| author | wenzelm | 
| Tue, 30 Jul 2019 11:41:39 +0200 | |
| changeset 70443 | a21a96eda033 | 
| parent 69122 | 1b5178abaf97 | 
| child 81438 | 95c9af7483b1 | 
| permissions | -rw-r--r-- | 
| 68582 | 1  | 
(* Title: HOL/Algebra/Chinese_Remainder.thy  | 
2  | 
Author: Paulo Emílio de Vilhena  | 
|
3  | 
*)  | 
|
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
4  | 
|
| 
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
5  | 
theory Chinese_Remainder  | 
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
6  | 
imports Weak_Morphisms Ideal_Product  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
7  | 
|
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
8  | 
begin  | 
| 
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
9  | 
|
| 
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
10  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
11  | 
section \<open>Direct Product of Rings\<close>  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
12  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
13  | 
subsection \<open>Definitions\<close>  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
14  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
15  | 
definition RDirProd :: "('a, 'n) ring_scheme \<Rightarrow> ('b, 'm) ring_scheme \<Rightarrow> ('a \<times> 'b) ring"
 | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
16  | 
where "RDirProd R S = monoid.extend (R \<times>\<times> S)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
17  | 
\<lparr> zero = one ((add_monoid R) \<times>\<times> (add_monoid S)),  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
18  | 
add = mult ((add_monoid R) \<times>\<times> (add_monoid S)) \<rparr> "  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
19  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
20  | 
abbreviation nil_ring :: "('a list) ring"
 | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
21  | 
where "nil_ring \<equiv> monoid.extend nil_monoid \<lparr> zero = [], add = (\<lambda>a b. []) \<rparr>"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
22  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
23  | 
definition RDirProd_list :: "(('a, 'n) ring_scheme) list \<Rightarrow> ('a list) ring"
 | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
24  | 
where "RDirProd_list Rs = foldr (\<lambda>R S. image_ring (\<lambda>(a, as). a # as) (RDirProd R S)) Rs nil_ring"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
25  | 
|
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
26  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
27  | 
subsection \<open>Basic Properties\<close>  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
28  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
29  | 
lemma RDirProd_carrier: "carrier (RDirProd R S) = carrier R \<times> carrier S"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
30  | 
unfolding RDirProd_def DirProd_def by (simp add: monoid.defs)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
31  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
32  | 
lemma RDirProd_add_monoid [simp]: "add_monoid (RDirProd R S) = (add_monoid R) \<times>\<times> (add_monoid S)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
33  | 
by (simp add: RDirProd_def monoid.defs)  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
34  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
35  | 
lemma RDirProd_ring:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
36  | 
assumes "ring R" and "ring S" shows "ring (RDirProd R S)"  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
37  | 
proof -  | 
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
38  | 
have "monoid (RDirProd R S)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
39  | 
using DirProd_monoid[OF assms[THEN ring.axioms(2)]] unfolding monoid_def  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
40  | 
by (auto simp add: DirProd_def RDirProd_def monoid.defs)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
41  | 
then interpret Prod: group "add_monoid (RDirProd R S)" + monoid "RDirProd R S"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
42  | 
using DirProd_group[OF assms[THEN abelian_group.a_group[OF ring.is_abelian_group]]]  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
43  | 
unfolding RDirProd_add_monoid by auto  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
44  | 
show ?thesis  | 
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
45  | 
by (unfold_locales, auto simp add: RDirProd_def DirProd_def monoid.defs assms ring.ring_simprules)  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
46  | 
qed  | 
| 
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
47  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
48  | 
lemma RDirProd_iso1:  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
49  | 
"(\<lambda>(x, y). (y, x)) \<in> ring_iso (RDirProd R S) (RDirProd S R)"  | 
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
50  | 
unfolding ring_iso_def ring_hom_def bij_betw_def inj_on_def  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
51  | 
by (auto simp add: RDirProd_def DirProd_def monoid.defs)  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
52  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
53  | 
lemma RDirProd_iso2:  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
54  | 
"(\<lambda>(x, (y, z)). ((x, y), z)) \<in> ring_iso (RDirProd R (RDirProd S T)) (RDirProd (RDirProd R S) T)"  | 
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
55  | 
unfolding ring_iso_def ring_hom_def bij_betw_def inj_on_def  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
56  | 
by (auto simp add: image_iff RDirProd_def DirProd_def monoid.defs)  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
57  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
58  | 
lemma RDirProd_iso3:  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
59  | 
"(\<lambda>((x, y), z). (x, (y, z))) \<in> ring_iso (RDirProd (RDirProd R S) T) (RDirProd R (RDirProd S T))"  | 
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
60  | 
unfolding ring_iso_def ring_hom_def bij_betw_def inj_on_def  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
61  | 
by (auto simp add: image_iff RDirProd_def DirProd_def monoid.defs)  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
62  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
63  | 
lemma RDirProd_iso4:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
64  | 
assumes "f \<in> ring_iso R S" shows "(\<lambda>(r, t). (f r, t)) \<in> ring_iso (RDirProd R T) (RDirProd S T)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
65  | 
using assms unfolding ring_iso_def ring_hom_def bij_betw_def inj_on_def  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
66  | 
by (auto simp add: image_iff RDirProd_def DirProd_def monoid.defs)+  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
67  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
68  | 
