| author | wenzelm | 
| Tue, 30 Jul 2019 11:41:39 +0200 | |
| changeset 70443 | a21a96eda033 | 
| parent 67682 | 00c436488398 | 
| child 80768 | c7723cc15de8 | 
| permissions | -rw-r--r-- | 
| 42151 | 1  | 
(* Title: HOL/HOLCF/ConvexPD.thy  | 
| 25904 | 2  | 
Author: Brian Huffman  | 
3  | 
*)  | 
|
4  | 
||
| 62175 | 5  | 
section \<open>Convex powerdomain\<close>  | 
| 25904 | 6  | 
|
7  | 
theory ConvexPD  | 
|
8  | 
imports UpperPD LowerPD  | 
|
9  | 
begin  | 
|
10  | 
||
| 62175 | 11  | 
subsection \<open>Basis preorder\<close>  | 
| 25904 | 12  | 
|
13  | 
definition  | 
|
14  | 
convex_le :: "'a pd_basis \<Rightarrow> 'a pd_basis \<Rightarrow> bool" (infix "\<le>\<natural>" 50) where  | 
|
15  | 
"convex_le = (\<lambda>u v. u \<le>\<sharp> v \<and> u \<le>\<flat> v)"  | 
|
16  | 
||
17  | 
lemma convex_le_refl [simp]: "t \<le>\<natural> t"  | 
|
18  | 
unfolding convex_le_def by (fast intro: upper_le_refl lower_le_refl)  | 
|
19  | 
||
20  | 
lemma convex_le_trans: "\<lbrakk>t \<le>\<natural> u; u \<le>\<natural> v\<rbrakk> \<Longrightarrow> t \<le>\<natural> v"  | 
|
21  | 
unfolding convex_le_def by (fast intro: upper_le_trans lower_le_trans)  | 
|
22  | 
||
| 
30729
 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 
wenzelm 
parents: 
29990 
diff
changeset
 | 
23  | 
interpretation convex_le: preorder convex_le  | 
| 25904 | 24  | 
by (rule preorder.intro, rule convex_le_refl, rule convex_le_trans)  | 
25  | 
||
26  | 
lemma upper_le_minimal [simp]: "PDUnit compact_bot \<le>\<natural> t"  | 
|
27  | 
unfolding convex_le_def Rep_PDUnit by simp  | 
|
28  | 
||
| 
26420
 
57a626f64875
make preorder locale into a superclass of class po
 
huffman 
parents: 
26407 
diff
changeset
 | 
29  | 
lemma PDUnit_convex_mono: "x \<sqsubseteq> y \<Longrightarrow> PDUnit x \<le>\<natural> PDUnit y"  | 
| 25904 | 30  | 
unfolding convex_le_def by (fast intro: PDUnit_upper_mono PDUnit_lower_mono)  | 
31  | 
||
32  | 
lemma PDPlus_convex_mono: "\<lbrakk>s \<le>\<natural> t; u \<le>\<natural> v\<rbrakk> \<Longrightarrow> PDPlus s u \<le>\<natural> PDPlus t v"  | 
|
33  | 
unfolding convex_le_def by (fast intro: PDPlus_upper_mono PDPlus_lower_mono)  | 
|
34  | 
||
35  | 
lemma convex_le_PDUnit_PDUnit_iff [simp]:  | 
|
| 40436 | 36  | 
"(PDUnit a \<le>\<natural> PDUnit b) = (a \<sqsubseteq> b)"  | 
| 25904 | 37  | 
unfolding convex_le_def upper_le_def lower_le_def Rep_PDUnit by fast  | 
38  | 
||
39  | 
lemma convex_le_PDUnit_lemma1:  | 
|
| 
26420
 
57a626f64875
make preorder locale into a superclass of class po
 
huffman 
parents: 
26407 
diff
changeset
 | 
40  | 
"(PDUnit a \<le>\<natural> t) = (\<forall>b\<in>Rep_pd_basis t. a \<sqsubseteq> b)"  | 
| 25904 | 41  | 
unfolding convex_le_def upper_le_def lower_le_def Rep_PDUnit  | 
42  | 
using Rep_pd_basis_nonempty [of t, folded ex_in_conv] by fast  | 
|
43  | 
||
44  | 
lemma convex_le_PDUnit_PDPlus_iff [simp]:  | 
|
45  | 
"(PDUnit a \<le>\<natural> PDPlus t u) = (PDUnit a \<le>\<natural> t \<and> PDUnit a \<le>\<natural> u)"  | 
|
46  | 
unfolding convex_le_PDUnit_lemma1 Rep_PDPlus by fast  | 
|
47  | 
||
48  | 
lemma convex_le_PDUnit_lemma2:  | 
|
| 
26420
 
57a626f64875
make preorder locale into a superclass of class po
 
huffman 
parents: 
26407 
diff
changeset
 | 
49  | 
"(t \<le>\<natural> PDUnit b) = (\<forall>a\<in>Rep_pd_basis t. a \<sqsubseteq> b)"  | 
| 25904 | 50  | 
unfolding convex_le_def upper_le_def lower_le_def Rep_PDUnit  | 
51  | 
using Rep_pd_basis_nonempty [of t, folded ex_in_conv] by fast  | 
|
52  | 
||
53  | 
lemma convex_le_PDPlus_PDUnit_iff [simp]:  | 
|
54  | 
"(PDPlus t u \<le>\<natural> PDUnit a) = (t \<le>\<natural> PDUnit a \<and> u \<le>\<natural> PDUnit a)"  | 
|
55  | 
unfolding convex_le_PDUnit_lemma2 Rep_PDPlus by fast  | 
|
56  | 
||
57  | 
lemma convex_le_PDPlus_lemma:  | 
|
58  | 
assumes z: "PDPlus t u \<le>\<natural> z"  | 
|
59  | 
shows "\<exists>v w. z = PDPlus v w \<and> t \<le>\<natural> v \<and> u \<le>\<natural> w"  | 
|
60  | 
proof (intro exI conjI)  | 
|
| 
26420
 
57a626f64875
make preorder locale into a superclass of class po
 
huffman 
parents: 
26407 
diff
changeset
 | 
61  | 
  let ?A = "{b\<in>Rep_pd_basis z. \<exists>a\<in>Rep_pd_basis t. a \<sqsubseteq> b}"
 | 
| 
 
