| author | wenzelm | 
| Tue, 30 Jul 2019 11:41:39 +0200 | |
| changeset 70443 | a21a96eda033 | 
| parent 69661 | a03a63b81f44 | 
| child 73869 | 7181130f5872 | 
| permissions | -rw-r--r-- | 
| 42151 | 1  | 
(* Title: HOL/HOLCF/Universal.thy  | 
| 27411 | 2  | 
Author: Brian Huffman  | 
3  | 
*)  | 
|
4  | 
||
| 62175 | 5  | 
section \<open>A universal bifinite domain\<close>  | 
| 35794 | 6  | 
|
| 27411 | 7  | 
theory Universal  | 
| 
66453
 
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
 
wenzelm 
parents: 
65552 
diff
changeset
 | 
8  | 
imports Bifinite Completion "HOL-Library.Nat_Bijection"  | 
| 27411 | 9  | 
begin  | 
10  | 
||
| 
65552
 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 
wenzelm 
parents: 
64267 
diff
changeset
 | 
11  | 
no_notation binomial (infixl "choose" 65)  | 
| 
 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 
wenzelm 
parents: 
64267 
diff
changeset
 | 
12  | 
|
| 62175 | 13  | 
subsection \<open>Basis for universal domain\<close>  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
14  | 
|
| 62175 | 15  | 
subsubsection \<open>Basis datatype\<close>  | 
| 27411 | 16  | 
|
| 41295 | 17  | 
type_synonym ubasis = nat  | 
| 27411 | 18  | 
|
19  | 
definition  | 
|
20  | 
node :: "nat \<Rightarrow> ubasis \<Rightarrow> ubasis set \<Rightarrow> ubasis"  | 
|
21  | 
where  | 
|
| 35701 | 22  | 
"node i a S = Suc (prod_encode (i, prod_encode (a, set_encode S)))"  | 
| 27411 | 23  | 
|
| 30505 | 24  | 
lemma node_not_0 [simp]: "node i a S \<noteq> 0"  | 
| 27411 | 25  | 
unfolding node_def by simp  | 
26  | 
||
| 30505 | 27  | 
lemma node_gt_0 [simp]: "0 < node i a S"  | 
| 27411 | 28  | 
unfolding node_def by simp  | 
29  | 
||
30  | 
lemma node_inject [simp]:  | 
|
| 30505 | 31  | 
"\<lbrakk>finite S; finite T\<rbrakk>  | 
32  | 
\<Longrightarrow> node i a S = node j b T \<longleftrightarrow> i = j \<and> a = b \<and> S = T"  | 
|
| 35701 | 33  | 
unfolding node_def by (simp add: prod_encode_eq set_encode_eq)  | 
| 27411 | 34  | 
|
| 30505 | 35  | 
lemma node_gt0: "i < node i a S"  | 
| 27411 | 36  | 
unfolding node_def less_Suc_eq_le  | 
| 35701 | 37  | 
by (rule le_prod_encode_1)  | 
| 27411 | 38  | 
|
| 30505 | 39  | 
lemma node_gt1: "a < node i a S"  | 
| 27411 | 40  | 
unfolding node_def less_Suc_eq_le  | 
| 35701 | 41  | 
by (rule order_trans [OF le_prod_encode_1 le_prod_encode_2])  | 
| 27411 | 42  | 
|
43  | 
lemma nat_less_power2: "n < 2^n"  | 
|
44  | 
by (induct n) simp_all  | 
|
45  | 
||
| 30505 | 46  | 
lemma node_gt2: "\<lbrakk>finite S; b \<in> S\<rbrakk> \<Longrightarrow> b < node i a S"  | 
| 35701 | 47  | 
unfolding node_def less_Suc_eq_le set_encode_def  | 
48  | 
apply (rule order_trans [OF _ le_prod_encode_2])  | 
|
49  | 
apply (rule order_trans [OF _ le_prod_encode_2])  | 
|
| 67399 | 50  | 
apply (rule order_trans [where y="sum ((^) 2) {b}"])
 | 
| 27411 | 51  | 
apply (simp add: nat_less_power2 [THEN order_less_imp_le])  | 
| 64267 | 52  | 
apply (erule sum_mono2, simp, simp)  | 
| 27411 | 53  | 
done  | 
54  | 
||
| 35701 | 55  | 
lemma eq_prod_encode_pairI:  | 
56  | 
"\<lbrakk>fst (prod_decode x) = a; snd (prod_decode x) = b\<rbrakk> \<Longrightarrow> x = prod_encode (a, b)"  | 
|
| 27411 | 57  | 
by (erule subst, erule subst, simp)  | 
58  | 
||
59  | 
lemma node_cases:  | 
|
60  | 
assumes 1: "x = 0 \<Longrightarrow> P"  | 
|
| 30505 | 61  | 
assumes 2: "\<And>i a S. \<lbrakk>finite S; x = node i a S\<rbrakk> \<Longrightarrow> P"  | 
| 27411 | 62  | 
shows "P"  | 
63  | 
apply (cases x)  | 
|
64  | 
apply (erule 1)  | 
|
65  | 
apply (rule 2)  | 
|
| 35701 | 66  | 
apply (rule finite_set_decode)  | 
| 27411 | 67  | 
apply (simp add: node_def)  | 
| 35701 | 68  | 
apply (rule eq_prod_encode_pairI [OF refl])  | 
69  | 
apply (rule eq_prod_encode_pairI [OF refl refl])  | 
|
| 27411 | 70  | 
done  | 
71  | 
||
72  | 
lemma node_induct:  | 
|
73  | 
assumes 1: "P 0"  | 
|
| 30505 | 74  | 
assumes 2: "\<And>i a S. \<lbrakk>P a; finite S; \<forall>b\<in>S. P b\<rbrakk> \<Longrightarrow> P (node i a S)"  | 
| 27411 | 75  | 
shows "P x"  | 
76  | 
apply (induct x rule: nat_less_induct)  | 
|
77  | 
apply (case_tac n rule: node_cases)  | 
|
78  | 
apply (simp add: 1)  | 
|
79  | 
apply (simp add: 2 node_gt1 node_gt2)  | 
|
80  | 
done  | 
|
81  | 
||
| 62175 | 82  | 
subsubsection \<open>Basis ordering\<close>  | 
| 27411 | 83  | 
|
84  | 
inductive  | 
|
85  | 
ubasis_le :: "nat \<Rightarrow> nat \<Rightarrow> bool"  | 
|
86  | 
where  | 
|
| 30505 | 87  | 
ubasis_le_refl: "ubasis_le a a"  | 
| 27411 | 88  | 
| ubasis_le_trans:  | 
| 30505 | 89  | 
"\<lbrakk>ubasis_le a b; ubasis_le b c\<rbrakk> \<Longrightarrow> ubasis_le a c"  | 
| 27411 | 90  | 
| ubasis_le_lower:  | 
| 30505 | 91  | 
