
165 |
using Field_relation_of assms partial_order_on_def preorder_on_def by fastforce |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
166 |
|
26295 | 167 |
|
63572 | 168 |
subsection \<open>Orders on a type\<close> |
26295 | 169 |
|
170 |
abbreviation "strict_linear_order \<equiv> strict_linear_order_on UNIV" |
|
171 |
||
172 |
abbreviation "linear_order \<equiv> linear_order_on UNIV" |
|
173 |
||
54551 | 174 |
abbreviation "well_order \<equiv> well_order_on UNIV" |
26273 | 175 |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
176 |
|
60758 | 177 |
subsection \<open>Order-like relations\<close> |
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
178 |
|
63572 | 179 |
text \<open> |
180 |
In this subsection, we develop basic concepts and results pertaining |
|
181 |
to order-like relations, i.e., to reflexive and/or transitive and/or symmetric and/or |
|
182 |
total relations. We also further define upper and lower bounds operators. |
|
183 |
\<close> |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
184 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
185 |
|
60758 | 186 |
subsubsection \<open>Auxiliaries\<close> |
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
187 |
|
63572 | 188 |
lemma refl_on_domain: "refl_on A r \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> a \<in> A \<and> b \<in> A" |
189 |
by (auto simp add: refl_on_def) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
190 |
|
63572 | 191 |
corollary well_order_on_domain: "well_order_on A r \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> a \<in> A \<and> b \<in> A" |
192 |
by (auto simp add: refl_on_domain order_on_defs) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
193 |
|
63572 | 194 |
lemma well_order_on_Field: "well_order_on A r \<Longrightarrow> A = Field r" |
195 |
by (auto simp add: refl_on_def Field_def order_on_defs) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
196 |
|
63572 | 197 |
lemma well_order_on_Well_order: "well_order_on A r \<Longrightarrow> A = Field r \<and> Well_order r" |
198 |
using well_order_on_Field [of A] by auto |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
199 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
200 |
lemma Total_subset_Id: |
63572 | 201 |
assumes "Total r" |
202 |
and "r \<subseteq> Id" |
|
203 |
shows "r = {} \<or> (\<exists>a. r = {(a, a)})" |
|
204 |
proof - |
|
205 |
have "\<exists>a. r = {(a, a)}" if "r \<noteq> {}" |
|
206 |
proof - |
|
207 |
from that obtain a b where ab: "(a, b) \<in> r" by fast |
|
208 |
with \<open>r \<subseteq> Id\<close> have "a = b" by blast |
|
209 |
with ab have aa: "(a, a) \<in> r" by simp |
|
210 |
have "a = c \<and> a = d" if "(c, d) \<in> r" for c d |
|
211 |
proof - |
|
212 |
from that have "{a, c, d} \<subseteq> Field r" |
|
213 |
using ab unfolding Field_def by blast |
|
214 |
then have "((a, c) \<in> r \<or> (c, a) \<in> r \<or> a = c) \<and> ((a, d) \<in> r \<or> (d, a) \<in> r \<or> a = d)" |
|
215 |
using \<open>Total r\<close> unfolding total_on_def by blast |
|
216 |
with \<open>r \<subseteq> Id\<close> show ?thesis by blast |
|
217 |
qed |
|
218 |
then have "r \<subseteq> {(a, a)}" by auto |
|
219 |
with aa show ?thesis by blast |
|
220 |
qed |
|
221 |
then show ?thesis by blast |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
222 |
qed |
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
223 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
224 |
lemma Linear_order_in_diff_Id: |
63572 | 225 |
assumes "Linear_order r" |
226 |
and "a \<in> Field r" |
|
227 |
and "b \<in> Field r" |
|
228 |
shows "(a, b) \<in> r \<longleftrightarrow> (b, a) \<notin> r - Id" |
|
229 |
using assms unfolding order_on_defs total_on_def antisym_def Id_def refl_on_def by force |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