lemma RDirProd_iso5:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
69  | 
assumes "f \<in> ring_iso S T" shows "(\<lambda>(r, s). (r, f s)) \<in> ring_iso (RDirProd R S) (RDirProd R T)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
70  | 
using ring_iso_set_trans[OF ring_iso_set_trans[OF RDirProd_iso1 RDirProd_iso4[OF assms]] RDirProd_iso1]  | 
| 
68608
 
4a4c2bc4b869
final removal of smt from Algebra
 
paulson <lp15@cam.ac.uk> 
parents: 
68606 
diff
changeset
 | 
71  | 
by (simp add: case_prod_unfold comp_def)  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
72  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
73  | 
lemma RDirProd_iso6:  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
74  | 
assumes "f \<in> ring_iso R R'" and "g \<in> ring_iso S S'"  | 
| 
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
75  | 
shows "(\<lambda>(r, s). (f r, g s)) \<in> ring_iso (RDirProd R S) (RDirProd R' S')"  | 
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
76  | 
using ring_iso_set_trans[OF RDirProd_iso4[OF assms(1)] RDirProd_iso5[OF assms(2)]]  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
77  | 
by (simp add: case_prod_beta' comp_def)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
78  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
79  | 
lemma RDirProd_iso7:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
80  | 
shows "(\<lambda>a. (a, [])) \<in> ring_iso R (RDirProd R nil_ring)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
81  | 
unfolding ring_iso_def ring_hom_def bij_betw_def inj_on_def  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
82  | 
by (auto simp add: RDirProd_def DirProd_def monoid.defs)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
83  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
84  | 
lemma RDirProd_hom1:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
85  | 
shows "(\<lambda>a. (a, a)) \<in> ring_hom R (RDirProd R R)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
86  | 
by (auto simp add: ring_hom_def RDirProd_def DirProd_def monoid.defs)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
87  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
88  | 
lemma RDirProd_hom2:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
89  | 
assumes "f \<in> ring_hom S T"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
90  | 
shows "(\<lambda>(x, y). (x, f y)) \<in> ring_hom (RDirProd R S) (RDirProd R T)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
91  | 
and "(\<lambda>(x, y). (f x, y)) \<in> ring_hom (RDirProd S R) (RDirProd T R)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
92  | 
using assms by (auto simp add: ring_hom_def RDirProd_def DirProd_def monoid.defs)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
93  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
94  | 
lemma RDirProd_hom3:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
95  | 
assumes "f \<in> ring_hom R R'" and "g \<in> ring_hom S S'"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
96  | 
shows "(\<lambda>(r, s). (f r, g s)) \<in> ring_hom (RDirProd R S) (RDirProd R' S')"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
97  | 
using ring_hom_trans[OF RDirProd_hom2(2)[OF assms(1)] RDirProd_hom2(1)[OF assms(2)]]  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
98  | 
by (simp add: case_prod_beta' comp_def)  | 
| 
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
99  | 
|
| 
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
100  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
101  | 
subsection \<open>Direct Product of a List of Rings\<close>  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
102  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
103  | 
lemma RDirProd_list_nil [simp]: "RDirProd_list [] = nil_ring"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
104  | 
unfolding RDirProd_list_def by simp  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
105  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
106  | 
lemma nil_ring_simprules [simp]:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
107  | 
  "carrier nil_ring = { [] }" and "one nil_ring = []" and "zero nil_ring = []"
 | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
108  | 
by (auto simp add: monoid.defs)  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
109  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
110  | 
lemma RDirProd_list_truncate:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
111  | 
shows "monoid.truncate (RDirProd_list Rs) = DirProd_list Rs"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
112  | 
proof (induct Rs, simp add: RDirProd_list_def DirProd_list_def monoid.defs)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
113  | 
case (Cons R Rs)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
114  | 
have "monoid.truncate (RDirProd_list (R # Rs)) =  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
115  | 
monoid.truncate (image_ring (\<lambda>(a, as). a # as) (RDirProd R (RDirProd_list Rs)))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
116  | 
unfolding RDirProd_list_def by simp  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
117  | 
also have " ... = image_group (\<lambda>(a, as). a # as) (monoid.truncate (RDirProd R (RDirProd_list Rs)))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
118  | 
by (simp add: image_ring_def image_group_def monoid.defs)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
119  | 
also have " ... = image_group (\<lambda>(a, as). a # as) (R \<times>\<times> (monoid.truncate (RDirProd_list Rs)))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
120  | 
by (simp add: RDirProd_def DirProd_def monoid.defs)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
121  | 
also have " ... = DirProd_list (R # Rs)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
122  | 
unfolding Cons DirProd_list_def by simp  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
123  | 
finally show ?case .  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
124  | 
qed  | 
| 
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
125  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
126  | 
lemma RDirProd_list_carrier_def':  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
127  | 
shows "carrier (RDirProd_list Rs) = carrier (DirProd_list Rs)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
128  | 
proof -  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
129  | 
have "carrier (RDirProd_list Rs) = carrier (monoid.truncate (RDirProd_list Rs))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
130  | 
by (simp add: monoid.defs)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
131  | 
thus ?thesis  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
132  | 
unfolding RDirProd_list_truncate .  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
133  | 
qed  | 
| 
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