"finite S \<Longrightarrow> ubasis_le a (node i a S)"  | 
| 27411 | 92  | 
| ubasis_le_upper:  | 
| 30505 | 93  | 
"\<lbrakk>finite S; b \<in> S; ubasis_le a b\<rbrakk> \<Longrightarrow> ubasis_le (node i a S) b"  | 
| 27411 | 94  | 
|
95  | 
lemma ubasis_le_minimal: "ubasis_le 0 x"  | 
|
96  | 
apply (induct x rule: node_induct)  | 
|
97  | 
apply (rule ubasis_le_refl)  | 
|
98  | 
apply (erule ubasis_le_trans)  | 
|
99  | 
apply (erule ubasis_le_lower)  | 
|
100  | 
done  | 
|
101  | 
||
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
102  | 
interpretation udom: preorder ubasis_le  | 
| 61169 | 103  | 
apply standard  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
104  | 
apply (rule ubasis_le_refl)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
105  | 
apply (erule (1) ubasis_le_trans)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
106  | 
done  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
107  | 
|
| 62175 | 108  | 
subsubsection \<open>Generic take function\<close>  | 
| 27411 | 109  | 
|
110  | 
function  | 
|
111  | 
ubasis_until :: "(ubasis \<Rightarrow> bool) \<Rightarrow> ubasis \<Rightarrow> ubasis"  | 
|
112  | 
where  | 
|
113  | 
"ubasis_until P 0 = 0"  | 
|
| 30505 | 114  | 
| "finite S \<Longrightarrow> ubasis_until P (node i a S) =  | 
115  | 
(if P (node i a S) then node i a S else ubasis_until P a)"  | 
|
| 
56073
 
29e308b56d23
enhanced simplifier solver for preconditions of rewrite rule, can now deal with conjunctions
 
nipkow 
parents: 
54863 
diff
changeset
 | 
116  | 
apply clarify  | 
| 
 
29e308b56d23
enhanced simplifier solver for preconditions of rewrite rule, can now deal with conjunctions
 
nipkow 
parents: 
54863 
diff
changeset
 | 
117  | 
apply (rule_tac x=b in node_cases)  | 
| 68780 | 118  | 
apply simp_all  | 
| 27411 | 119  | 
done  | 
120  | 
||
121  | 
termination ubasis_until  | 
|
122  | 
apply (relation "measure snd")  | 
|
123  | 
apply (rule wf_measure)  | 
|
124  | 
apply (simp add: node_gt1)  | 
|
125  | 
done  | 
|
126  | 
||
127  | 
lemma ubasis_until: "P 0 \<Longrightarrow> P (ubasis_until P x)"  | 
|
128  | 
by (induct x rule: node_induct) simp_all  | 
|
129  | 
||
130  | 
lemma ubasis_until': "0 < ubasis_until P x \<Longrightarrow> P (ubasis_until P x)"  | 
|
131  | 
by (induct x rule: node_induct) auto  | 
|
132  | 
||
133  | 
lemma ubasis_until_same: "P x \<Longrightarrow> ubasis_until P x = x"  | 
|
134  | 
by (induct x rule: node_induct) simp_all  | 
|
135  | 
||
136  | 
lemma ubasis_until_idem:  | 
|
137  | 
"P 0 \<Longrightarrow> ubasis_until P (ubasis_until P x) = ubasis_until P x"  | 
|
138  | 
by (rule ubasis_until_same [OF ubasis_until])  | 
|
139  | 
||
140  | 
lemma ubasis_until_0:  | 
|
141  | 
"\<forall>x. x \<noteq> 0 \<longrightarrow> \<not> P x \<Longrightarrow> ubasis_until P x = 0"  | 
|
142  | 
by (induct x rule: node_induct) simp_all  | 
|
143  | 
||
144  | 
lemma ubasis_until_less: "ubasis_le (ubasis_until P x) x"  | 
|
145  | 
apply (induct x rule: node_induct)  | 
|
146  | 
apply (simp add: ubasis_le_refl)  | 
|
147  | 
apply (simp add: ubasis_le_refl)  | 
|
148  | 
apply (rule impI)  | 
|
149  | 
apply (erule ubasis_le_trans)  | 
|
150  | 
apply (erule ubasis_le_lower)  | 
|
151  | 
done  | 
|
152  | 
||
153  | 
lemma ubasis_until_chain:  | 
|
154  | 
assumes PQ: "\<And>x. P x \<Longrightarrow> Q x"  | 
|
155  | 
shows "ubasis_le (ubasis_until P x) (ubasis_until Q x)"  | 
|
156  | 
apply (induct x rule: node_induct)  | 
|
157  | 
apply (simp add: ubasis_le_refl)  | 
|
158  | 
apply (simp add: ubasis_le_refl)  | 
|
159  | 
apply (simp add: PQ)  | 
|
160  | 
apply clarify  | 
|
161  | 
apply (rule ubasis_le_trans)  | 
|
162  | 
apply (rule ubasis_until_less)  | 
|
163  | 
apply (erule ubasis_le_lower)  | 
|
164  | 
done  | 
|
165  | 
||
166  | 
lemma ubasis_until_mono:  | 
|
| 30505 | 167  | 
assumes "\<And>i a S b. \<lbrakk>finite S; P (node i a S); b \<in> S; ubasis_le a b\<rbrakk> \<Longrightarrow> P b"  | 
168  | 
shows "ubasis_le a b \<Longrightarrow> ubasis_le (ubasis_until P a) (ubasis_until P b)"  | 
|
| 30561 | 169  | 
proof (induct set: ubasis_le)  | 
170  | 
case (ubasis_le_refl a) show ?case by (rule ubasis_le.ubasis_le_refl)  | 
|
171  | 
next  | 
|
172  | 
case (ubasis_le_trans a b c) thus ?case by - (rule ubasis_le.ubasis_le_trans)  | 
|
173  | 
next  | 
|
174  | 
case (ubasis_le_lower S a i) thus ?case  | 
|
175  | 
apply (clarsimp simp add: ubasis_le_refl)  | 
|
176  | 
apply (rule ubasis_le_trans [OF ubasis_until_less])  | 
|
177  | 
apply (erule ubasis_le.ubasis_le_lower)  | 
|
178  | 
done  | 
|
179  | 
next  | 
|
180  | 
case (ubasis_le_upper S b a i) thus ?case  | 
|
181  | 
apply clarsimp  | 
|
182  | 
apply (subst ubasis_until_same)  | 
|
| 41529 | 183  | 