230 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
231 |
|
60758 | 232 |
subsubsection \<open>The upper and lower bounds operators\<close> |
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
233 |
|
63572 | 234 |
text \<open> |
235 |
Here we define upper (``above") and lower (``below") bounds operators. We |
|
236 |
think of \<open>r\<close> as a \<^emph>\<open>non-strict\<close> relation. The suffix \<open>S\<close> at the names of |
|
237 |
some operators indicates that the bounds are strict -- e.g., \<open>underS a\<close> is |
|
238 |
the set of all strict lower bounds of \<open>a\<close> (w.r.t. \<open>r\<close>). Capitalization of |
|
239 |
the first letter in the name reminds that the operator acts on sets, rather |
|
240 |
than on individual elements. |
|
241 |
\<close> |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
242 |
|
63572 | 243 |
definition under :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set" |
244 |
where "under r a \<equiv> {b. (b, a) \<in> r}" |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
245 |
|
63572 | 246 |
definition underS :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set" |
247 |
where "underS r a \<equiv> {b. b \<noteq> a \<and> (b, a) \<in> r}" |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
248 |
|
63572 | 249 |
definition Under :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set" |
250 |
where "Under r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. (b, a) \<in> r}" |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
251 |
|
63572 | 252 |
definition UnderS :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set" |
253 |
where "UnderS r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. b \<noteq> a \<and> (b, a) \<in> r}" |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
254 |
|
63572 | 255 |
definition above :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set" |
256 |
where "above r a \<equiv> {b. (a, b) \<in> r}" |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
257 |
|
63572 | 258 |
definition aboveS :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set" |
259 |
where "aboveS r a \<equiv> {b. b \<noteq> a \<and> (a, b) \<in> r}" |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
260 |
|
63572 | 261 |
definition Above :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set" |
262 |
where "Above r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. (a, b) \<in> r}" |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
263 |
|
63572 | 264 |
definition AboveS :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set" |
265 |
where "AboveS r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. b \<noteq> a \<and> (a, b) \<in> r}" |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
266 |
|
55173 | 267 |
definition ofilter :: "'a rel \<Rightarrow> 'a set \<Rightarrow> bool" |
63572 | 268 |
where "ofilter r A \<equiv> A \<subseteq> Field r \<and> (\<forall>a \<in> A. under r a \<subseteq> A)" |
55173 | 269 |
|
63572 | 270 |
text \<open> |
271 |
Note: In the definitions of \<open>Above[S]\<close> and \<open>Under[S]\<close>, we bounded |
|
272 |
comprehension by \<open>Field r\<close> in order to properly cover the case of \<open>A\<close> being |
|
273 |
empty. |
|
274 |
\<close> |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
275 |
|
63572 | 276 |
lemma underS_subset_under: "underS r a \<subseteq> under r a" |
277 |
by (auto simp add: underS_def under_def) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
278 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
279 |
lemma underS_notIn: "a \<notin> underS r a" |
63572 | 280 |
by (simp add: underS_def) |
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
281 |
|
63572 | 282 |
lemma Refl_under_in: "Refl r \<Longrightarrow> a \<in> Field r \<Longrightarrow> a \<in> under r a" |
283 |