57a626f64875
make preorder locale into a superclass of class po
 
huffman 
parents: 
26407 
diff
changeset
 | 
62  | 
  let ?B = "{b\<in>Rep_pd_basis z. \<exists>a\<in>Rep_pd_basis u. a \<sqsubseteq> b}"
 | 
| 25904 | 63  | 
let ?v = "Abs_pd_basis ?A"  | 
64  | 
let ?w = "Abs_pd_basis ?B"  | 
|
65  | 
have Rep_v: "Rep_pd_basis ?v = ?A"  | 
|
66  | 
apply (rule Abs_pd_basis_inverse)  | 
|
67  | 
apply (rule Rep_pd_basis_nonempty [of t, folded ex_in_conv, THEN exE])  | 
|
68  | 
apply (cut_tac z, simp only: convex_le_def lower_le_def, clarify)  | 
|
69  | 
apply (drule_tac x=x in bspec, simp add: Rep_PDPlus, erule bexE)  | 
|
70  | 
apply (simp add: pd_basis_def)  | 
|
71  | 
apply fast  | 
|
72  | 
done  | 
|
73  | 
have Rep_w: "Rep_pd_basis ?w = ?B"  | 
|
74  | 
apply (rule Abs_pd_basis_inverse)  | 
|
75  | 
apply (rule Rep_pd_basis_nonempty [of u, folded ex_in_conv, THEN exE])  | 
|
76  | 
apply (cut_tac z, simp only: convex_le_def lower_le_def, clarify)  | 
|
77  | 
apply (drule_tac x=x in bspec, simp add: Rep_PDPlus, erule bexE)  | 
|
78  | 
apply (simp add: pd_basis_def)  | 
|
79  | 
apply fast  | 
|
80  | 
done  | 
|
81  | 
show "z = PDPlus ?v ?w"  | 
|
82  | 
apply (insert z)  | 
|
83  | 
apply (simp add: convex_le_def, erule conjE)  | 
|
84  | 
apply (simp add: Rep_pd_basis_inject [symmetric] Rep_PDPlus)  | 
|
85  | 
apply (simp add: Rep_v Rep_w)  | 
|
86  | 
apply (rule equalityI)  | 
|
87  | 
apply (rule subsetI)  | 
|
88  | 
apply (simp only: upper_le_def)  | 
|
89  | 
apply (drule (1) bspec, erule bexE)  | 
|
90  | 
apply (simp add: Rep_PDPlus)  | 
|
91  | 
apply fast  | 
|
92  | 
apply fast  | 
|
93  | 
done  | 
|
94  | 
show "t \<le>\<natural> ?v" "u \<le>\<natural> ?w"  | 
|
95  | 
apply (insert z)  | 
|
96  | 
apply (simp_all add: convex_le_def upper_le_def lower_le_def Rep_PDPlus Rep_v Rep_w)  | 
|
97  | 
apply fast+  | 
|
98  | 
done  | 
|
99  | 
qed  | 
|
100  | 
||
101  | 
lemma convex_le_induct [induct set: convex_le]:  | 
|
102  | 
assumes le: "t \<le>\<natural> u"  | 
|
103  | 
assumes 2: "\<And>t u v. \<lbrakk>P t u; P u v\<rbrakk> \<Longrightarrow> P t v"  | 
|
| 
26420
 
57a626f64875
make preorder locale into a superclass of class po
 
huffman 
parents: 
26407 
diff
changeset
 | 
104  | 
assumes 3: "\<And>a b. a \<sqsubseteq> b \<Longrightarrow> P (PDUnit a) (PDUnit b)"  | 
| 25904 | 105  | 
assumes 4: "\<And>t u v w. \<lbrakk>P t v; P u w\<rbrakk> \<Longrightarrow> P (PDPlus t u) (PDPlus v w)"  | 
106  | 
shows "P t u"  | 
|
107  | 
using le apply (induct t arbitrary: u rule: pd_basis_induct)  | 
|
108  | 
apply (erule rev_mp)  | 
|
109  | 
apply (induct_tac u rule: pd_basis_induct1)  | 
|
110  | 
apply (simp add: 3)  | 
|
111  | 
apply (simp, clarify, rename_tac a b t)  | 
|
112  | 
apply (subgoal_tac "P (PDPlus (PDUnit a) (PDUnit a)) (PDPlus (PDUnit b) t)")  | 
|
113  | 
apply (simp add: PDPlus_absorb)  | 
|
114  | 
apply (erule (1) 4 [OF 3])  | 
|
115  | 
apply (drule convex_le_PDPlus_lemma, clarify)  | 
|
116  | 
apply (simp add: 4)  | 
|
117  | 
done  | 
|
118  | 
||
119  | 
||
| 62175 | 120  | 
subsection \<open>Type definition\<close>  | 
| 25904 | 121  | 
|
| 61998 | 122  | 
typedef 'a convex_pd  ("('(_')\<natural>)") =
 | 
| 
27373
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
123  | 
  "{S::'a pd_basis set. convex_le.ideal S}"
 | 
| 
40888
 
28cd51cff70c
reformulate lemma preorder.ex_ideal, and use it for typedefs
 
huffman 
parents: 
40774 
diff
changeset
 | 
124  | 
by (rule convex_le.ex_ideal)  | 
| 
27373
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
125  | 
|
| 
41288
 
a19edebad961
powerdomain theories require class 'bifinite' instead of 'domain'
 
huffman 
parents: 
41287 
diff
changeset
 | 
126  | 
instantiation convex_pd :: (bifinite) below  | 
| 
27373
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
127  | 
begin  | 
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
128  | 
|
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
129  | 
definition  | 
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
130  | 
"x \<sqsubseteq> y \<longleftrightarrow> Rep_convex_pd x \<subseteq> Rep_convex_pd y"  | 
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
131  | 
|
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
132  | 
instance ..  | 
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
133  | 
end  | 
| 25904 | 134  | 
|
| 
41288
 
a19edebad961
powerdomain theories require class 'bifinite' instead of 'domain'
 
huffman 
parents: 
41287 
diff
changeset
 | 
135  | 
instance convex_pd :: (bifinite) po  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
136  | 
using type_definition_convex_pd below_convex_pd_def  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
137  | 
by (rule convex_le.typedef_ideal_po)  | 
| 
27373
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
138  | 
|
| 
41288
 
a19edebad961
powerdomain theories require class 'bifinite' instead of 'domain'
 
huffman 
parents: 
41287 
diff
changeset
 | 
139  | 
instance convex_pd :: (bifinite) cpo  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
140  | 
using type_definition_convex_pd below_convex_pd_def  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
141  | 
by (rule convex_le.typedef_ideal_cpo)  | 
| 
27373
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
142  | 
|
| 25904 | 143  | 
definition  | 
144  | 
convex_principal :: "'a pd_basis \<Rightarrow> 'a convex_pd" where  | 
|
| 
27373
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
145  | 
  "convex_principal t = Abs_convex_pd {u. u \<le>\<natural> t}"
 | 
| 25904 | 146  | 
|
| 
30729
 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 
wenzelm 
parents: 
29990 
diff
changeset
 | 
147  | 
interpretation convex_pd:  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
148  | 
ideal_completion convex_le convex_principal Rep_convex_pd  | 
| 39984 | 149  | 
using type_definition_convex_pd below_convex_pd_def  | 
150  | 
using convex_principal_def pd_basis_countable  | 
|
151  | 
by (rule convex_le.typedef_ideal_completion)  | 
|
| 25904 | 152  | 
|
| 62175 | 153  | 
text \<open>Convex powerdomain is pointed\<close>  | 
| 25904 | 154  | 
|
155  | 
lemma convex_pd_minimal: "convex_principal (PDUnit compact_bot) \<sqsubseteq> ys"  | 
|
156  | 
by (induct ys rule: convex_pd.principal_induct, simp, simp)  | 
|
157  | 
||
| 
41288
 
a19edebad961
powerdomain theories require class 'bifinite' instead of 'domain'
 
huffman 
parents: 
41287 
diff
changeset
 | 
158  | 
instance convex_pd :: (bifinite) pcpo  | 
| 26927 | 159  | 
by intro_classes (fast intro: convex_pd_minimal)  | 
| 25904 | 160  | 
|
161  | 
lemma inst_convex_pd_pcpo: "\<bottom> = convex_principal (PDUnit compact_bot)"  | 
|
| 
41430
 