apply (erule (3) assms)  | 
| 30561 | 184  | 
apply (erule (2) ubasis_le.ubasis_le_upper)  | 
185  | 
done  | 
|
186  | 
qed  | 
|
| 27411 | 187  | 
|
188  | 
lemma finite_range_ubasis_until:  | 
|
189  | 
  "finite {x. P x} \<Longrightarrow> finite (range (ubasis_until P))"
 | 
|
190  | 
apply (rule finite_subset [where B="insert 0 {x. P x}"])
 | 
|
191  | 
apply (clarsimp simp add: ubasis_until')  | 
|
192  | 
apply simp  | 
|
193  | 
done  | 
|
194  | 
||
195  | 
||
| 62175 | 196  | 
subsection \<open>Defining the universal domain by ideal completion\<close>  | 
| 27411 | 197  | 
|
| 49834 | 198  | 
typedef udom = "{S. udom.ideal S}"
 | 
| 
40888
 
28cd51cff70c
reformulate lemma preorder.ex_ideal, and use it for typedefs
 
huffman 
parents: 
40774 
diff
changeset
 | 
199  | 
by (rule udom.ex_ideal)  | 
| 27411 | 200  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
201  | 
instantiation udom :: below  | 
| 27411 | 202  | 
begin  | 
203  | 
||
204  | 
definition  | 
|
205  | 
"x \<sqsubseteq> y \<longleftrightarrow> Rep_udom x \<subseteq> Rep_udom y"  | 
|
206  | 
||
207  | 
instance ..  | 
|
208  | 
end  | 
|
209  | 
||
210  | 
instance udom :: po  | 
|
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
211  | 
using type_definition_udom below_udom_def  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
212  | 
by (rule udom.typedef_ideal_po)  | 
| 27411 | 213  | 
|
214  | 
instance udom :: cpo  | 
|
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
215  | 
using type_definition_udom below_udom_def  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
216  | 
by (rule udom.typedef_ideal_cpo)  | 
| 27411 | 217  | 
|
218  | 
definition  | 
|
219  | 
udom_principal :: "nat \<Rightarrow> udom" where  | 
|
220  | 
  "udom_principal t = Abs_udom {u. ubasis_le u t}"
 | 
|
221  | 
||
| 39984 | 222  | 
lemma ubasis_countable: "\<exists>f::ubasis \<Rightarrow> nat. inj f"  | 
223  | 
by (rule exI, rule inj_on_id)  | 
|
| 27411 | 224  | 
|
| 
30729
 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 
wenzelm 
parents: 
30561 
diff
changeset
 | 
225  | 
interpretation udom:  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
226  | 
ideal_completion ubasis_le udom_principal Rep_udom  | 
| 39984 | 227  | 
using type_definition_udom below_udom_def  | 
228  | 
using udom_principal_def ubasis_countable  | 
|
229  | 
by (rule udom.typedef_ideal_completion)  | 
|
| 27411 | 230  | 
|
| 62175 | 231  | 
text \<open>Universal domain is pointed\<close>  | 
| 27411 | 232  | 
|
233  | 
lemma udom_minimal: "udom_principal 0 \<sqsubseteq> x"  | 
|
234  | 
apply (induct x rule: udom.principal_induct)  | 
|
235  | 
apply (simp, simp add: ubasis_le_minimal)  | 
|
236  | 
done  | 
|
237  | 
||
238  | 
instance udom :: pcpo  | 
|
239  | 
by intro_classes (fast intro: udom_minimal)  | 
|
240  | 
||
241  | 
lemma inst_udom_pcpo: "\<bottom> = udom_principal 0"  | 
|
| 
41430
 
1aa23e9f2c87
change some lemma names containing 'UU' to 'bottom'
 
huffman 
parents: 
41413 
diff
changeset
 | 
242  | 
by (rule udom_minimal [THEN bottomI, symmetric])  | 
| 27411 | 243  | 
|
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
244  | 
|
| 62175 | 245  | 
subsection \<open>Compact bases of domains\<close>  | 
| 27411 | 246  | 
|
| 49834 | 247  | 
typedef 'a compact_basis = "{x::'a::pcpo. compact x}"
 | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
248  | 
by auto  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
249  | 
|
| 
41370
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
250  | 
lemma Rep_compact_basis' [simp]: "compact (Rep_compact_basis a)"  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
251  | 
by (rule Rep_compact_basis [unfolded mem_Collect_eq])  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
252  | 
|
| 
41370
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
253  | 
lemma Abs_compact_basis_inverse' [simp]:  | 
| 
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
254  | 
"compact x \<Longrightarrow> Rep_compact_basis (Abs_compact_basis x) = x"  | 
| 
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
255  | 
by (rule Abs_compact_basis_inverse [unfolded mem_Collect_eq])  | 
| 
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
256  | 
|
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
257  | 
instantiation compact_basis :: (pcpo) below  | 
| 27411 | 258  | 
begin  | 
259  | 
||
260  | 
definition  | 
|
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
261  | 
compact_le_def:  | 
| 67399 | 262  | 
"(\<sqsubseteq>) \<equiv> (\<lambda>x y. Rep_compact_basis x \<sqsubseteq> Rep_compact_basis y)"  | 
| 27411 | 263  | 
|
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
264  | 
instance ..  | 
| 27411 | 265  | 
end  | 
266  | 