by (simp add: refl_on_def under_def) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
284 |
|
63572 | 285 |
lemma AboveS_disjoint: "A \<inter> (AboveS r A) = {}" |
286 |
by (auto simp add: AboveS_def) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
287 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
288 |
lemma in_AboveS_underS: "a \<in> Field r \<Longrightarrow> a \<in> AboveS r (underS r a)" |
63572 | 289 |
by (auto simp add: AboveS_def underS_def) |
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
290 |
|
63572 | 291 |
lemma Refl_under_underS: "Refl r \<Longrightarrow> a \<in> Field r \<Longrightarrow> under r a = underS r a \<union> {a}" |
292 |
unfolding under_def underS_def |
|
293 |
using refl_on_def[of _ r] by fastforce |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
294 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
295 |
lemma underS_empty: "a \<notin> Field r \<Longrightarrow> underS r a = {}" |
63572 | 296 |
by (auto simp: Field_def underS_def) |
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
297 |
|
63572 | 298 |
lemma under_Field: "under r a \<subseteq> Field r" |
299 |
by (auto simp: under_def Field_def) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
300 |
|
63572 | 301 |
lemma underS_Field: "underS r a \<subseteq> Field r" |
302 |
by (auto simp: underS_def Field_def) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
303 |
|
63572 | 304 |
lemma underS_Field2: "a \<in> Field r \<Longrightarrow> underS r a \<subset> Field r" |
305 |
using underS_notIn underS_Field by fast |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
306 |
|
63572 | 307 |
lemma underS_Field3: "Field r \<noteq> {} \<Longrightarrow> underS r a \<subset> Field r" |
308 |
by (cases "a \<in> Field r") (auto simp: underS_Field2 underS_empty) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
309 |
|
63572 | 310 |
lemma AboveS_Field: "AboveS r A \<subseteq> Field r" |
311 |
by (auto simp: AboveS_def Field_def) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
312 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
313 |
lemma under_incr: |
63572 | 314 |
assumes "trans r" |
315 |
and "(a, b) \<in> r" |
|
316 |
shows "under r a \<subseteq> under r b" |
|
317 |
unfolding under_def |
|
318 |
proof auto |
|
319 |
fix x assume "(x, a) \<in> r" |
|
320 |
with assms trans_def[of r] show "(x, b) \<in> r" by blast |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
321 |
qed |
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
322 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
323 |
lemma underS_incr: |
63572 | 324 |
assumes "trans r" |
325 |
and "antisym r" |
|
326 |
and ab: "(a, b) \<in> r" |
|
327 |
shows "underS r a \<subseteq> underS r b" |
|
328 |
unfolding underS_def |
|
329 |
proof auto |
|
330 |
assume *: "b \<noteq> a" and **: "(b, a) \<in> r" |
|
331 |
with \<open>antisym r\<close> antisym_def[of r] ab show False |
|
332 |
by blast |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
333 |
next |
63572 | 334 |
fix x assume "x \<noteq> a" "(x, a) \<in> r" |
335 |
with ab \<open>trans r\<close> trans_def[of r] show "(x, b) \<in> r" |
|
336 |
by blast |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
337 |
qed |
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
338 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
339 |
lemma underS_incl_iff: |
63572 | 340 |
assumes LO: "Linear_order r" |
341 |
and INa: "a \<in> Field r" |
|
342 |
and INb: "b \<in> Field r" |
|
343 |
shows "underS r a \<subseteq> underS r b \<longleftrightarrow> (a, b) \<in> r" |
|
344 |
(is "?lhs \<longleftrightarrow> ?rhs") |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
345 |
proof |
63572 | 346 |
assume ?rhs |
347 |
with \<open>Linear_order r\<close> show ?lhs |
|
348 |
by (simp add: order_on_defs underS_incr) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