134  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
135  | 
lemma RDirProd_list_carrier:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
136  | 
shows "carrier (RDirProd_list (G # Gs)) = (\<lambda>(x, xs). x # xs) ` (carrier G \<times> carrier (RDirProd_list Gs))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
137  | 
unfolding RDirProd_list_carrier_def' using DirProd_list_carrier .  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
138  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
139  | 
lemma RDirProd_list_one:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
140  | 
shows "one (RDirProd_list Rs) = foldr (\<lambda>R tl. (one R) # tl) Rs []"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
141  | 
unfolding RDirProd_list_def RDirProd_def image_ring_def image_group_def  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
142  | 
by (induct Rs) (auto simp add: monoid.defs)  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
143  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
144  | 
lemma RDirProd_list_zero:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
145  | 
shows "zero (RDirProd_list Rs) = foldr (\<lambda>R tl. (zero R) # tl) Rs []"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
146  | 
unfolding RDirProd_list_def RDirProd_def image_ring_def  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
147  | 
by (induct Rs) (auto simp add: monoid.defs)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
148  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
149  | 
lemma RDirProd_list_zero':  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
150  | 
shows "zero (RDirProd_list (R # Rs)) = (zero R) # (zero (RDirProd_list Rs))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
151  | 
unfolding RDirProd_list_zero by simp  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
152  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
153  | 
lemma RDirProd_list_carrier_mem:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
154  | 
assumes "as \<in> carrier (RDirProd_list Rs)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
155  | 
shows "length as = length Rs" and "\<And>i. i < length Rs \<Longrightarrow> (as ! i) \<in> carrier (Rs ! i)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
156  | 
using assms DirProd_list_carrier_mem unfolding RDirProd_list_carrier_def' by auto  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
157  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
158  | 
lemma RDirProd_list_carrier_memI:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
159  | 
assumes "length as = length Rs" and "\<And>i. i < length Rs \<Longrightarrow> (as ! i) \<in> carrier (Rs ! i)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
160  | 
shows "as \<in> carrier (RDirProd_list Rs)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
161  | 
using assms DirProd_list_carrier_memI unfolding RDirProd_list_carrier_def' by auto  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
162  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
163  | 
lemma inj_on_RDirProd_carrier:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
164  | 
shows "inj_on (\<lambda>(a, as). a # as) (carrier (RDirProd R (RDirProd_list Rs)))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
165  | 
unfolding RDirProd_def DirProd_def inj_on_def by auto  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
166  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
167  | 
lemma RDirProd_list_is_ring:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
168  | 
assumes "\<And>i. i < length Rs \<Longrightarrow> ring (Rs ! i)" shows "ring (RDirProd_list Rs)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
169  | 
using assms  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
170  | 
proof (induct Rs)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
171  | 
case Nil thus ?case  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
172  | 
unfolding RDirProd_list_def by (unfold_locales, auto simp add: monoid.defs Units_def)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
173  | 
next  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
174  | 
case (Cons R Rs)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
175  | 
hence is_ring: "ring (RDirProd R (RDirProd_list Rs))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
176  | 
using RDirProd_ring[of R "RDirProd_list Rs"] by force  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
177  | 
show ?case  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
178  | 
using ring.inj_imp_image_ring_is_ring[OF is_ring inj_on_RDirProd_carrier]  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
179  | 
unfolding RDirProd_list_def by auto  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
180  | 
qed  | 
| 
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
181  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
182  | 
lemma RDirProd_list_iso1:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
183  | 
"(\<lambda>(a, as). a # as) \<in> ring_iso (RDirProd R (RDirProd_list Rs)) (RDirProd_list (R # Rs))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
184  | 
using inj_imp_image_ring_iso[OF inj_on_RDirProd_carrier] unfolding RDirProd_list_def by auto  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
185  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
186  | 
lemma RDirProd_list_iso2:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
187  | 
"Hilbert_Choice.inv (\<lambda>(a, as). a # as) \<in> ring_iso (RDirProd_list (R # Rs)) (RDirProd R (RDirProd_list Rs))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
188  | 
unfolding RDirProd_list_def by (auto intro: inj_imp_image_ring_inv_iso simp add: inj_def)  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
189  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
190  | 
lemma RDirProd_list_iso3:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
191  | 
"(\<lambda>a. [ a ]) \<in> ring_iso R (RDirProd_list [ R ])"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
192  | 
proof -  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
193  | 
have [simp]: "(\<lambda>a. [ a ]) = (\<lambda>(a, as). a # as) \<circ> (\<lambda>a. (a, []))" by auto  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
194  | 
show ?thesis  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
195  | 
using ring_iso_set_trans[OF RDirProd_iso7] RDirProd_list_iso1[of R "[]"]  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
196  | 
unfolding RDirProd_list_def by simp  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
197  | 
qed  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
198  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
199  | 
lemma RDirProd_list_hom1:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
200  | 
"(\<lambda>(a, as). a # as) \<in> ring_hom (RDirProd R (RDirProd_list Rs)) (RDirProd_list (R # Rs))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
201  | 