1aa23e9f2c87
change some lemma names containing 'UU' to 'bottom'
 
huffman 
parents: 
41402 
diff
changeset
 | 
162  | 
by (rule convex_pd_minimal [THEN bottomI, symmetric])  | 
| 25904 | 163  | 
|
164  | 
||
| 62175 | 165  | 
subsection \<open>Monadic unit and plus\<close>  | 
| 25904 | 166  | 
|
167  | 
definition  | 
|
168  | 
convex_unit :: "'a \<rightarrow> 'a convex_pd" where  | 
|
| 
41394
 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 
huffman 
parents: 
41289 
diff
changeset
 | 
169  | 
"convex_unit = compact_basis.extension (\<lambda>a. convex_principal (PDUnit a))"  | 
| 25904 | 170  | 
|
171  | 
definition  | 
|
172  | 
convex_plus :: "'a convex_pd \<rightarrow> 'a convex_pd \<rightarrow> 'a convex_pd" where  | 
|
| 
41394
 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 
huffman 
parents: 
41289 
diff
changeset
 | 
173  | 
"convex_plus = convex_pd.extension (\<lambda>t. convex_pd.extension (\<lambda>u.  | 
| 25904 | 174  | 
convex_principal (PDPlus t u)))"  | 
175  | 
||
176  | 
abbreviation  | 
|
177  | 
convex_add :: "'a convex_pd \<Rightarrow> 'a convex_pd \<Rightarrow> 'a convex_pd"  | 
|
| 
41399
 
ad093e4638e2
changed syntax of powerdomain binary union operators
 
huffman 
parents: 
41394 
diff
changeset
 | 
178  | 
(infixl "\<union>\<natural>" 65) where  | 
| 
 
ad093e4638e2
changed syntax of powerdomain binary union operators
 
huffman 
parents: 
41394 
diff
changeset
 | 
179  | 
"xs \<union>\<natural> ys == convex_plus\<cdot>xs\<cdot>ys"  | 
| 25904 | 180  | 
|
| 26927 | 181  | 
syntax  | 
| 41479 | 182  | 
  "_convex_pd" :: "args \<Rightarrow> logic" ("{_}\<natural>")
 | 
| 26927 | 183  | 
|
184  | 
translations  | 
|
| 
41399
 
ad093e4638e2
changed syntax of powerdomain binary union operators
 
huffman 
parents: 
41394 
diff
changeset
 | 
185  | 
  "{x,xs}\<natural>" == "{x}\<natural> \<union>\<natural> {xs}\<natural>"
 | 
| 26927 | 186  | 
  "{x}\<natural>" == "CONST convex_unit\<cdot>x"
 | 
187  | 
||
188  | 
lemma convex_unit_Rep_compact_basis [simp]:  | 
|
189  | 
  "{Rep_compact_basis a}\<natural> = convex_principal (PDUnit a)"
 | 
|
190  | 
unfolding convex_unit_def  | 
|
| 
41394
 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 
huffman 
parents: 
41289 
diff
changeset
 | 
191  | 
by (simp add: compact_basis.extension_principal PDUnit_convex_mono)  | 
| 26927 | 192  | 
|
| 25904 | 193  | 
lemma convex_plus_principal [simp]:  | 
| 
41399
 
ad093e4638e2
changed syntax of powerdomain binary union operators
 
huffman 
parents: 
41394 
diff
changeset
 | 
194  | 
"convex_principal t \<union>\<natural> convex_principal u = convex_principal (PDPlus t u)"  | 
| 25904 | 195  | 
unfolding convex_plus_def  | 
| 
41394
 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 
huffman 
parents: 
41289 
diff
changeset
 | 
196  | 
by (simp add: convex_pd.extension_principal  | 
| 
 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 
huffman 
parents: 
41289 
diff
changeset
 | 
197  | 
convex_pd.extension_mono PDPlus_convex_mono)  | 
| 25904 | 198  | 
|
| 
37770
 
cddb3106adb8
avoid explicit mandatory prefix markers when prefixes are mandatory implicitly
 
haftmann 
parents: 
36635 
diff
changeset
 | 
199  | 
interpretation convex_add: semilattice convex_add proof  | 
| 
34973
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
33808 
diff
changeset
 | 
200  | 
fix xs ys zs :: "'a convex_pd"  | 
| 
41399
 
ad093e4638e2
changed syntax of powerdomain binary union operators
 
huffman 
parents: 
41394 
diff
changeset
 | 
201  | 
show "(xs \<union>\<natural> ys) \<union>\<natural> zs = xs \<union>\<natural> (ys \<union>\<natural> zs)"  | 
| 
41402
 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 
huffman 
parents: 
41399 
diff
changeset
 | 
202  | 
apply (induct xs rule: convex_pd.principal_induct, simp)  | 
| 
 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 
huffman 
parents: 
41399 
diff
changeset
 | 
203  | 
apply (induct ys rule: convex_pd.principal_induct, simp)  | 
| 
 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 
huffman 
parents: 
41399 
diff
changeset
 | 
204  | 
apply (induct zs rule: convex_pd.principal_induct, simp)  | 
| 
34973
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
33808 
diff
changeset
 | 
205  | 
apply (simp add: PDPlus_assoc)  | 
| 
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
33808 
diff
changeset
 | 
206  | 
done  | 
| 
41399
 
ad093e4638e2
changed syntax of powerdomain binary union operators
 
huffman 
parents: 
41394 
diff
changeset
 | 
207  | 
show "xs \<union>\<natural> ys = ys \<union>\<natural> xs"  | 
| 
41402
 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 
huffman 
parents: 
41399 
diff
changeset
 | 
208  | 
apply (induct xs rule: convex_pd.principal_induct, simp)  | 
| 
 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 
huffman 
parents: 
41399 
diff
changeset
 | 
209  | 
apply (induct ys rule: convex_pd.principal_induct, simp)  | 
| 
34973
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
33808 
diff
changeset
 | 
210  | 
apply (simp add: PDPlus_commute)  | 
| 
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
33808 
diff
changeset
 | 
211  | 
done  | 
| 
41399
 
ad093e4638e2
changed syntax of powerdomain binary union operators
 
huffman 
parents: 
41394 
diff
changeset
 | 
212  | 
show "xs \<union>\<natural> xs = xs"  | 
| 
34973
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
33808 
diff
changeset
 | 
213  | 
apply (induct xs rule: convex_pd.principal_induct, simp)  | 
| 
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
33808 
diff
changeset
 | 
214  | 
apply (simp add: PDPlus_absorb)  | 
| 
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
33808 
diff
changeset
 | 
215  | 
done  | 
| 
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
33808 
diff
changeset
 | 
216  | 
qed  | 
| 26927 | 217  | 
|
| 
34973
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
33808 
diff
changeset
 | 
218  | 
lemmas convex_plus_assoc = convex_add.assoc  | 
| 
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
33808 
diff
changeset
 | 
219  | 
lemmas convex_plus_commute = convex_add.commute  | 
| 
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
33808 
diff
changeset
 | 
220  | 
lemmas convex_plus_absorb = convex_add.idem  | 
| 
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
33808 
diff
changeset
 | 
221  | 
lemmas convex_plus_left_commute = convex_add.left_commute  | 
| 
 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 
haftmann 
parents: 
33808 
diff
changeset
 | 
222  | 
lemmas convex_plus_left_absorb = convex_add.left_idem  | 
| 26927 | 223  | 
|
| 62175 | 224  | 
text \<open>Useful for \<open>simp add: convex_plus_ac\<close>\<close>  | 
| 
29990
 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 
huffman 
parents: 
29672 
diff
changeset
 | 
225  | 
lemmas convex_plus_ac =  | 
| 
 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 
huffman 
parents: 
29672 
diff
changeset
 | 
226  | 
convex_plus_assoc convex_plus_commute convex_plus_left_commute  | 
| 
 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 
huffman 
parents: 
29672 
diff
changeset
 | 
227  | 
|
| 62175 | 228  | 
text \<open>Useful for \<open>simp only: convex_plus_aci\<close>\<close>  | 
| 
29990
 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 
huffman 
parents: 
29672 
diff
changeset
 | 
229  | 
lemmas convex_plus_aci =  | 
| 
 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 
huffman 
parents: 
29672 
diff
changeset
 | 
230  | 
convex_plus_ac convex_plus_absorb convex_plus_left_absorb  | 
| 
 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 
huffman 
parents: 
29672 
diff
changeset
 | 
231  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
232  | 
lemma convex_unit_below_plus_iff [simp]:  | 
| 
41399
 
ad093e4638e2
changed syntax of powerdomain binary union operators
 
huffman 
parents: 
41394 
diff
changeset
 | 
233  | 
  "{x}\<natural> \<sqsubseteq> ys \<union>\<natural> zs \<longleftrightarrow> {x}\<natural> \<sqsubseteq> ys \<and> {x}\<natural> \<sqsubseteq> zs"
 | 
| 
39970
 