349 |
next |
63572 | 350 |
assume *: ?lhs |
351 |
have "(a, b) \<in> r" if "a = b" |
|
352 |
using assms that by (simp add: order_on_defs refl_on_def) |
|
353 |
moreover have False if "a \<noteq> b" "(b, a) \<in> r" |
|
354 |
proof - |
|
355 |
from that have "b \<in> underS r a" unfolding underS_def by blast |
|
356 |
with * have "b \<in> underS r b" by blast |
|
357 |
then show ?thesis by (simp add: underS_notIn) |
|
358 |
qed |
|
359 |
ultimately show "(a,b) \<in> r" |
|
360 |
using assms order_on_defs[of "Field r" r] total_on_def[of "Field r" r] by blast |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
361 |
qed |
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
362 |
|
63561
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
363 |
lemma finite_Linear_order_induct[consumes 3, case_names step]: |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
364 |
assumes "Linear_order r" |
63572 | 365 |
and "x \<in> Field r" |
366 |
and "finite r" |
|
367 |
and step: "\<And>x. x \<in> Field r \<Longrightarrow> (\<And>y. y \<in> aboveS r x \<Longrightarrow> P y) \<Longrightarrow> P x" |
|
63561
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
368 |
shows "P x" |
63572 | 369 |
using assms(2) |
370 |
proof (induct rule: wf_induct[of "r\<inverse> - Id"]) |
|
371 |
case 1 |
|
63561
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
372 |
from assms(1,3) show "wf (r\<inverse> - Id)" |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
373 |
using linear_order_on_well_order_on linear_order_on_converse |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
374 |
unfolding well_order_on_def by blast |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
375 |
next |
63572 | 376 |
case prems: (2 x) |
377 |
show ?case |
|
378 |
by (rule step) (use prems in \<open>auto simp: aboveS_def intro: FieldI2\<close>) |
|
63561
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
379 |
qed |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
380 |
|
55027 | 381 |
|
60758 | 382 |
subsection \<open>Variations on Well-Founded Relations\<close> |
55027 | 383 |
|
60758 | 384 |
text \<open> |
68484 | 385 |
This subsection contains some variations of the results from \<^theory>\<open>HOL.Wellfounded\<close>: |
63572 | 386 |
\<^item> means for slightly more direct definitions by well-founded recursion; |
387 |
\<^item> variations of well-founded induction; |
|
388 |
\<^item> means for proving a linear order to be a well-order. |
|
60758 | 389 |
\<close> |
55027 | 390 |
|
391 |
||
60758 | 392 |
subsubsection \<open>Characterizations of well-foundedness\<close> |
55027 | 393 |
|
63572 | 394 |
text \<open> |
395 |
A transitive relation is well-founded iff it is ``locally'' well-founded, |
|
396 |
i.e., iff its restriction to the lower bounds of of any element is |
|
397 |
well-founded. |
|
398 |
\<close> |
|
55027 | 399 |
|
400 |
lemma trans_wf_iff: |
|
63572 | 401 |
assumes "trans r" |
402 |
shows "wf r \<longleftrightarrow> (\<forall>a. wf (r \<inter> (r\<inverse>``{a} \<times> r\<inverse>``{a})))" |
|
403 |
proof - |
|
404 |
define R where "R a = r \<inter> (r\<inverse>``{a} \<times> r\<inverse>``{a})" for a |
|
405 |
have "wf (R a)" if "wf r" for a |
|
406 |
using that R_def wf_subset[of r "R a"] by auto |
|
55027 | 407 |
moreover |
63572 | 408 |
have "wf r" if *: "\<forall>a. wf(R a)" |
409 |
unfolding wf_def |
|
410 |
proof clarify |
|
411 |
fix phi a |
|
412 |
assume **: "\<forall>a. (\<forall>b. (b, a) \<in> r \<longrightarrow> phi b) \<longrightarrow> phi a" |
|
413 |
define chi where "chi b \<longleftrightarrow> (b, a) \<in> r \<longrightarrow> phi b" for b |
|
414 |
with * have "wf (R a)" by auto |
|
415 |
then have "(\<forall>b. (\<forall>c. (c, b) \<in> R a \<longrightarrow> chi c) \<longrightarrow> chi b) \<longrightarrow> (\<forall>b. chi b)" |