using RDirProd_list_iso1 unfolding ring_iso_def by auto  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
202  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
203  | 
lemma RDirProd_list_hom2:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
204  | 
assumes "f \<in> ring_hom R S" shows "(\<lambda>a. [ f a ]) \<in> ring_hom R (RDirProd_list [ S ])"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
205  | 
proof -  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
206  | 
have hom1: "(\<lambda>a. (a, [])) \<in> ring_hom R (RDirProd R nil_ring)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
207  | 
using RDirProd_iso7 unfolding ring_iso_def by auto  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
208  | 
have hom2: "(\<lambda>(a, as). a # as) \<in> ring_hom (RDirProd S nil_ring) (RDirProd_list [ S ])"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
209  | 
using RDirProd_list_hom1[of _ "[]"] unfolding RDirProd_list_def by auto  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
210  | 
have [simp]: "(\<lambda>(a, as). a # as) \<circ> ((\<lambda>(x, y). (f x, y)) \<circ> (\<lambda>a. (a, []))) = (\<lambda>a. [ f a ])" by auto  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
211  | 
show ?thesis  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
212  | 
using ring_hom_trans[OF ring_hom_trans[OF hom1 RDirProd_hom2(2)[OF assms]] hom2] by simp  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
213  | 
qed  | 
| 
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
214  | 
|
| 
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
215  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
216  | 
section \<open>Chinese Remainder Theorem\<close>  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
217  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
218  | 
subsection \<open>Definitions\<close>  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
219  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
220  | 
abbreviation (in ring) canonical_proj :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'a set \<times> 'a set"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
221  | 
where "canonical_proj I J \<equiv> (\<lambda>a. (I +> a, J +> a))"  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
222  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
223  | 
definition (in ring) canonical_proj_ext :: "(nat \<Rightarrow> 'a set) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> ('a set) list"
 | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
224  | 
where "canonical_proj_ext I n = (\<lambda>a. map (\<lambda>i. (I i) +> a) [0..< Suc n])"  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
225  | 
|
| 
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
226  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
227  | 
subsection \<open>Chinese Remainder Simple\<close>  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
228  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
229  | 
lemma (in ring) canonical_proj_is_surj:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
230  | 
assumes "ideal I R" "ideal J R" and "I <+> J = carrier R"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
231  | 
shows "(canonical_proj I J) ` carrier R = carrier (RDirProd (R Quot I) (R Quot J))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
232  | 
unfolding RDirProd_def DirProd_def FactRing_def A_RCOSETS_def'  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
233  | 
proof (auto simp add: monoid.defs)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
234  | 
  { fix I i assume "ideal I R" "i \<in> I" hence "I +> i = \<zero>\<^bsub>R Quot I\<^esub>"
 | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
235  | 
using a_rcos_zero by (simp add: FactRing_def)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
236  | 
} note aux_lemma1 = this  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
237  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
238  | 
  { fix I i j assume A: "ideal I R" "i \<in> I" "j \<in> carrier R" "i \<oplus> j = \<one>"
 | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
239  | 
have "(I +> i) \<oplus>\<^bsub>R Quot I\<^esub> (I +> j) = I +> \<one>"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
240  | 
using ring_hom_memE(3)[OF ideal.rcos_ring_hom ideal.Icarr[OF _ A(2)] A(3)] A(1,4) by simp  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
241  | 
moreover have "I +> i = I"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
242  | 
using abelian_subgroupI3[OF ideal.axioms(1) is_abelian_group]  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
243  | 
by (simp add: A(1-2) abelian_subgroup.a_rcos_const)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
244  | 
moreover have "I +> j \<in> carrier (R Quot I)" and "I = \<zero>\<^bsub>R Quot I\<^esub>" and "I +> \<one> = \<one>\<^bsub>R Quot I\<^esub>"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
245  | 
by (auto simp add: FactRing_def A_RCOSETS_def' A(3))  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
246  | 
ultimately have "I +> j = \<one>\<^bsub>R Quot I\<^esub>"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
247  | 
using ring.ring_simprules(8)[OF ideal.quotient_is_ring[OF A(1)]] by simp  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
248  | 
} note aux_lemma2 = this  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
249  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
250  | 
interpret I: ring "R Quot I" + J: ring "R Quot J"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
251  | 
using assms(1-2)[THEN ideal.quotient_is_ring] by auto  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
252  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
253  | 
fix a b assume a: "a \<in> carrier R" and b: "b \<in> carrier R"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
254  | 
have "\<one> \<in> I <+> J"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
255  | 
using assms(3) by blast  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
256  | 
then obtain i j where i: "i \<in> carrier R" "i \<in> I" and j: "j \<in> carrier R" "j \<in> J" and ij: "i \<oplus> j = \<one>"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
257  | 
using assms(1-2)[THEN ideal.Icarr] unfolding set_add_def' by auto  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
258  | 
hence rcos_j: "I +> j = \<one>\<^bsub>R Quot I\<^esub>" and rcos_i: "J +> i = \<one>\<^bsub>R Quot J\<^esub>"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
259  | 
using assms(1-2)[THEN aux_lemma2] a_comm by simp+  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
260  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
261  | 
define s where "s = (a \<otimes> j) \<oplus> (b \<otimes> i)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
262  | 
hence "s \<in> carrier R"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
263  | 
using a b i j by simp  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