9023b897e67a
simplify proofs of powerdomain inequalities
 
Brian Huffman <brianh@cs.pdx.edu> 
parents: 
37770 
diff
changeset
 | 
234  | 
apply (induct x rule: compact_basis.principal_induct, simp)  | 
| 
 
9023b897e67a
simplify proofs of powerdomain inequalities
 
Brian Huffman <brianh@cs.pdx.edu> 
parents: 
37770 
diff
changeset
 | 
235  | 
apply (induct ys rule: convex_pd.principal_induct, simp)  | 
| 
 
9023b897e67a
simplify proofs of powerdomain inequalities
 
Brian Huffman <brianh@cs.pdx.edu> 
parents: 
37770 
diff
changeset
 | 
236  | 
apply (induct zs rule: convex_pd.principal_induct, simp)  | 
| 
 
9023b897e67a
simplify proofs of powerdomain inequalities
 
Brian Huffman <brianh@cs.pdx.edu> 
parents: 
37770 
diff
changeset
 | 
237  | 
apply simp  | 
| 25904 | 238  | 
done  | 
239  | 
||
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
240  | 
lemma convex_plus_below_unit_iff [simp]:  | 
| 
41399
 
ad093e4638e2
changed syntax of powerdomain binary union operators
 
huffman 
parents: 
41394 
diff
changeset
 | 
241  | 
  "xs \<union>\<natural> ys \<sqsubseteq> {z}\<natural> \<longleftrightarrow> xs \<sqsubseteq> {z}\<natural> \<and> ys \<sqsubseteq> {z}\<natural>"
 | 
| 
39970
 
9023b897e67a
simplify proofs of powerdomain inequalities
 
Brian Huffman <brianh@cs.pdx.edu> 
parents: 
37770 
diff
changeset
 | 
242  | 
apply (induct xs rule: convex_pd.principal_induct, simp)  | 
| 
 
9023b897e67a
simplify proofs of powerdomain inequalities
 
Brian Huffman <brianh@cs.pdx.edu> 
parents: 
37770 
diff
changeset
 | 
243  | 
apply (induct ys rule: convex_pd.principal_induct, simp)  | 
| 
 
9023b897e67a
simplify proofs of powerdomain inequalities
 
Brian Huffman <brianh@cs.pdx.edu> 
parents: 
37770 
diff
changeset
 | 
244  | 
apply (induct z rule: compact_basis.principal_induct, simp)  | 
| 
 
9023b897e67a
simplify proofs of powerdomain inequalities
 
Brian Huffman <brianh@cs.pdx.edu> 
parents: 
37770 
diff
changeset
 | 
245  | 
apply simp  | 
| 25904 | 246  | 
done  | 
247  | 
||
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
248  | 
lemma convex_unit_below_iff [simp]: "{x}\<natural> \<sqsubseteq> {y}\<natural> \<longleftrightarrow> x \<sqsubseteq> y"
 | 
| 
39970
 
9023b897e67a
simplify proofs of powerdomain inequalities
 
Brian Huffman <brianh@cs.pdx.edu> 
parents: 
37770 
diff
changeset
 | 
249  | 
apply (induct x rule: compact_basis.principal_induct, simp)  | 
| 
 
9023b897e67a
simplify proofs of powerdomain inequalities
 
Brian Huffman <brianh@cs.pdx.edu> 
parents: 
37770 
diff
changeset
 | 
250  | 
apply (induct y rule: compact_basis.principal_induct, simp)  | 
| 
 
9023b897e67a
simplify proofs of powerdomain inequalities
 
Brian Huffman <brianh@cs.pdx.edu> 
parents: 
37770 
diff
changeset
 | 
251  | 
apply simp  | 
| 26927 | 252  | 
done  | 
253  | 
||
254  | 
lemma convex_unit_eq_iff [simp]: "{x}\<natural> = {y}\<natural> \<longleftrightarrow> x = y"
 | 
|
255  | 
unfolding po_eq_conv by simp  | 
|
256  | 
||
257  | 
lemma convex_unit_strict [simp]: "{\<bottom>}\<natural> = \<bottom>"
 | 
|
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
258  | 
using convex_unit_Rep_compact_basis [of compact_bot]  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
259  | 
by (simp add: inst_convex_pd_pcpo)  | 
| 26927 | 260  | 
|
| 
40321
 
d065b195ec89
rename lemmas *_defined_iff and *_strict_iff to *_bottom_iff
 
huffman 
parents: 
40002 
diff
changeset
 | 
261  | 
lemma convex_unit_bottom_iff [simp]: "{x}\<natural> = \<bottom> \<longleftrightarrow> x = \<bottom>"
 | 
| 26927 | 262  | 
unfolding convex_unit_strict [symmetric] by (rule convex_unit_eq_iff)  | 
263  | 
||
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
264  | 
lemma compact_convex_unit: "compact x \<Longrightarrow> compact {x}\<natural>"
 | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
265  | 
by (auto dest!: compact_basis.compact_imp_principal)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
266  | 
|
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
267  | 
lemma compact_convex_unit_iff [simp]: "compact {x}\<natural> \<longleftrightarrow> compact x"
 | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
268  | 
apply (safe elim!: compact_convex_unit)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
269  | 
apply (simp only: compact_def convex_unit_below_iff [symmetric])  | 
| 40327 | 270  | 
apply (erule adm_subst [OF cont_Rep_cfun2])  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
271  | 
done  | 
| 26927 | 272  | 
|
273  | 
lemma compact_convex_plus [simp]:  | 
|
| 
41399
 
ad093e4638e2
changed syntax of powerdomain binary union operators
 
huffman 
parents: 
41394 
diff
changeset
 | 
274  | 
"\<lbrakk>compact xs; compact ys\<rbrakk> \<Longrightarrow> compact (xs \<union>\<natural> ys)"  | 
| 27289 | 275  | 
by (auto dest!: convex_pd.compact_imp_principal)  | 
| 26927 | 276  | 
|
| 25904 | 277  | 
|
| 62175 | 278  | 
subsection \<open>Induction rules\<close>  | 
| 25904 | 279  | 
|
280  | 
lemma convex_pd_induct1:  | 
|
281  | 
assumes P: "adm P"  | 
|
| 26927 | 282  | 
  assumes unit: "\<And>x. P {x}\<natural>"
 | 
| 
41399
 
ad093e4638e2
changed syntax of powerdomain binary union operators
 
huffman 
parents: 
41394 
diff
changeset
 | 
283  | 
  assumes insert: "\<And>x ys. \<lbrakk>P {x}\<natural>; P ys\<rbrakk> \<Longrightarrow> P ({x}\<natural> \<union>\<natural> ys)"
 | 
| 25904 | 284  | 
shows "P (xs::'a convex_pd)"  | 
| 27289 | 285  | 
apply (induct xs rule: convex_pd.principal_induct, rule P)  | 
286  | 
apply (induct_tac a rule: pd_basis_induct1)  | 
|
| 25904 | 287  | 
apply (simp only: convex_unit_Rep_compact_basis [symmetric])  | 
288  | 
apply (rule unit)  | 
|
289  | 
apply (simp only: convex_unit_Rep_compact_basis [symmetric]  | 
|
290  | 
convex_plus_principal [symmetric])  | 
|
291  | 
apply (erule insert [OF unit])  | 
|
292  | 
done  | 
|
293  | 
||
| 
40576
 