|
416 |
unfolding wf_def by blast |
|
417 |
also have "\<forall>b. (\<forall>c. (c, b) \<in> R a \<longrightarrow> chi c) \<longrightarrow> chi b" |
|
418 |
proof (auto simp add: chi_def R_def) |
|
419 |
fix b |
|
420 |
assume "(b, a) \<in> r" and "\<forall>c. (c, b) \<in> r \<and> (c, a) \<in> r \<longrightarrow> phi c" |
|
421 |
then have "\<forall>c. (c, b) \<in> r \<longrightarrow> phi c" |
|
422 |
using assms trans_def[of r] by blast |
|
423 |
with ** show "phi b" by blast |
|
424 |
qed |
|
425 |
finally have "\<forall>b. chi b" . |
|
426 |
with ** chi_def show "phi a" by blast |
|
427 |
qed |
|
428 |
ultimately show ?thesis unfolding R_def by blast |
|
55027 | 429 |
qed |
430 |
||
63952
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
431 |
text\<open>A transitive relation is well-founded if all initial segments are finite.\<close> |
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
432 |
corollary wf_finite_segments: |
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
433 |
assumes "irrefl r" and "trans r" and "\<And>x. finite {y. (y, x) \<in> r}" |
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
434 |
shows "wf (r)" |
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
435 |
proof (clarsimp simp: trans_wf_iff wf_iff_acyclic_if_finite converse_def assms) |
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
436 |
fix a |
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
437 |
have "trans (r \<inter> ({x. (x, a) \<in> r} \<times> {x. (x, a) \<in> r}))" |
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
438 |
using assms unfolding trans_def Field_def by blast |
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
439 |
then show "acyclic (r \<inter> {x. (x, a) \<in> r} \<times> {x. (x, a) \<in> r})" |
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
440 |
using assms acyclic_def assms irrefl_def by fastforce |
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
441 |
qed |
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
442 |
|
61799 | 443 |
text \<open>The next lemma is a variation of \<open>wf_eq_minimal\<close> from Wellfounded, |
63572 | 444 |
allowing one to assume the set included in the field.\<close> |
55027 | 445 |
|
63572 | 446 |
lemma wf_eq_minimal2: "wf r \<longleftrightarrow> (\<forall>A. A \<subseteq> Field r \<and> A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a', a) \<notin> r))" |
55027 | 447 |
proof- |
63572 | 448 |
let ?phi = "\<lambda>A. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r)" |
449 |
have "wf r \<longleftrightarrow> (\<forall>A. ?phi A)" |
|
450 |
apply (auto simp: ex_in_conv [THEN sym]) |
|
451 |
apply (erule wfE_min) |
|
452 |
apply assumption |
|
453 |
apply blast |
|
454 |
apply (rule wfI_min) |
|
455 |
apply fast |
|
456 |
done |
|
457 |
also have "(\<forall>A. ?phi A) \<longleftrightarrow> (\<forall>B \<subseteq> Field r. ?phi B)" |
|
55027 | 458 |
proof |
459 |
assume "\<forall>A. ?phi A" |
|
63572 | 460 |
then show "\<forall>B \<subseteq> Field r. ?phi B" by simp |
55027 | 461 |
next |
63572 | 462 |
assume *: "\<forall>B \<subseteq> Field r. ?phi B" |
55027 | 463 |
show "\<forall>A. ?phi A" |
63572 | 464 |
proof clarify |
465 |
fix A :: "'a set" |
|
466 |
assume **: "A \<noteq> {}" |
|
467 |
define B where "B = A \<inter> Field r" |
|
468 |
show "\<exists>a \<in> A. \<forall>a' \<in> A. (a', a) \<notin> r" |
|
469 |
proof (cases "B = {}") |
|
470 |
case True |
|
471 |
with ** obtain a where a: "a \<in> A" "a \<notin> Field r" |
|
472 |
unfolding B_def by blast |
|
473 |
with a have "\<forall>a' \<in> A. (a',a) \<notin> r" |
|
474 |
unfolding Field_def by blast |
|
475 |
with a show ?thesis by blast |
|
55027 | 476 |
next |
63572 | 477 |
case False |
478 |
have "B \<subseteq> Field r" unfolding B_def by blast |
|
479 |