264  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
265  | 
have "I +> s = ((I +> a) \<otimes>\<^bsub>R Quot I\<^esub> (I +> j)) \<oplus>\<^bsub>R Quot I\<^esub> (I +> (b \<otimes> i))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
266  | 
using ring_hom_memE(2-3)[OF ideal.rcos_ring_hom[OF assms(1)]]  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
267  | 
by (simp add: a b i(1) j(1) s_def)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
268  | 
moreover have "I +> a \<in> carrier (R Quot I)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
269  | 
by (auto simp add: FactRing_def A_RCOSETS_def' a)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
270  | 
ultimately have "I +> s = I +> a"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
271  | 
unfolding rcos_j aux_lemma1[OF assms(1) ideal.I_l_closed[OF assms(1) i(2) b]] by simp  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
272  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
273  | 
have "J +> s = (J +> (a \<otimes> j)) \<oplus>\<^bsub>R Quot J\<^esub> ((J +> b) \<otimes>\<^bsub>R Quot J\<^esub> (J +> i))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
274  | 
using ring_hom_memE(2-3)[OF ideal.rcos_ring_hom[OF assms(2)]]  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
275  | 
by (simp add: a b i(1) j(1) s_def)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
276  | 
moreover have "J +> b \<in> carrier (R Quot J)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
277  | 
by (auto simp add: FactRing_def A_RCOSETS_def' b)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
278  | 
ultimately have "J +> s = J +> b"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
279  | 
unfolding rcos_i aux_lemma1[OF assms(2) ideal.I_l_closed[OF assms(2) j(2) a]] by simp  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
280  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
281  | 
from \<open>I +> s = I +> a\<close> and \<open>J +> s = J +> b\<close> and \<open>s \<in> carrier R\<close>  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
282  | 
show "(I +> a, J +> b) \<in> (canonical_proj I J) ` carrier R" by blast  | 
| 
68606
 
96a49db47c97
removal of smt and certain refinements
 
paulson <lp15@cam.ac.uk> 
parents: 
68582 
diff
changeset
 | 
283  | 
qed  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
284  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
285  | 
lemma (in ring) canonical_proj_ker:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
286  | 
assumes "ideal I R" and "ideal J R"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
287  | 
shows "a_kernel R (RDirProd (R Quot I) (R Quot J)) (canonical_proj I J) = I \<inter> J"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
288  | 
proof  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
289  | 
show "a_kernel R (RDirProd (R Quot I) (R Quot J)) (canonical_proj I J) \<subseteq> I \<inter> J"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
290  | 
unfolding FactRing_def RDirProd_def DirProd_def a_kernel_def'  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
291  | 
by (auto simp add: assms[THEN ideal.rcos_const_imp_mem] monoid.defs)  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
292  | 
next  | 
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
293  | 
show "I \<inter> J \<subseteq> a_kernel R (RDirProd (R Quot I) (R Quot J)) (canonical_proj I J)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
294  | 
proof  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
295  | 
fix s assume s: "s \<in> I \<inter> J" then have "I +> s = I" and "J +> s = J"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
296  | 
using abelian_subgroupI3[OF ideal.axioms(1) is_abelian_group]  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
297  | 
by (simp add: abelian_subgroup.a_rcos_const assms)+  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
298  | 
thus "s \<in> a_kernel R (RDirProd (R Quot I) (R Quot J)) (canonical_proj I J)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
299  | 
unfolding FactRing_def RDirProd_def DirProd_def a_kernel_def'  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
300  | 
using ideal.Icarr[OF assms(1)] s by (simp add: monoid.defs)  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
301  | 
qed  | 
| 
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
302  | 
qed  | 
| 
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
303  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
304  | 
lemma (in ring) canonical_proj_is_hom:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
305  | 
assumes "ideal I R" and "ideal J R"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
306  | 
shows "(canonical_proj I J) \<in> ring_hom R (RDirProd (R Quot I) (R Quot J))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
307  | 
unfolding RDirProd_def DirProd_def FactRing_def A_RCOSETS_def'  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
308  | 
by (auto intro!: ring_hom_memI  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
309  | 
simp add: assms[THEN ideal.rcoset_mult_add]  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
310  | 
assms[THEN ideal.a_rcos_sum] monoid.defs)  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
311  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
312  | 
lemma (in ring) canonical_proj_ring_hom:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
313  | 
assumes "ideal I R" and "ideal J R"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
314  | 
shows "ring_hom_ring R (RDirProd (R Quot I) (R Quot J)) (canonical_proj I J)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
315  | 
using ring_hom_ring.intro[OF ring_axioms RDirProd_ring[OF assms[THEN ideal.quotient_is_ring]]]  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
316  | 
by (simp add: ring_hom_ring_axioms_def canonical_proj_is_hom[OF assms])  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
317  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
318  | 
theorem (in ring) chinese_remainder_simple:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
319  | 
assumes "ideal I R" "ideal J R" and "I <+> J = carrier R"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
320  | 
shows "R Quot (I \<inter> J) \<simeq> RDirProd (R Quot I) (R Quot J)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
321  | 
using ring_hom_ring.FactRing_iso[OF canonical_proj_ring_hom canonical_proj_is_surj]  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
322  | 
by (simp add: canonical_proj_ker assms)  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
323  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
324  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
325  | 
subsection \<open>Chinese Remainder Generalized\<close>  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
326  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
327  | 