fa5e0cacd5e7
declare {upper,lower,convex}_pd_induct as default induction rules
 
huffman 
parents: 
40497 
diff
changeset
 | 
294  | 
lemma convex_pd_induct  | 
| 
 
fa5e0cacd5e7
declare {upper,lower,convex}_pd_induct as default induction rules
 
huffman 
parents: 
40497 
diff
changeset
 | 
295  | 
[case_names adm convex_unit convex_plus, induct type: convex_pd]:  | 
| 25904 | 296  | 
assumes P: "adm P"  | 
| 26927 | 297  | 
  assumes unit: "\<And>x. P {x}\<natural>"
 | 
| 
41399
 
ad093e4638e2
changed syntax of powerdomain binary union operators
 
huffman 
parents: 
41394 
diff
changeset
 | 
298  | 
assumes plus: "\<And>xs ys. \<lbrakk>P xs; P ys\<rbrakk> \<Longrightarrow> P (xs \<union>\<natural> ys)"  | 
| 25904 | 299  | 
shows "P (xs::'a convex_pd)"  | 
| 27289 | 300  | 
apply (induct xs rule: convex_pd.principal_induct, rule P)  | 
301  | 
apply (induct_tac a rule: pd_basis_induct)  | 
|
| 25904 | 302  | 
apply (simp only: convex_unit_Rep_compact_basis [symmetric] unit)  | 
303  | 
apply (simp only: convex_plus_principal [symmetric] plus)  | 
|
304  | 
done  | 
|
305  | 
||
306  | 
||
| 62175 | 307  | 
subsection \<open>Monadic bind\<close>  | 
| 25904 | 308  | 
|
309  | 
definition  | 
|
310  | 
convex_bind_basis ::  | 
|
311  | 
  "'a pd_basis \<Rightarrow> ('a \<rightarrow> 'b convex_pd) \<rightarrow> 'b convex_pd" where
 | 
|
312  | 
"convex_bind_basis = fold_pd  | 
|
313  | 
(\<lambda>a. \<Lambda> f. f\<cdot>(Rep_compact_basis a))  | 
|
| 
41399
 
ad093e4638e2
changed syntax of powerdomain binary union operators
 
huffman 
parents: 
41394 
diff
changeset
 | 
314  | 
(\<lambda>x y. \<Lambda> f. x\<cdot>f \<union>\<natural> y\<cdot>f)"  | 
| 25904 | 315  | 
|
| 26927 | 316  | 
lemma ACI_convex_bind:  | 
| 51489 | 317  | 
"semilattice (\<lambda>x y. \<Lambda> f. x\<cdot>f \<union>\<natural> y\<cdot>f)"  | 
| 25904 | 318  | 
apply unfold_locales  | 
| 
26041
 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 
haftmann 
parents: 
25925 
diff
changeset
 | 
319  | 
apply (simp add: convex_plus_assoc)  | 
| 25904 | 320  | 
apply (simp add: convex_plus_commute)  | 
| 
29990
 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 
huffman 
parents: 
29672 
diff
changeset
 | 
321  | 
apply (simp add: eta_cfun)  | 
| 25904 | 322  | 
done  | 
323  | 
||
324  | 
lemma convex_bind_basis_simps [simp]:  | 
|
325  | 
"convex_bind_basis (PDUnit a) =  | 
|
326  | 
(\<Lambda> f. f\<cdot>(Rep_compact_basis a))"  | 
|
327  | 
"convex_bind_basis (PDPlus t u) =  | 
|
| 
41399
 
ad093e4638e2
changed syntax of powerdomain binary union operators
 
huffman 
parents: 
41394 
diff
changeset
 | 
328  | 
(\<Lambda> f. convex_bind_basis t\<cdot>f \<union>\<natural> convex_bind_basis u\<cdot>f)"  | 
| 25904 | 329  | 
unfolding convex_bind_basis_def  | 
330  | 
apply -  | 
|
| 26927 | 331  | 
apply (rule fold_pd_PDUnit [OF ACI_convex_bind])  | 
332  | 
apply (rule fold_pd_PDPlus [OF ACI_convex_bind])  | 
|
| 25904 | 333  | 
done  | 
334  | 
||
335  | 
lemma convex_bind_basis_mono:  | 
|
336  | 
"t \<le>\<natural> u \<Longrightarrow> convex_bind_basis t \<sqsubseteq> convex_bind_basis u"  | 
|
337  | 
apply (erule convex_le_induct)  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
338  | 
apply (erule (1) below_trans)  | 
| 27289 | 339  | 
apply (simp add: monofun_LAM monofun_cfun)  | 
340  | 
apply (simp add: monofun_LAM monofun_cfun)  | 
|
| 25904 | 341  | 
done  | 
342  | 
||
343  | 
definition  | 
|
344  | 
  convex_bind :: "'a convex_pd \<rightarrow> ('a \<rightarrow> 'b convex_pd) \<rightarrow> 'b convex_pd" where
 | 
|
| 
41394
 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 
huffman 
parents: 
41289 
diff
changeset
 | 
345  | 
"convex_bind = convex_pd.extension convex_bind_basis"  | 
| 25904 | 346  | 
|
| 
41036
 
4acbacd6c5bc
add set-union-like syntax for powerdomain bind operators
 
huffman 
parents: 
40888 
diff
changeset
 | 
347  | 
syntax  | 
| 
 
4acbacd6c5bc
add set-union-like syntax for powerdomain bind operators
 
huffman 
parents: 
40888 
diff
changeset
 | 
348  | 
"_convex_bind" :: "[logic, logic, logic] \<Rightarrow> logic"  | 
| 
 
4acbacd6c5bc
add set-union-like syntax for powerdomain bind operators
 
huffman 
parents: 
40888 
diff
changeset
 | 
349  | 
    ("(3\<Union>\<natural>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
 
4acbacd6c5bc
add set-union-like syntax for powerdomain bind operators
 
huffman 
parents: 
40888 
diff
changeset
 | 
350  | 
|
| 
 
4acbacd6c5bc
add set-union-like syntax for powerdomain bind operators
 
huffman 
parents: 
40888 
diff
changeset
 | 
351  | 
translations  | 
| 
 
4acbacd6c5bc
add set-union-like syntax for powerdomain bind operators
 
huffman 
parents: 
40888 
diff
changeset
 | 
352  | 
"\<Union>\<natural>x\<in>xs. e" == "CONST convex_bind\<cdot>xs\<cdot>(\<Lambda> x. e)"  | 
| 
 