with False * obtain a where a: "a \<in> B" "\<forall>a' \<in> B. (a', a) \<notin> r" |
|
480 |
by blast |
|
481 |
have "(a', a) \<notin> r" if "a' \<in> A" for a' |
|
482 |
proof |
|
483 |
assume a'a: "(a', a) \<in> r" |
|
484 |
with that have "a' \<in> B" unfolding B_def Field_def by blast |
|
485 |
with a a'a show False by blast |
|
55027 | 486 |
qed |
63572 | 487 |
with a show ?thesis unfolding B_def by blast |
55027 | 488 |
qed |
489 |
qed |
|
490 |
qed |
|
491 |
finally show ?thesis by blast |
|
492 |
qed |
|
493 |
||
494 |
||
60758 | 495 |
subsubsection \<open>Characterizations of well-foundedness\<close> |
55027 | 496 |
|
63572 | 497 |
text \<open> |
498 |
The next lemma and its corollary enable one to prove that a linear order is |
|
499 |
a well-order in a way which is more standard than via well-foundedness of |
|
500 |
the strict version of the relation. |
|
501 |
\<close> |
|
55027 | 502 |
|
503 |
lemma Linear_order_wf_diff_Id: |
|
63572 | 504 |
assumes "Linear_order r" |
505 |
shows "wf (r - Id) \<longleftrightarrow> (\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r))" |
|
506 |
proof (cases "r \<subseteq> Id") |
|
507 |
case True |
|
508 |
then have *: "r - Id = {}" by blast |
|
509 |
have "wf (r - Id)" by (simp add: *) |
|
510 |
moreover have "\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r" |
|
511 |
if *: "A \<subseteq> Field r" and **: "A \<noteq> {}" for A |
|
512 |
proof - |
|
513 |
from \<open>Linear_order r\<close> True |
|
514 |
obtain a where a: "r = {} \<or> r = {(a, a)}" |
|
515 |
unfolding order_on_defs using Total_subset_Id [of r] by blast |
|
516 |
with * ** have "A = {a} \<and> r = {(a, a)}" |
|
517 |
unfolding Field_def by blast |
|
518 |
with a show ?thesis by blast |
|
519 |
qed |
|
55027 | 520 |
ultimately show ?thesis by blast |
521 |
next |
|
63572 | 522 |
case False |
523 |
with \<open>Linear_order r\<close> have Field: "Field r = Field (r - Id)" |
|
524 |
unfolding order_on_defs using Total_Id_Field [of r] by blast |
|
55027 | 525 |
show ?thesis |
526 |
proof |
|
63572 | 527 |
assume *: "wf (r - Id)" |
528 |
show "\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r)" |
|
529 |
proof clarify |
|
530 |
fix A |
|
531 |
assume **: "A \<subseteq> Field r" and ***: "A \<noteq> {}" |
|
532 |
then have "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r - Id" |
|
533 |
using Field * unfolding wf_eq_minimal2 by simp |
|
534 |
moreover have "\<forall>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r \<longleftrightarrow> (a', a) \<notin> r - Id" |
|
535 |
using Linear_order_in_diff_Id [OF \<open>Linear_order r\<close>] ** by blast |
|
536 |
ultimately show "\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r" by blast |
|
55027 | 537 |
qed |
538 |
next |
|
63572 | 539 |
assume *: "\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r)" |
540 |
show "wf (r - Id)" |
|
541 |
unfolding wf_eq_minimal2 |
|
542 |
proof clarify |
|
543 |
fix A |
|
544 |
assume **: "A \<subseteq> Field(r - Id)" and ***: "A \<noteq> {}" |
|
545 |
then have "\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r" |
|
546 |
using Field * by simp |
|
547 |
moreover have "\<forall>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r \<longleftrightarrow> (a', a) \<notin> r - Id" |
|
548 |
using Linear_order_in_diff_Id [OF \<open>Linear_order r\<close>] ** mono_Field[of "r - Id" r] by blast |
|
549 |
ultimately show "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r - Id" |
|
550 |
by blast |
|
55027 | 551 |
qed |
552 |
qed |
|
553 |
qed |
|
554 |
||
555 |
corollary Linear_order_Well_order_iff: |
|
63572 | 556 |
"Linear_order r \<Longrightarrow> |
557 |
Well_order r \<longleftrightarrow> (\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r))" |
|
558 |
unfolding well_order_on_def using Linear_order_wf_diff_Id[of r] by blast |
|
55027 | 559 |
|
26273 | 560 |
end |