||
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
267  | 
instance compact_basis :: (pcpo) po  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
268  | 
using type_definition_compact_basis compact_le_def  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
269  | 
by (rule typedef_po)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
270  | 
|
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
271  | 
definition  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
272  | 
approximants :: "'a \<Rightarrow> 'a compact_basis set" where  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
273  | 
  "approximants = (\<lambda>x. {a. Rep_compact_basis a \<sqsubseteq> x})"
 | 
| 27411 | 274  | 
|
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
275  | 
definition  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
276  | 
compact_bot :: "'a::pcpo compact_basis" where  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
277  | 
"compact_bot = Abs_compact_basis \<bottom>"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
278  | 
|
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
279  | 
lemma Rep_compact_bot [simp]: "Rep_compact_basis compact_bot = \<bottom>"  | 
| 
41370
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
280  | 
unfolding compact_bot_def by simp  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
281  | 
|
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
282  | 
lemma compact_bot_minimal [simp]: "compact_bot \<sqsubseteq> a"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
283  | 
unfolding compact_le_def Rep_compact_bot by simp  | 
| 27411 | 284  | 
|
285  | 
||
| 62175 | 286  | 
subsection \<open>Universality of \emph{udom}\<close>
 | 
| 27411 | 287  | 
|
| 62175 | 288  | 
text \<open>We use a locale to parameterize the construction over a chain  | 
289  | 
of approx functions on the type to be embedded.\<close>  | 
|
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
290  | 
|
| 46868 | 291  | 
locale bifinite_approx_chain =  | 
292  | 
approx_chain approx for approx :: "nat \<Rightarrow> 'a::bifinite \<rightarrow> 'a"  | 
|
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
293  | 
begin  | 
| 27411 | 294  | 
|
| 62175 | 295  | 
subsubsection \<open>Choosing a maximal element from a finite set\<close>  | 
| 27411 | 296  | 
|
297  | 
lemma finite_has_maximal:  | 
|
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
298  | 
fixes A :: "'a compact_basis set"  | 
| 27411 | 299  | 
  shows "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> \<exists>x\<in>A. \<forall>y\<in>A. x \<sqsubseteq> y \<longrightarrow> x = y"
 | 
300  | 
proof (induct rule: finite_ne_induct)  | 
|
301  | 
case (singleton x)  | 
|
302  | 
show ?case by simp  | 
|
303  | 
next  | 
|
304  | 
case (insert a A)  | 
|
| 62175 | 305  | 
from \<open>\<exists>x\<in>A. \<forall>y\<in>A. x \<sqsubseteq> y \<longrightarrow> x = y\<close>  | 
| 27411 | 306  | 
obtain x where x: "x \<in> A"  | 
307  | 
and x_eq: "\<And>y. \<lbrakk>y \<in> A; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> x = y" by fast  | 
|
308  | 
show ?case  | 
|
309  | 
proof (intro bexI ballI impI)  | 
|
310  | 
fix y  | 
|
311  | 
assume "y \<in> insert a A" and "(if x \<sqsubseteq> a then a else x) \<sqsubseteq> y"  | 
|
312  | 
thus "(if x \<sqsubseteq> a then a else x) = y"  | 
|
313  | 
apply auto  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
314  | 
apply (frule (1) below_trans)  | 
| 27411 | 315  | 
apply (frule (1) x_eq)  | 
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
316  | 
apply (rule below_antisym, assumption)  | 
| 27411 | 317  | 
apply simp  | 
318  | 
apply (erule (1) x_eq)  | 
|
319  | 
done  | 
|
320  | 
next  | 
|
321  | 
show "(if x \<sqsubseteq> a then a else x) \<in> insert a A"  | 
|
322  | 
by (simp add: x)  | 
|
323  | 
qed  | 
|
324  | 
qed  | 
|
325  | 
||
326  | 
definition  | 
|
327  | 
choose :: "'a compact_basis set \<Rightarrow> 'a compact_basis"  | 
|
328  | 
where  | 
|
329  | 
  "choose A = (SOME x. x \<in> {x\<in>A. \<forall>y\<in>A. x \<sqsubseteq> y \<longrightarrow> x = y})"
 | 
|
330  | 
||
331  | 
lemma choose_lemma:  | 
|
332  | 
  "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> choose A \<in> {x\<in>A. \<forall>y\<in>A. x \<sqsubseteq> y \<longrightarrow> x = y}"
 | 
|
333  | 
unfolding choose_def  | 
|
334  | 
apply (rule someI_ex)  | 
|
335  | 
apply (frule (1) finite_has_maximal, fast)  | 
|
336  | 
done  | 
|
337  | 
||
338  | 
lemma maximal_choose:  | 
|
339  | 
"\<lbrakk>finite A; y \<in> A; choose A \<sqsubseteq> y\<rbrakk> \<Longrightarrow> choose A = y"  | 
|
340  | 
apply (cases "A = {}", simp)
 | 
|
341  | 
apply (frule (1) choose_lemma, simp)  | 
|
342  | 
done  | 
|
343  | 
||