4acbacd6c5bc
add set-union-like syntax for powerdomain bind operators
 
huffman 
parents: 
40888 
diff
changeset
 | 
353  | 
|
| 25904 | 354  | 
lemma convex_bind_principal [simp]:  | 
355  | 
"convex_bind\<cdot>(convex_principal t) = convex_bind_basis t"  | 
|
356  | 
unfolding convex_bind_def  | 
|
| 
41394
 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 
huffman 
parents: 
41289 
diff
changeset
 | 
357  | 
apply (rule convex_pd.extension_principal)  | 
| 25904 | 358  | 
apply (erule convex_bind_basis_mono)  | 
359  | 
done  | 
|
360  | 
||
361  | 
lemma convex_bind_unit [simp]:  | 
|
| 26927 | 362  | 
  "convex_bind\<cdot>{x}\<natural>\<cdot>f = f\<cdot>x"
 | 
| 27289 | 363  | 
by (induct x rule: compact_basis.principal_induct, simp, simp)  | 
| 25904 | 364  | 
|
365  | 
lemma convex_bind_plus [simp]:  | 
|
| 
41399
 
ad093e4638e2
changed syntax of powerdomain binary union operators
 
huffman 
parents: 
41394 
diff
changeset
 | 
366  | 
"convex_bind\<cdot>(xs \<union>\<natural> ys)\<cdot>f = convex_bind\<cdot>xs\<cdot>f \<union>\<natural> convex_bind\<cdot>ys\<cdot>f"  | 
| 
41402
 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 
huffman 
parents: 
41399 
diff
changeset
 | 
367  | 
by (induct xs rule: convex_pd.principal_induct, simp,  | 
| 
 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 
huffman 
parents: 
41399 
diff
changeset
 | 
368  | 
induct ys rule: convex_pd.principal_induct, simp, simp)  | 
| 25904 | 369  | 
|
370  | 
lemma convex_bind_strict [simp]: "convex_bind\<cdot>\<bottom>\<cdot>f = f\<cdot>\<bottom>"  | 
|
371  | 
unfolding convex_unit_strict [symmetric] by (rule convex_bind_unit)  | 
|
372  | 
||
| 40589 | 373  | 
lemma convex_bind_bind:  | 
374  | 
"convex_bind\<cdot>(convex_bind\<cdot>xs\<cdot>f)\<cdot>g =  | 
|
375  | 
convex_bind\<cdot>xs\<cdot>(\<Lambda> x. convex_bind\<cdot>(f\<cdot>x)\<cdot>g)"  | 
|
376  | 
by (induct xs, simp_all)  | 
|
377  | 
||
| 25904 | 378  | 
|
| 62175 | 379  | 
subsection \<open>Map\<close>  | 
| 25904 | 380  | 
|
381  | 
definition  | 
|
382  | 
  convex_map :: "('a \<rightarrow> 'b) \<rightarrow> 'a convex_pd \<rightarrow> 'b convex_pd" where
 | 
|
| 26927 | 383  | 
  "convex_map = (\<Lambda> f xs. convex_bind\<cdot>xs\<cdot>(\<Lambda> x. {f\<cdot>x}\<natural>))"
 | 
| 25904 | 384  | 
|
385  | 
lemma convex_map_unit [simp]:  | 
|
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
386  | 
  "convex_map\<cdot>f\<cdot>{x}\<natural> = {f\<cdot>x}\<natural>"
 | 
| 25904 | 387  | 
unfolding convex_map_def by simp  | 
388  | 
||
389  | 
lemma convex_map_plus [simp]:  | 
|
| 
41399
 
ad093e4638e2
changed syntax of powerdomain binary union operators
 
huffman 
parents: 
41394 
diff
changeset
 | 
390  | 
"convex_map\<cdot>f\<cdot>(xs \<union>\<natural> ys) = convex_map\<cdot>f\<cdot>xs \<union>\<natural> convex_map\<cdot>f\<cdot>ys"  | 
| 25904 | 391  | 
unfolding convex_map_def by simp  | 
392  | 
||
| 40577 | 393  | 
lemma convex_map_bottom [simp]: "convex_map\<cdot>f\<cdot>\<bottom> = {f\<cdot>\<bottom>}\<natural>"
 | 
394  | 
unfolding convex_map_def by simp  | 
|
395  | 
||
| 25904 | 396  | 
lemma convex_map_ident: "convex_map\<cdot>(\<Lambda> x. x)\<cdot>xs = xs"  | 
397  | 
by (induct xs rule: convex_pd_induct, simp_all)  | 
|
398  | 
||
| 33808 | 399  | 
lemma convex_map_ID: "convex_map\<cdot>ID = ID"  | 
| 
40002
 
c5b5f7a3a3b1
new theorem names: fun_below_iff, fun_belowI, cfun_eq_iff, cfun_eqI, cfun_below_iff, cfun_belowI
 
huffman 
parents: 
39989 
diff
changeset
 | 
400  | 
by (simp add: cfun_eq_iff ID_def convex_map_ident)  | 
| 33808 | 401  | 
|
| 25904 | 402  | 
lemma convex_map_map:  | 
403  | 
"convex_map\<cdot>f\<cdot>(convex_map\<cdot>g\<cdot>xs) = convex_map\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>xs"  | 
|
404  | 
by (induct xs rule: convex_pd_induct, simp_all)  | 
|
405  | 
||
| 41110 | 406  | 
lemma convex_bind_map:  | 
407  | 
"convex_bind\<cdot>(convex_map\<cdot>f\<cdot>xs)\<cdot>g = convex_bind\<cdot>xs\<cdot>(\<Lambda> x. g\<cdot>(f\<cdot>x))"  | 
|
408  | 
by (simp add: convex_map_def convex_bind_bind)  | 
|
409  | 
||
410  | 
lemma convex_map_bind:  | 
|
411  | 
"convex_map\<cdot>f\<cdot>(convex_bind\<cdot>xs\<cdot>g) = convex_bind\<cdot>xs\<cdot>(\<Lambda> x. convex_map\<cdot>f\<cdot>(g\<cdot>x))"  | 
|
412  | 
by (simp add: convex_map_def convex_bind_bind)  | 
|
413  | 
||
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
414  | 
lemma ep_pair_convex_map: "ep_pair e p \<Longrightarrow> ep_pair (convex_map\<cdot>e) (convex_map\<cdot>p)"  | 
| 61169 | 415  | 
apply standard  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
416  | 
apply (induct_tac x rule: convex_pd_induct, simp_all add: ep_pair.e_inverse)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
417  | 
apply (induct_tac y rule: convex_pd_induct)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
418  | 
apply (simp_all add: ep_pair.e_p_below monofun_cfun)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
419  | 
done  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
420  | 
|
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
421  | 
lemma deflation_convex_map: "deflation d \<Longrightarrow> deflation (convex_map\<cdot>d)"  | 
| 61169 | 422  | 
apply standard  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
423  | 
apply (induct_tac x rule: convex_pd_induct, simp_all add: deflation.idem)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
424  | 
apply (induct_tac x rule: convex_pd_induct)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
425  | 
apply (simp_all add: deflation.below monofun_cfun)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
426  | 
done  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
427  | 
|
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
428  | 
(* FIXME: long proof! *)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
429  | 
lemma finite_deflation_convex_map:  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
430  | 
assumes "finite_deflation d" shows "finite_deflation (convex_map\<cdot>d)"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
431  | 
proof (rule finite_deflation_intro)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
432  | 
interpret d: finite_deflation d by fact  | 
| 
67682
 
00c436488398
tuned proofs -- prefer explicit names for facts from 'interpret';
 
wenzelm 
parents: 
62175 
diff
changeset
 | 
433  | 
from d.deflation_axioms show "deflation (convex_map\<cdot>d)"  | 
| 
 