lemma (in ring) canonical_proj_ext_zero [simp]: "(canonical_proj_ext I 0) = (\<lambda>a. [ (I 0) +> a ])"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
328  | 
unfolding canonical_proj_ext_def by simp  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
329  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
330  | 
lemma (in ring) canonical_proj_ext_tl:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
331  | 
"(\<lambda>a. canonical_proj_ext I (Suc n) a) = (\<lambda>a. ((I 0) +> a) # (canonical_proj_ext (\<lambda>i. I (Suc i)) n a))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
332  | 
unfolding canonical_proj_ext_def by (induct n) (auto, metis (lifting) append.assoc append_Cons append_Nil)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
333  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
334  | 
lemma (in ring) canonical_proj_ext_is_hom:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
335  | 
assumes "\<And>i. i \<le> n \<Longrightarrow> ideal (I i) R"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
336  | 
shows "(canonical_proj_ext I n) \<in> ring_hom R (RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< Suc n]))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
337  | 
using assms  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
338  | 
proof (induct n arbitrary: I)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
339  | 
case 0 thus ?case  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
340  | 
using RDirProd_list_hom2[OF ideal.rcos_ring_hom[of _ R]] by (simp add: canonical_proj_ext_def)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
341  | 
next  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
342  | 
let ?DirProd = "\<lambda>I n. RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..<Suc n])"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
343  | 
let ?proj = "\<lambda>I n. canonical_proj_ext I n"  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
344  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
345  | 
case (Suc n)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
346  | 
hence I: "ideal (I 0) R" by simp  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
347  | 
have hom: "(?proj (\<lambda>i. I (Suc i)) n) \<in> ring_hom R (?DirProd (\<lambda>i. I (Suc i)) n)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
348  | 
using Suc(1)[of "\<lambda>i. I (Suc i)"] Suc(2) by simp  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
349  | 
have [simp]:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
350  | 
"(\<lambda>(a, as). a # as) \<circ> ((\<lambda>(r, s). (I 0 +> r, ?proj (\<lambda>i. I (Suc i)) n s)) \<circ> (\<lambda>a. (a, a))) = ?proj I (Suc n)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
351  | 
unfolding canonical_proj_ext_tl by auto  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
352  | 
moreover have  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
353  | 
"(R Quot I 0) # (map (\<lambda>i. R Quot I (Suc i)) [0..< Suc n]) = map (\<lambda>i. R Quot (I i)) [0..< Suc (Suc n)]"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
354  | 
by (induct n) (auto)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
355  | 
moreover show ?case  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
356  | 
using ring_hom_trans[OF ring_hom_trans[OF RDirProd_hom1  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
357  | 
RDirProd_hom3[OF ideal.rcos_ring_hom[OF I] hom]] RDirProd_list_hom1]  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
358  | 
unfolding calculation(2) by simp  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
359  | 
qed  | 
| 
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
360  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
361  | 
lemma (in ring) RDirProd_Quot_list_is_ring:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
362  | 
assumes "\<And>i. i \<le> n \<Longrightarrow> ideal (I i) R" shows "ring (RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< Suc n]))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
363  | 
proof -  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
364  | 
have ring_list: "\<And>i. i < Suc n \<Longrightarrow> ring ((map (\<lambda>i. R Quot I i) [0..< Suc n]) ! i)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
365  | 
using ideal.quotient_is_ring[OF assms]  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
366  | 
by (metis add.left_neutral diff_zero le_simps(2) nth_map_upt)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
367  | 
show ?thesis  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
368  | 
using RDirProd_list_is_ring[OF ring_list] by simp  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
369  | 
qed  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
370  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
371  | 
lemma (in ring) canonical_proj_ext_ring_hom:  | 
| 
68606
 
96a49db47c97
removal of smt and certain refinements
 
paulson <lp15@cam.ac.uk> 
parents: 
68582 
diff
changeset
 | 
372  | 
assumes "\<And>i. i \<le> n \<Longrightarrow> ideal (I i) R"  | 
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
373  | 
shows "ring_hom_ring R (RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< Suc n])) (canonical_proj_ext I n)"  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
374  | 
proof -  | 
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
375  | 
have ring: "ring (RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< Suc n]))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
376  | 
using RDirProd_Quot_list_is_ring[OF assms] by simp  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
377  | 
show ?thesis  | 
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
378  | 
using canonical_proj_ext_is_hom assms ring_hom_ring.intro[OF ring_axioms ring]  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
379  | 
unfolding ring_hom_ring_axioms_def by blast  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
380  | 
qed  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
381  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
382  | 
lemma (in ring) canonical_proj_ext_ker:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
383  | 
assumes "\<And>i. i \<le> (n :: nat) \<Longrightarrow> ideal (I i) R"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
384  | 
shows "a_kernel R (RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< Suc n])) (canonical_proj_ext I n) = (\<Inter>i \<le> n. I i)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
385  | 
proof -  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
386  | 
let ?map_Quot = "\<lambda>I n. map (\<lambda>i. R Quot (I i)) [0..< Suc n]"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
387  | 
let ?ker = "\<lambda>I n. a_kernel R (RDirProd_list (?map_Quot I n)) (canonical_proj_ext I n)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
388  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
389  | 
from assms show ?thesis  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