344  | 
lemma choose_in: "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> choose A \<in> A"
 | 
|
345  | 
by (frule (1) choose_lemma, simp)  | 
|
346  | 
||
347  | 
function  | 
|
348  | 
choose_pos :: "'a compact_basis set \<Rightarrow> 'a compact_basis \<Rightarrow> nat"  | 
|
349  | 
where  | 
|
350  | 
"choose_pos A x =  | 
|
351  | 
(if finite A \<and> x \<in> A \<and> x \<noteq> choose A  | 
|
352  | 
      then Suc (choose_pos (A - {choose A}) x) else 0)"
 | 
|
353  | 
by auto  | 
|
354  | 
||
355  | 
termination choose_pos  | 
|
356  | 
apply (relation "measure (card \<circ> fst)", simp)  | 
|
357  | 
apply clarsimp  | 
|
358  | 
apply (rule card_Diff1_less)  | 
|
359  | 
apply assumption  | 
|
360  | 
apply (erule choose_in)  | 
|
361  | 
apply clarsimp  | 
|
362  | 
done  | 
|
363  | 
||
364  | 
declare choose_pos.simps [simp del]  | 
|
365  | 
||
366  | 
lemma choose_pos_choose: "finite A \<Longrightarrow> choose_pos A (choose A) = 0"  | 
|
367  | 
by (simp add: choose_pos.simps)  | 
|
368  | 
||
369  | 
lemma inj_on_choose_pos [OF refl]:  | 
|
370  | 
"\<lbrakk>card A = n; finite A\<rbrakk> \<Longrightarrow> inj_on (choose_pos A) A"  | 
|
371  | 
apply (induct n arbitrary: A)  | 
|
372  | 
apply simp  | 
|
373  | 
 apply (case_tac "A = {}", simp)
 | 
|
374  | 
apply (frule (1) choose_in)  | 
|
375  | 
apply (rule inj_onI)  | 
|
376  | 
 apply (drule_tac x="A - {choose A}" in meta_spec, simp)
 | 
|
377  | 
apply (simp add: choose_pos.simps)  | 
|
| 62390 | 378  | 
apply (simp split: if_split_asm)  | 
| 27411 | 379  | 
apply (erule (1) inj_onD, simp, simp)  | 
380  | 
done  | 
|
381  | 
||
382  | 
lemma choose_pos_bounded [OF refl]:  | 
|
383  | 
"\<lbrakk>card A = n; finite A; x \<in> A\<rbrakk> \<Longrightarrow> choose_pos A x < n"  | 
|
384  | 
apply (induct n arbitrary: A)  | 
|
385  | 
apply simp  | 
|
386  | 
 apply (case_tac "A = {}", simp)
 | 
|
387  | 
apply (frule (1) choose_in)  | 
|
388  | 
apply (subst choose_pos.simps)  | 
|
389  | 
apply simp  | 
|
390  | 
done  | 
|
391  | 
||
392  | 
lemma choose_pos_lessD:  | 
|
| 41182 | 393  | 
"\<lbrakk>choose_pos A x < choose_pos A y; finite A; x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> x \<notsqsubseteq> y"  | 
| 27411 | 394  | 
apply (induct A x arbitrary: y rule: choose_pos.induct)  | 
395  | 
apply simp  | 
|
396  | 
apply (case_tac "x = choose A")  | 
|
397  | 
apply simp  | 
|
398  | 
apply (rule notI)  | 
|
399  | 
apply (frule (2) maximal_choose)  | 
|
400  | 
apply simp  | 
|
401  | 
apply (case_tac "y = choose A")  | 
|
402  | 
apply (simp add: choose_pos_choose)  | 
|
403  | 
apply (drule_tac x=y in meta_spec)  | 
|
404  | 
apply simp  | 
|
405  | 
apply (erule meta_mp)  | 
|
406  | 
apply (simp add: choose_pos.simps)  | 
|
407  | 
done  | 
|
408  | 
||
| 62175 | 409  | 
subsubsection \<open>Compact basis take function\<close>  | 
| 27411 | 410  | 
|
411  | 
primrec  | 
|
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
412  | 
cb_take :: "nat \<Rightarrow> 'a compact_basis \<Rightarrow> 'a compact_basis" where  | 
| 27411 | 413  | 
"cb_take 0 = (\<lambda>x. compact_bot)"  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
414  | 
| "cb_take (Suc n) = (\<lambda>a. Abs_compact_basis (approx n\<cdot>(Rep_compact_basis a)))"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
415  | 
|
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
416  | 
declare cb_take.simps [simp del]  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
417  | 
|
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
418  | 
lemma cb_take_zero [simp]: "cb_take 0 a = compact_bot"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
419  | 
by (simp only: cb_take.simps)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
420  | 
|
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
421  | 
lemma Rep_cb_take:  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
422  | 
"Rep_compact_basis (cb_take (Suc n) a) = approx n\<cdot>(Rep_compact_basis a)"  | 
| 
41370
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
423  | 
by (simp add: cb_take.simps(2))  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
424  | 
|
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
425  | 
lemmas approx_Rep_compact_basis = Rep_cb_take [symmetric]  | 
| 27411 | 426  | 
|
427  | 
lemma cb_take_covers: "\<exists>n. cb_take n x = x"  | 
|
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
428  | 
apply (subgoal_tac "\<exists>n. cb_take (Suc n) x = x", fast)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
429  | 
apply (simp add: Rep_compact_basis_inject [symmetric])  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
430  | 
apply (simp add: Rep_cb_take)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