00c436488398
tuned proofs -- prefer explicit names for facts from 'interpret';
 
wenzelm 
parents: 
62175 
diff
changeset
 | 
434  | 
by (rule deflation_convex_map)  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
435  | 
have "finite (range (\<lambda>x. d\<cdot>x))" by (rule d.finite_range)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
436  | 
hence "finite (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
437  | 
by (rule finite_vimageI, simp add: inj_on_def Rep_compact_basis_inject)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
438  | 
hence "finite (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x)))" by simp  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
439  | 
hence "finite (Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
440  | 
by (rule finite_vimageI, simp add: inj_on_def Rep_pd_basis_inject)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
441  | 
hence *: "finite (convex_principal ` Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))" by simp  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
442  | 
hence "finite (range (\<lambda>xs. convex_map\<cdot>d\<cdot>xs))"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
443  | 
apply (rule rev_finite_subset)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
444  | 
apply clarsimp  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
445  | 
apply (induct_tac xs rule: convex_pd.principal_induct)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
446  | 
apply (simp add: adm_mem_finite *)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
447  | 
apply (rename_tac t, induct_tac t rule: pd_basis_induct)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
448  | 
apply (simp only: convex_unit_Rep_compact_basis [symmetric] convex_map_unit)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
449  | 
apply simp  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
450  | 
apply (subgoal_tac "\<exists>b. d\<cdot>(Rep_compact_basis a) = Rep_compact_basis b")  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
451  | 
apply clarsimp  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
452  | 
apply (rule imageI)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
453  | 
apply (rule vimageI2)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
454  | 
apply (simp add: Rep_PDUnit)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
455  | 
apply (rule range_eqI)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
456  | 
apply (erule sym)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
457  | 
apply (rule exI)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
458  | 
apply (rule Abs_compact_basis_inverse [symmetric])  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
459  | 
apply (simp add: d.compact)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
460  | 
apply (simp only: convex_plus_principal [symmetric] convex_map_plus)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
461  | 
apply clarsimp  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
462  | 
apply (rule imageI)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
463  | 
apply (rule vimageI2)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
464  | 
apply (simp add: Rep_PDPlus)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
465  | 
done  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
466  | 
  thus "finite {xs. convex_map\<cdot>d\<cdot>xs = xs}"
 | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
467  | 
by (rule finite_range_imp_finite_fixes)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
468  | 
qed  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
469  | 
|
| 62175 | 470  | 
subsection \<open>Convex powerdomain is bifinite\<close>  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
471  | 
|
| 
41286
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41111 
diff
changeset
 | 
472  | 
lemma approx_chain_convex_map:  | 
| 
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41111 
diff
changeset
 | 
473  | 
assumes "approx_chain a"  | 
| 
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41111 
diff
changeset
 | 
474  | 
shows "approx_chain (\<lambda>i. convex_map\<cdot>(a i))"  | 
| 
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41111 
diff
changeset
 | 
475  | 
using assms unfolding approx_chain_def  | 
| 
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41111 
diff
changeset
 | 
476  | 
by (simp add: lub_APP convex_map_ID finite_deflation_convex_map)  | 
| 
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41111 
diff
changeset
 | 
477  | 
|
| 
41288
 
a19edebad961
powerdomain theories require class 'bifinite' instead of 'domain'
 
huffman 
parents: 
41287 
diff
changeset
 | 
478  | 
instance convex_pd :: (bifinite) bifinite  | 
| 
41286
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41111 
diff
changeset
 | 
479  | 
proof  | 
| 
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41111 
diff
changeset
 | 
480  | 
show "\<exists>(a::nat \<Rightarrow> 'a convex_pd \<rightarrow> 'a convex_pd). approx_chain a"  | 
| 
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41111 
diff
changeset
 | 
481  | 
using bifinite [where 'a='a]  | 
| 
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41111 
diff
changeset
 | 
482  | 
by (fast intro!: approx_chain_convex_map)  | 
| 
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41111 
diff
changeset
 | 
483  | 
qed  | 
| 
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41111 
diff
changeset
 | 
484  | 
|
| 62175 | 485  | 
subsection \<open>Join\<close>  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
486  | 
|
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
487  | 
definition  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
488  | 
convex_join :: "'a convex_pd convex_pd \<rightarrow> 'a convex_pd" where  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
489  | 
"convex_join = (\<Lambda> xss. convex_bind\<cdot>xss\<cdot>(\<Lambda> xs. xs))"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
490  | 
|
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
491  | 
lemma convex_join_unit [simp]:  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
492  | 
  "convex_join\<cdot>{xs}\<natural> = xs"
 | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
493  | 
unfolding convex_join_def by simp  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
494  | 
|
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
495  | 
lemma convex_join_plus [simp]:  | 
| 
41399
 
ad093e4638e2
changed syntax of powerdomain binary union operators
 
huffman 
parents: 
41394 
diff
changeset
 | 
496  | 
"convex_join\<cdot>(xss \<union>\<natural> yss) = convex_join\<cdot>xss \<union>\<natural> convex_join\<cdot>yss"  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
497  | 
unfolding convex_join_def by simp  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
39970 
diff
changeset
 | 
498  | 
|
| 40577 | 499  | 
lemma convex_join_bottom [simp]: "convex_join\<cdot>\<bottom> = \<bottom>"  | 
500  | 
unfolding convex_join_def by simp  | 
|
501  | 
||
| 25904 | 502  | 
lemma convex_join_map_unit:  | 
503  | 
"convex_join\<cdot>(convex_map\<cdot>convex_unit\<cdot>xs) = xs"  | 
|
504  | 
by (induct xs rule: convex_pd_induct, simp_all)  | 
|
505  | 
||
506  | 
lemma convex_join_map_join:  | 
|
507  | 
"convex_join\<cdot>(convex_map\<cdot>convex_join\<cdot>xsss) = convex_join\<cdot>(convex_join\<cdot>xsss)"  | 
|
508  | 
by (induct xsss rule: convex_pd_induct, simp_all)  | 
|
509  | 
||
510  | 
lemma convex_join_map_map:  | 
|
511  | 
"convex_join\<cdot>(convex_map\<cdot>(convex_map\<cdot>f)\<cdot>xss) =  | 
|
512  | 
convex_map\<cdot>f\<cdot>(convex_join\<cdot>xss)"  | 
|
513  | 
by (induct xss rule: convex_pd_induct, simp_all)  | 
|
514  | 
||
515  | 
||
| 62175 | 516  | 
subsection \<open>Conversions to other powerdomains\<close>  | 
| 25904 | 517  | 
|
| 62175 | 518  | 
text \<open>Convex to upper\<close>  | 
| 25904 | 519  | 
|
520  | 
lemma convex_le_imp_upper_le: "t \<le>\<natural> u \<Longrightarrow> t \<le>\<sharp> u"  | 
|
521  | 
unfolding convex_le_def by simp  | 
|
522  | 
||
523  | 
definition  | 
|
524  | 
convex_to_upper :: "'a convex_pd \<rightarrow> 'a upper_pd" where  | 
|
| 
41394
 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 
huffman 
parents: 
41289 
diff
changeset
 | 
525  | 
"convex_to_upper = convex_pd.extension upper_principal"  | 
| 25904 | 526  | 
|
527  | 
lemma convex_to_upper_principal [simp]:  | 
|
528  | 
"convex_to_upper\<cdot>(convex_principal t) = upper_principal t"  | 
|
529  | 
unfolding convex_to_upper_def  | 
|
| 
41394
 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 
huffman 
parents: 
41289 
diff
changeset
 | 
530  | 
apply (rule convex_pd.extension_principal)  | 
| 27289 | 531  | 
apply (rule upper_pd.principal_mono)  | 
| 25904 | 532  | 
apply (erule convex_le_imp_upper_le)  | 
533  | 
done  | 
|
534  | 
||
535  | 
lemma convex_to_upper_unit [simp]:  | 
|
| 26927 | 536  | 
  "convex_to_upper\<cdot>{x}\<natural> = {x}\<sharp>"
 | 
| 27289 | 537  | 
by (induct x rule: compact_basis.principal_induct, simp, simp)  | 
| 25904 | 538  | 
|
539  | 
lemma convex_to_upper_plus [simp]:  | 
|
| 
41399
 