390  | 
proof (induct n arbitrary: I)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
391  | 
case 0 then have I: "ideal (I 0) R" by simp  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
392  | 
show ?case  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
393  | 
unfolding a_kernel_def' RDirProd_list_zero canonical_proj_ext_def FactRing_def  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
394  | 
using ideal.rcos_const_imp_mem a_rcos_zero ideal.Icarr I by auto  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
395  | 
next  | 
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
396  | 
case (Suc n)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
397  | 
hence I: "ideal (I 0) R" by simp  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
398  | 
have map_simp: "?map_Quot I (Suc n) = (R Quot I 0) # (?map_Quot (\<lambda>i. I (Suc i)) n)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
399  | 
by (induct n) (auto)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
400  | 
have ker_I0: "I 0 = a_kernel R (R Quot (I 0)) (\<lambda>a. (I 0) +> a)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
401  | 
using ideal.rcos_const_imp_mem[OF I] a_rcos_zero[OF I] ideal.Icarr[OF I]  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
402  | 
unfolding a_kernel_def' FactRing_def by auto  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
403  | 
hence "?ker I (Suc n) = (?ker (\<lambda>i. I (Suc i)) n) \<inter> (I 0)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
404  | 
unfolding a_kernel_def' map_simp RDirProd_list_zero' canonical_proj_ext_tl by auto  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
405  | 
moreover have "?ker (\<lambda>i. I (Suc i)) n = (\<Inter>i \<le> n. I (Suc i))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
406  | 
using Suc(1)[of "\<lambda>i. I (Suc i)"] Suc(2) by auto  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
407  | 
ultimately show ?case  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
408  | 
by (auto simp add: INT_extend_simps(10) atMost_atLeast0)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
409  | 
(metis atLeastAtMost_iff le_zero_eq not_less_eq_eq)  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
410  | 
qed  | 
| 
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
411  | 
qed  | 
| 
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
412  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
413  | 
lemma (in cring) canonical_proj_ext_is_surj:  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
414  | 
assumes "\<And>i. i \<le> n \<Longrightarrow> ideal (I i) R" and "\<And>i j. \<lbrakk> i \<le> n; j \<le> n \<rbrakk> \<Longrightarrow> i \<noteq> j \<Longrightarrow> I i <+> I j = carrier R"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
415  | 
shows "(canonical_proj_ext I n) ` carrier R = carrier (RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< Suc n]))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
416  | 
using assms  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
417  | 
proof (induct n arbitrary: I)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
418  | 
case 0 show ?case  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
419  | 
by (auto simp add: RDirProd_list_carrier FactRing_def A_RCOSETS_def')  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
420  | 
next  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
421  | 
  { fix S :: "'c ring" and T :: "'d ring" and f g
 | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
422  | 
assume A: "ring T" "f \<in> ring_hom R S" "g \<in> ring_hom R T" "f ` carrier R \<subseteq> f ` (a_kernel R T g)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
423  | 
have "(\<lambda>a. (f a, g a)) ` carrier R = (f ` carrier R) \<times> (g ` carrier R)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
424  | 
proof  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
425  | 
show "(\<lambda>a. (f a, g a)) ` carrier R \<subseteq> (f ` carrier R) \<times> (g ` carrier R)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
426  | 
by blast  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
427  | 
next  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
428  | 
show "(f ` carrier R) \<times> (g ` carrier R) \<subseteq> (\<lambda>a. (f a, g a)) ` carrier R"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
429  | 
proof  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
430  | 
fix t assume "t \<in> (f ` carrier R) \<times> (g ` carrier R)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
431  | 
then obtain a b where a: "a \<in> carrier R" "f a = fst t" and b: "b \<in> carrier R" "g b = snd t"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
432  | 
by auto  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
433  | 
obtain c where c: "c \<in> a_kernel R T g" "f c = f (a \<ominus> b)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
434  | 
using A(4) minus_closed[OF a(1) b (1)] by auto  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
435  | 
have "f (c \<oplus> b) = f (a \<ominus> b) \<oplus>\<^bsub>S\<^esub> f b"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
436  | 
using ring_hom_memE(3)[OF A(2)] b c unfolding a_kernel_def' by auto  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
437  | 
hence "f (c \<oplus> b) = f a"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
438  | 
using ring_hom_memE(3)[OF A(2) minus_closed[of a b], of b] a b by algebra  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
439  | 
moreover have "g (c \<oplus> b) = g b"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
440  | 
using ring_hom_memE(1,3)[OF A(3)] b(1) c ring.ring_simprules(8)[OF A(1)]  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
441  | 
unfolding a_kernel_def' by auto  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
442  | 
ultimately have "(\<lambda>a. (f a, g a)) (c \<oplus> b) = t" and "c \<oplus> b \<in> carrier R"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
443  | 
using a b c unfolding a_kernel_def' by auto  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
444  | 
thus "t \<in> (\<lambda>a. (f a, g a)) ` carrier R"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
445  | 
by blast  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
446  | 
qed  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
447  | 
qed } note aux_lemma = this  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
448  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
449  | 
let ?map_Quot = "\<lambda>I n. map (\<lambda>i. R Quot (I i)) [0..< Suc n]"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
450  | 
let ?DirProd = "\<lambda>I n. RDirProd_list (?map_Quot I n)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
451  | 
let ?proj = "\<lambda>I n. canonical_proj_ext I n"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
452  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
453  | 