431  | 
apply (rule compact_eq_approx)  | 
| 
41370
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
432  | 
apply (rule Rep_compact_basis')  | 
| 27411 | 433  | 
done  | 
434  | 
||
435  | 
lemma cb_take_less: "cb_take n x \<sqsubseteq> x"  | 
|
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
436  | 
unfolding compact_le_def  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
437  | 
by (cases n, simp, simp add: Rep_cb_take approx_below)  | 
| 27411 | 438  | 
|
439  | 
lemma cb_take_idem: "cb_take n (cb_take n x) = cb_take n x"  | 
|
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
440  | 
unfolding Rep_compact_basis_inject [symmetric]  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
441  | 
by (cases n, simp, simp add: Rep_cb_take approx_idem)  | 
| 27411 | 442  | 
|
443  | 
lemma cb_take_mono: "x \<sqsubseteq> y \<Longrightarrow> cb_take n x \<sqsubseteq> cb_take n y"  | 
|
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
444  | 
unfolding compact_le_def  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
445  | 
by (cases n, simp, simp add: Rep_cb_take monofun_cfun_arg)  | 
| 27411 | 446  | 
|
447  | 
lemma cb_take_chain_le: "m \<le> n \<Longrightarrow> cb_take m x \<sqsubseteq> cb_take n x"  | 
|
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
448  | 
unfolding compact_le_def  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
449  | 
apply (cases m, simp, cases n, simp)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
450  | 
apply (simp add: Rep_cb_take, rule chain_mono, simp, simp)  | 
| 27411 | 451  | 
done  | 
452  | 
||
453  | 
lemma finite_range_cb_take: "finite (range (cb_take n))"  | 
|
454  | 
apply (cases n)  | 
|
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
455  | 
apply (subgoal_tac "range (cb_take 0) = {compact_bot}", simp, force)
 | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
456  | 
apply (rule finite_imageD [where f="Rep_compact_basis"])  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
457  | 
apply (rule finite_subset [where B="range (\<lambda>x. approx (n - 1)\<cdot>x)"])  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
458  | 
apply (clarsimp simp add: Rep_cb_take)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
459  | 
apply (rule finite_range_approx)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
460  | 
apply (rule inj_onI, simp add: Rep_compact_basis_inject)  | 
| 27411 | 461  | 
done  | 
462  | 
||
| 62175 | 463  | 
subsubsection \<open>Rank of basis elements\<close>  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
464  | 
|
| 27411 | 465  | 
definition  | 
466  | 
rank :: "'a compact_basis \<Rightarrow> nat"  | 
|
467  | 
where  | 
|
468  | 
"rank x = (LEAST n. cb_take n x = x)"  | 
|
469  | 
||
470  | 
lemma compact_approx_rank: "cb_take (rank x) x = x"  | 
|
471  | 
unfolding rank_def  | 
|
472  | 
apply (rule LeastI_ex)  | 
|
473  | 
apply (rule cb_take_covers)  | 
|
474  | 
done  | 
|
475  | 
||
476  | 
lemma rank_leD: "rank x \<le> n \<Longrightarrow> cb_take n x = x"  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
477  | 
apply (rule below_antisym [OF cb_take_less])  | 
| 27411 | 478  | 
apply (subst compact_approx_rank [symmetric])  | 
479  | 
apply (erule cb_take_chain_le)  | 
|
480  | 
done  | 
|
481  | 
||
482  | 
lemma rank_leI: "cb_take n x = x \<Longrightarrow> rank x \<le> n"  | 
|
483  | 
unfolding rank_def by (rule Least_le)  | 
|
484  | 
||
485  | 
lemma rank_le_iff: "rank x \<le> n \<longleftrightarrow> cb_take n x = x"  | 
|
486  | 
by (rule iffI [OF rank_leD rank_leI])  | 
|
487  | 
||
| 30505 | 488  | 
lemma rank_compact_bot [simp]: "rank compact_bot = 0"  | 
489  | 
using rank_leI [of 0 compact_bot] by simp  | 
|
490  | 
||
491  | 
lemma rank_eq_0_iff [simp]: "rank x = 0 \<longleftrightarrow> x = compact_bot"  | 
|
492  | 
using rank_le_iff [of x 0] by auto  | 
|
493  | 
||
| 27411 | 494  | 
definition  | 
495  | 
rank_le :: "'a compact_basis \<Rightarrow> 'a compact_basis set"  | 
|
496  | 
where  | 
|
497  | 
  "rank_le x = {y. rank y \<le> rank x}"
 | 
|
498  | 
||
499  | 
definition  | 
|
500  | 
rank_lt :: "'a compact_basis \<Rightarrow> 'a compact_basis set"  | 
|
501  | 
where  | 
|
502  | 
  "rank_lt x = {y. rank y < rank x}"
 | 
|
503  | 
||
504  | 
definition  | 
|
505  | 
rank_eq :: "'a compact_basis \<Rightarrow> 'a compact_basis set"  | 
|
506  | 
where  | 
|
507  | 
  "rank_eq x = {y. rank y = rank x}"
 | 
|
508  | 
||
509  | 
lemma rank_eq_cong: "rank x = rank y \<Longrightarrow> rank_eq x = rank_eq y"  | 
|
510  | 
unfolding rank_eq_def by simp  | 
|
511  | 
||
512  | 
lemma rank_lt_cong: "rank x = rank y \<Longrightarrow> rank_lt x = rank_lt y"  | 
|
513  | 
unfolding rank_lt_def by simp  | 
|
