author | wenzelm |
Thu, 05 Mar 2009 21:06:59 +0100 | |
changeset 30291 | a1c3abf57068 |
parent 27208 | 5fe899199f85 |
child 35762 | af3ff2ba4c54 |
permissions | -rw-r--r-- |
4905 | 1 |
|
17248 | 2 |
(* $Id$ *) |
3 |
||
4 |
header {* Example 3.8 *} |
|
4905 | 5 |
|
17248 | 6 |
theory Ex2 |
7 |
imports LCF |
|
8 |
begin |
|
4905 | 9 |
|
10 |
consts |
|
17248 | 11 |
P :: "'a => tr" |
12 |
F :: "'a => 'a" |
|
13 |
G :: "'a => 'a" |
|
14 |
H :: "'a => 'b => 'b" |
|
15 |
K :: "('a => 'b => 'b) => ('a => 'b => 'b)" |
|
4905 | 16 |
|
17248 | 17 |
axioms |
18 |
F_strict: "F(UU) = UU" |
|
19 |
K: "K = (%h x y. P(x) => y | F(h(G(x),y)))" |
|
20 |
H: "H = FIX(K)" |
|
21 |
||
19755 | 22 |
declare F_strict [simp] K [simp] |
23 |
||
24 |
lemma example: "ALL x. F(H(x::'a,y::'b)) = H(x,F(y))" |
|
25 |
apply (simplesubst H) |
|
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
19755
diff
changeset
|
26 |
apply (tactic {* induct_tac @{context} "K:: ('a=>'b=>'b) => ('a=>'b=>'b)" 1 *}) |
19755 | 27 |
apply (simp (no_asm)) |
28 |
apply (simp (no_asm_simp) split: COND_cases_iff) |
|
29 |
done |
|
4905 | 30 |
|
31 |
end |