ad093e4638e2
changed syntax of powerdomain binary union operators
 
huffman 
parents: 
41394 
diff
changeset
 | 
540  | 
"convex_to_upper\<cdot>(xs \<union>\<natural> ys) = convex_to_upper\<cdot>xs \<union>\<sharp> convex_to_upper\<cdot>ys"  | 
| 
41402
 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 
huffman 
parents: 
41399 
diff
changeset
 | 
541  | 
by (induct xs rule: convex_pd.principal_induct, simp,  | 
| 
 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 
huffman 
parents: 
41399 
diff
changeset
 | 
542  | 
induct ys rule: convex_pd.principal_induct, simp, simp)  | 
| 25904 | 543  | 
|
| 27289 | 544  | 
lemma convex_to_upper_bind [simp]:  | 
545  | 
"convex_to_upper\<cdot>(convex_bind\<cdot>xs\<cdot>f) =  | 
|
546  | 
upper_bind\<cdot>(convex_to_upper\<cdot>xs)\<cdot>(convex_to_upper oo f)"  | 
|
547  | 
by (induct xs rule: convex_pd_induct, simp, simp, simp)  | 
|
548  | 
||
549  | 
lemma convex_to_upper_map [simp]:  | 
|
550  | 
"convex_to_upper\<cdot>(convex_map\<cdot>f\<cdot>xs) = upper_map\<cdot>f\<cdot>(convex_to_upper\<cdot>xs)"  | 
|
551  | 
by (simp add: convex_map_def upper_map_def cfcomp_LAM)  | 
|
552  | 
||
553  | 
lemma convex_to_upper_join [simp]:  | 
|
554  | 
"convex_to_upper\<cdot>(convex_join\<cdot>xss) =  | 
|
555  | 
upper_bind\<cdot>(convex_to_upper\<cdot>xss)\<cdot>convex_to_upper"  | 
|
556  | 
by (simp add: convex_join_def upper_join_def cfcomp_LAM eta_cfun)  | 
|
557  | 
||
| 62175 | 558  | 
text \<open>Convex to lower\<close>  | 
| 25904 | 559  | 
|
560  | 
lemma convex_le_imp_lower_le: "t \<le>\<natural> u \<Longrightarrow> t \<le>\<flat> u"  | 
|
561  | 
unfolding convex_le_def by simp  | 
|
562  | 
||
563  | 
definition  | 
|
564  | 
convex_to_lower :: "'a convex_pd \<rightarrow> 'a lower_pd" where  | 
|
| 
41394
 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 
huffman 
parents: 
41289 
diff
changeset
 | 
565  | 
"convex_to_lower = convex_pd.extension lower_principal"  | 
| 25904 | 566  | 
|
567  | 
lemma convex_to_lower_principal [simp]:  | 
|
568  | 
"convex_to_lower\<cdot>(convex_principal t) = lower_principal t"  | 
|
569  | 
unfolding convex_to_lower_def  | 
|
| 
41394
 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 
huffman 
parents: 
41289 
diff
changeset
 | 
570  | 
apply (rule convex_pd.extension_principal)  | 
| 27289 | 571  | 
apply (rule lower_pd.principal_mono)  | 
| 25904 | 572  | 
apply (erule convex_le_imp_lower_le)  | 
573  | 
done  | 
|
574  | 
||
575  | 
lemma convex_to_lower_unit [simp]:  | 
|
| 26927 | 576  | 
  "convex_to_lower\<cdot>{x}\<natural> = {x}\<flat>"
 | 
| 27289 | 577  | 
by (induct x rule: compact_basis.principal_induct, simp, simp)  | 
| 25904 | 578  | 
|
579  | 
lemma convex_to_lower_plus [simp]:  | 
|
| 
41399
 
ad093e4638e2
changed syntax of powerdomain binary union operators
 
huffman 
parents: 
41394 
diff
changeset
 | 
580  | 
"convex_to_lower\<cdot>(xs \<union>\<natural> ys) = convex_to_lower\<cdot>xs \<union>\<flat> convex_to_lower\<cdot>ys"  | 
| 
41402
 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 
huffman 
parents: 
41399 
diff
changeset
 | 
581  | 
by (induct xs rule: convex_pd.principal_induct, simp,  | 
| 
 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 
huffman 
parents: 
41399 
diff
changeset
 | 
582  | 
induct ys rule: convex_pd.principal_induct, simp, simp)  | 
| 25904 | 583  | 
|
| 27289 | 584  | 
lemma convex_to_lower_bind [simp]:  | 
585  | 
"convex_to_lower\<cdot>(convex_bind\<cdot>xs\<cdot>f) =  | 
|
586  | 
lower_bind\<cdot>(convex_to_lower\<cdot>xs)\<cdot>(convex_to_lower oo f)"  | 
|
587  | 
by (induct xs rule: convex_pd_induct, simp, simp, simp)  | 
|
588  | 
||
589  | 
lemma convex_to_lower_map [simp]:  | 
|
590  | 
"convex_to_lower\<cdot>(convex_map\<cdot>f\<cdot>xs) = lower_map\<cdot>f\<cdot>(convex_to_lower\<cdot>xs)"  | 
|
591  | 
by (simp add: convex_map_def lower_map_def cfcomp_LAM)  | 
|
592  | 
||
593  | 
lemma convex_to_lower_join [simp]:  | 
|
594  | 
"convex_to_lower\<cdot>(convex_join\<cdot>xss) =  | 
|
595  | 
lower_bind\<cdot>(convex_to_lower\<cdot>xss)\<cdot>convex_to_lower"  | 
|
596  | 
by (simp add: convex_join_def lower_join_def cfcomp_LAM eta_cfun)  | 
|
597  | 
||
| 62175 | 598  | 
text \<open>Ordering property\<close>  | 
| 25904 | 599  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
600  | 
lemma convex_pd_below_iff:  | 
| 25904 | 601  | 
"(xs \<sqsubseteq> ys) =  | 
602  | 
(convex_to_upper\<cdot>xs \<sqsubseteq> convex_to_upper\<cdot>ys \<and>  | 
|
603  | 
convex_to_lower\<cdot>xs \<sqsubseteq> convex_to_lower\<cdot>ys)"  | 
|
| 
39970
 
9023b897e67a
simplify proofs of powerdomain inequalities
 
Brian Huffman <brianh@cs.pdx.edu> 
parents: 
37770 
diff
changeset
 | 
604  | 
apply (induct xs rule: convex_pd.principal_induct, simp)  | 
| 
 
9023b897e67a
simplify proofs of powerdomain inequalities
 
Brian Huffman <brianh@cs.pdx.edu> 
parents: 
37770 
diff
changeset
 | 
605  | 
apply (induct ys rule: convex_pd.principal_induct, simp)  | 
| 
 
9023b897e67a
simplify proofs of powerdomain inequalities
 
Brian Huffman <brianh@cs.pdx.edu> 
parents: 
37770 
diff
changeset
 | 
606  | 
apply (simp add: convex_le_def)  | 
| 25904 | 607  | 
done  | 
608  | 
||
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
609  | 
lemmas convex_plus_below_plus_iff =  | 
| 45606 | 610  | 
convex_pd_below_iff [where xs="xs \<union>\<natural> ys" and ys="zs \<union>\<natural> ws"]  | 
611  | 
for xs ys zs ws  | 
|
| 26927 | 612  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
613  | 
lemmas convex_pd_below_simps =  | 
| 
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
614  | 
convex_unit_below_plus_iff  | 
| 
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
615  | 
convex_plus_below_unit_iff  | 
| 
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
616  | 
convex_plus_below_plus_iff  | 
| 
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
617  | 
convex_unit_below_iff  | 
| 26927 | 618  | 
convex_to_upper_unit  | 
619  | 
convex_to_upper_plus  | 
|
620  | 
convex_to_lower_unit  | 
|
621  | 
convex_to_lower_plus  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
622  | 
upper_pd_below_simps  | 
| 
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
623  | 
lower_pd_below_simps  | 
| 26927 | 624  | 
|
| 25904 | 625  | 
end  |