514  | 
||
515  | 
lemma rank_eq_subset: "rank_eq x \<subseteq> rank_le x"  | 
|
516  | 
unfolding rank_eq_def rank_le_def by auto  | 
|
517  | 
||
518  | 
lemma rank_lt_subset: "rank_lt x \<subseteq> rank_le x"  | 
|
519  | 
unfolding rank_lt_def rank_le_def by auto  | 
|
520  | 
||
521  | 
lemma finite_rank_le: "finite (rank_le x)"  | 
|
522  | 
unfolding rank_le_def  | 
|
523  | 
apply (rule finite_subset [where B="range (cb_take (rank x))"])  | 
|
524  | 
apply clarify  | 
|
525  | 
apply (rule range_eqI)  | 
|
526  | 
apply (erule rank_leD [symmetric])  | 
|
527  | 
apply (rule finite_range_cb_take)  | 
|
528  | 
done  | 
|
529  | 
||
530  | 
lemma finite_rank_eq: "finite (rank_eq x)"  | 
|
531  | 
by (rule finite_subset [OF rank_eq_subset finite_rank_le])  | 
|
532  | 
||
533  | 
lemma finite_rank_lt: "finite (rank_lt x)"  | 
|
534  | 
by (rule finite_subset [OF rank_lt_subset finite_rank_le])  | 
|
535  | 
||
536  | 
lemma rank_lt_Int_rank_eq: "rank_lt x \<inter> rank_eq x = {}"
 | 
|
537  | 
unfolding rank_lt_def rank_eq_def rank_le_def by auto  | 
|
538  | 
||
539  | 
lemma rank_lt_Un_rank_eq: "rank_lt x \<union> rank_eq x = rank_le x"  | 
|
540  | 
unfolding rank_lt_def rank_eq_def rank_le_def by auto  | 
|
541  | 
||
| 62175 | 542  | 
subsubsection \<open>Sequencing basis elements\<close>  | 
| 27411 | 543  | 
|
544  | 
definition  | 
|
| 30505 | 545  | 
place :: "'a compact_basis \<Rightarrow> nat"  | 
| 27411 | 546  | 
where  | 
| 30505 | 547  | 
"place x = card (rank_lt x) + choose_pos (rank_eq x) x"  | 
| 27411 | 548  | 
|
| 30505 | 549  | 
lemma place_bounded: "place x < card (rank_le x)"  | 
550  | 
unfolding place_def  | 
|
| 27411 | 551  | 
apply (rule ord_less_eq_trans)  | 
552  | 
apply (rule add_strict_left_mono)  | 
|
553  | 
apply (rule choose_pos_bounded)  | 
|
554  | 
apply (rule finite_rank_eq)  | 
|
555  | 
apply (simp add: rank_eq_def)  | 
|
556  | 
apply (subst card_Un_disjoint [symmetric])  | 
|
557  | 
apply (rule finite_rank_lt)  | 
|
558  | 
apply (rule finite_rank_eq)  | 
|
559  | 
apply (rule rank_lt_Int_rank_eq)  | 
|
560  | 
apply (simp add: rank_lt_Un_rank_eq)  | 
|
561  | 
done  | 
|
562  | 
||
| 30505 | 563  | 
lemma place_ge: "card (rank_lt x) \<le> place x"  | 
564  | 
unfolding place_def by simp  | 
|
| 27411 | 565  | 
|
| 30505 | 566  | 
lemma place_rank_mono:  | 
| 27411 | 567  | 
fixes x y :: "'a compact_basis"  | 
| 30505 | 568  | 
shows "rank x < rank y \<Longrightarrow> place x < place y"  | 
569  | 
apply (rule less_le_trans [OF place_bounded])  | 
|
570  | 
apply (rule order_trans [OF _ place_ge])  | 
|
| 27411 | 571  | 
apply (rule card_mono)  | 
572  | 
apply (rule finite_rank_lt)  | 
|
573  | 
apply (simp add: rank_le_def rank_lt_def subset_eq)  | 
|
574  | 
done  | 
|
575  | 
||
| 30505 | 576  | 
lemma place_eqD: "place x = place y \<Longrightarrow> x = y"  | 
| 27411 | 577  | 
apply (rule linorder_cases [where x="rank x" and y="rank y"])  | 
| 30505 | 578  | 
apply (drule place_rank_mono, simp)  | 
579  | 
apply (simp add: place_def)  | 
|
| 27411 | 580  | 
apply (rule inj_on_choose_pos [where A="rank_eq x", THEN inj_onD])  | 
581  | 
apply (rule finite_rank_eq)  | 
|
582  | 
apply (simp cong: rank_lt_cong rank_eq_cong)  | 
|
583  | 
apply (simp add: rank_eq_def)  | 
|
584  | 
apply (simp add: rank_eq_def)  | 
|
| 30505 | 585  | 
apply (drule place_rank_mono, simp)  | 
| 27411 | 586  | 
done  | 
587  | 
||
| 30505 | 588  | 
lemma inj_place: "inj place"  | 
589  | 
by (rule inj_onI, erule place_eqD)  | 
|
| 27411 | 590  | 
|
| 62175 | 591  | 
subsubsection \<open>Embedding and projection on basis elements\<close>  | 
| 27411 | 592  | 
|
| 30505 | 593  | 
definition  | 
594  | 
sub :: "'a compact_basis \<Rightarrow> 'a compact_basis"  | 
|
595  | 
where  | 
|
596  | 
"sub x = (case rank x of 0 \<Rightarrow> compact_bot | Suc k \<Rightarrow> cb_take k x)"  | 
|
597  | 
||
598  | 
lemma rank_sub_less: "x \<noteq> compact_bot \<Longrightarrow> rank (sub x) < rank x"  | 
|
599  | 
unfolding sub_def  | 
|
600  | 
apply (cases "rank x", simp)  | 
|
601  | 
apply (simp add: less_Suc_eq_le)  | 
|
602  | 
apply (rule rank_leI)  | 
|
603  | 
apply (rule cb_take_idem)  | 
|
604  | 
done  | 
|
605  | 
||
606  | 
lemma place_sub_less: "x \<noteq> compact_bot \<Longrightarrow> place (sub x) < place x"  | 
|
607  | 
apply (rule place_rank_mono)  | 
|
608  | 
apply (erule rank_sub_less)  | 
|
609  | 
done  | 
|
610  | 
||
611  | 
lemma sub_below: "sub x \<sqsubseteq> x"  | 
|
612  | 
unfolding sub_def by (cases "rank x", simp_all add: cb_take_less)  | 
|
613  | 
||
614  | 
lemma rank_less_imp_below_sub: "\<lbrakk>x \<sqsubseteq> y; rank x < rank y\<rbrakk> \<Longrightarrow> x \<sqsubseteq> sub y"  | 
|
615  | 
unfolding sub_def  | 
|