case (Suc n)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
454  | 
interpret I: ideal "I 0" R + Inter: ideal "\<Inter>i \<le> n. I (Suc i)" R  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
455  | 
    using i_Intersect[of "(\<lambda>i. I (Suc i)) ` {..n}"] Suc(2) by auto
 | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
456  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
457  | 
have map_simp: "?map_Quot I (Suc n) = (R Quot I 0) # (?map_Quot (\<lambda>i. I (Suc i)) n)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
458  | 
by (induct n) (auto)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
459  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
460  | 
have IH: "(?proj (\<lambda>i. I (Suc i)) n) ` carrier R = carrier (?DirProd (\<lambda>i. I (Suc i)) n)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
461  | 
and ring: "ring (?DirProd (\<lambda>i. I (Suc i)) n)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
462  | 
and hom: "?proj (\<lambda>i. I (Suc i)) n \<in> ring_hom R (?DirProd (\<lambda>i. I (Suc i)) n)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
463  | 
using RDirProd_Quot_list_is_ring[of n "\<lambda>i. I (Suc i)"] Suc(1)[of "\<lambda>i. I (Suc i)"]  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
464  | 
canonical_proj_ext_is_hom[of n "\<lambda>i. I (Suc i)"] Suc(2-3) by auto  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
465  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
466  | 
have ker: "a_kernel R (?DirProd (\<lambda>i. I (Suc i)) n) (?proj (\<lambda>i. I (Suc i)) n) = (\<Inter>i \<le> n. I (Suc i))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
467  | 
using canonical_proj_ext_ker[of n "\<lambda>i. I (Suc i)"] Suc(2) by auto  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
468  | 
have carrier_Quot: "carrier (R Quot (I 0)) = (\<lambda>a. (I 0) +> a) ` carrier R"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
469  | 
by (auto simp add: RDirProd_list_carrier FactRing_def A_RCOSETS_def')  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
470  | 
have ring: "ring (?DirProd (\<lambda>i. I (Suc i)) n)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
471  | 
and hom: "?proj (\<lambda>i. I (Suc i)) n \<in> ring_hom R (?DirProd (\<lambda>i. I (Suc i)) n)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
472  | 
using RDirProd_Quot_list_is_ring[of n "\<lambda>i. I (Suc i)"]  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
473  | 
canonical_proj_ext_is_hom[of n "\<lambda>i. I (Suc i)"] Suc(2) by auto  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
474  | 
have "carrier (R Quot (I 0)) \<subseteq> (\<lambda>a. (I 0) +> a) ` (\<Inter>i \<le> n. I (Suc i))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
475  | 
proof  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
476  | 
    have "(\<Inter>i \<in> {Suc 0.. Suc n}. I i) <+> (I 0) = carrier R"
 | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
477  | 
using inter_plus_ideal_eq_carrier_arbitrary[of n I 0]  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
478  | 
by (simp add: Suc(2-3) atLeast1_atMost_eq_remove0)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
479  | 
hence eq_carrier: "(I 0) <+> (\<Inter>i \<le> n. I (Suc i)) = carrier R"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
480  | 
using set_add_comm[OF I.a_subset Inter.a_subset]  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
481  | 
by (metis INT_extend_simps(10) atMost_atLeast0 image_Suc_atLeastAtMost)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
482  | 
|
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
483  | 
fix b assume "b \<in> carrier (R Quot (I 0))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
484  | 
hence "(b, (\<Inter>i \<le> n. I (Suc i))) \<in> carrier (R Quot I 0) \<times> carrier (R Quot (\<Inter>i\<le>n. I (Suc i)))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
485  | 
using ring.ring_simprules(2)[OF Inter.quotient_is_ring] by (simp add: FactRing_def)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
486  | 
then obtain s  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
487  | 
where "s \<in> carrier R" "(canonical_proj (I 0) (\<Inter>i \<le> n. I (Suc i))) s = (b, (\<Inter>i \<le> n. I (Suc i)))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
488  | 
using canonical_proj_is_surj[OF I.is_ideal Inter.is_ideal eq_carrier]  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
489  | 
unfolding RDirProd_carrier by (metis (no_types, lifting) imageE)  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
490  | 
hence "s \<in> (\<Inter>i \<le> n. I (Suc i))" and "(\<lambda>a. (I 0) +> a) s = b"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
491  | 
using Inter.rcos_const_imp_mem by auto  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
492  | 
thus "b \<in> (\<lambda>a. (I 0) +> a) ` (\<Inter>i \<le> n. I (Suc i))"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
493  | 
by auto  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
494  | 
qed  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
495  | 
hence "(\<lambda>a. ((I 0) +> a, ?proj (\<lambda>i. I (Suc i)) n a)) ` carrier R =  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
496  | 
carrier (R Quot (I 0)) \<times> carrier (?DirProd (\<lambda>i. I (Suc i)) n)"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
497  | 
using aux_lemma[OF ring I.rcos_ring_hom hom] unfolding carrier_Quot ker IH by simp  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
498  | 
moreover show ?case  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
499  | 
unfolding map_simp RDirProd_list_carrier sym[OF calculation(1)] canonical_proj_ext_tl by auto  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
500  | 
qed  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
501  | 
|
| 
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
502  | 
theorem (in cring) chinese_remainder:  | 
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
503  | 
assumes "\<And>i. i \<le> n \<Longrightarrow> ideal (I i) R" and "\<And>i j. \<lbrakk> i \<le> n; j \<le> n \<rbrakk> \<Longrightarrow> i \<noteq> j \<Longrightarrow> I i <+> I j = carrier R"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
504  | 
shows "R Quot (\<Inter>i \<le> n. I i) \<simeq> RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< Suc n])"  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
505  | 
using ring_hom_ring.FactRing_iso[OF canonical_proj_ext_ring_hom, of n I]  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
506  | 
canonical_proj_ext_is_surj[of n I] canonical_proj_ext_ker[of n I] assms  | 
| 
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
507  | 
by auto  | 
| 
68569
 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents:  
diff
changeset
 | 
508  | 
|
| 
69122
 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 
paulson <lp15@cam.ac.uk> 
parents: 
68975 
diff
changeset
 | 
509  | 
end  |