616  | 
apply (cases "rank y", simp)  | 
|
617  | 
apply (simp add: less_Suc_eq_le)  | 
|
618  | 
apply (subgoal_tac "cb_take nat x \<sqsubseteq> cb_take nat y")  | 
|
619  | 
apply (simp add: rank_leD)  | 
|
620  | 
apply (erule cb_take_mono)  | 
|
621  | 
done  | 
|
622  | 
||
| 69661 | 623  | 
function basis_emb :: "'a compact_basis \<Rightarrow> ubasis"  | 
624  | 
where "basis_emb x = (if x = compact_bot then 0 else  | 
|
| 30505 | 625  | 
node (place x) (basis_emb (sub x))  | 
626  | 
      (basis_emb ` {y. place y < place x \<and> x \<sqsubseteq> y}))"
 | 
|
| 69661 | 627  | 
by simp_all  | 
| 27411 | 628  | 
|
629  | 
termination basis_emb  | 
|
| 69661 | 630  | 
by (relation "measure place") (simp_all add: place_sub_less)  | 
| 27411 | 631  | 
|
632  | 
declare basis_emb.simps [simp del]  | 
|
633  | 
||
| 69661 | 634  | 
lemma basis_emb_compact_bot [simp]:  | 
635  | 
"basis_emb compact_bot = 0"  | 
|
636  | 
using basis_emb.simps [of compact_bot] by simp  | 
|
637  | 
||
638  | 
lemma basis_emb_rec:  | 
|
639  | 
  "basis_emb x = node (place x) (basis_emb (sub x)) (basis_emb ` {y. place y < place x \<and> x \<sqsubseteq> y})"
 | 
|
640  | 
if "x \<noteq> compact_bot"  | 
|
641  | 
using that basis_emb.simps [of x] by simp  | 
|
642  | 
||
643  | 
lemma basis_emb_eq_0_iff [simp]:  | 
|
644  | 
"basis_emb x = 0 \<longleftrightarrow> x = compact_bot"  | 
|
645  | 
by (cases "x = compact_bot") (simp_all add: basis_emb_rec)  | 
|
| 27411 | 646  | 
|
| 30505 | 647  | 
lemma fin1: "finite {y. place y < place x \<and> x \<sqsubseteq> y}"
 | 
| 27411 | 648  | 
apply (subst Collect_conj_eq)  | 
649  | 
apply (rule finite_Int)  | 
|
650  | 
apply (rule disjI1)  | 
|
| 30505 | 651  | 
apply (subgoal_tac "finite (place -` {n. n < place x})", simp)
 | 
652  | 
apply (rule finite_vimageI [OF _ inj_place])  | 
|
| 27411 | 653  | 
apply (simp add: lessThan_def [symmetric])  | 
654  | 
done  | 
|
655  | 
||
| 30505 | 656  | 
lemma fin2: "finite (basis_emb ` {y. place y < place x \<and> x \<sqsubseteq> y})"
 | 
| 27411 | 657  | 
by (rule finite_imageI [OF fin1])  | 
658  | 
||
| 30505 | 659  | 
lemma rank_place_mono:  | 
660  | 
"\<lbrakk>place x < place y; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> rank x < rank y"  | 
|
661  | 
apply (rule linorder_cases, assumption)  | 
|
662  | 
apply (simp add: place_def cong: rank_lt_cong rank_eq_cong)  | 
|
663  | 
apply (drule choose_pos_lessD)  | 
|
664  | 
apply (rule finite_rank_eq)  | 
|
665  | 
apply (simp add: rank_eq_def)  | 
|
666  | 
apply (simp add: rank_eq_def)  | 
|
667  | 
apply simp  | 
|
668  | 
apply (drule place_rank_mono, simp)  | 
|
669  | 
done  | 
|
670  | 
||
671  | 
lemma basis_emb_mono:  | 
|
672  | 
"x \<sqsubseteq> y \<Longrightarrow> ubasis_le (basis_emb x) (basis_emb y)"  | 
|
| 34915 | 673  | 
proof (induct "max (place x) (place y)" arbitrary: x y rule: less_induct)  | 
674  | 
case less  | 
|
| 30505 | 675  | 
show ?case proof (rule linorder_cases)  | 
676  | 
assume "place x < place y"  | 
|
677  | 
then have "rank x < rank y"  | 
|
| 62175 | 678  | 
using \<open>x \<sqsubseteq> y\<close> by (rule rank_place_mono)  | 
679  | 
with \<open>place x < place y\<close> show ?case  | 
|
| 30505 | 680  | 
apply (case_tac "y = compact_bot", simp)  | 
681  | 
apply (simp add: basis_emb.simps [of y])  | 
|
682  | 
apply (rule ubasis_le_trans [OF _ ubasis_le_lower [OF fin2]])  | 
|
| 34915 | 683  | 
apply (rule less)  | 
| 30505 | 684  | 
apply (simp add: less_max_iff_disj)  | 
685  | 
apply (erule place_sub_less)  | 
|
| 62175 | 686  | 
apply (erule rank_less_imp_below_sub [OF \<open>x \<sqsubseteq> y\<close>])  | 
| 27411 | 687  | 
done  | 
| 30505 | 688  | 
next  | 
689  | 
assume "place x = place y"  | 
|
690  | 
hence "x = y" by (rule place_eqD)  | 
|
691  | 
thus ?case by (simp add: ubasis_le_refl)  | 
|
692  | 
next  | 
|
693  | 
assume "place x > place y"  | 
|
| 62175 | 694  | 
with \<open>x \<sqsubseteq> y\<close> show ?case  | 
| 30505 | 695  | 
apply (case_tac "x = compact_bot", simp add: ubasis_le_minimal)  | 
696  | 
apply (simp add: basis_emb.simps [of x])  | 
|
697  | 
apply (rule ubasis_le_upper [OF fin2], simp)  | 
|
| 34915 | 698  | 
apply (rule less)  | 
| 30505 | 699  | 
apply (simp add: less_max_iff_disj)  | 
700  | 
apply (erule place_sub_less)  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
701  | 
apply (erule rev_below_trans)  | 
| 30505 | 702  | 
apply (rule sub_below)  | 
703  | 
done  | 
|
| 27411 | 704  | 
qed  | 
705  | 
qed  | 
|
706  | 
||
707  | 
lemma inj_basis_emb: "inj basis_emb"  | 
|
| 69661 | 708  | 
proof (rule injI)  | 
709  | 
fix x y  | 
|
710  | 
assume "basis_emb x = basis_emb y"  | 
|
711  | 
then show "x = y"  | 
|
712  | 
by (cases "x = compact_bot \<or> y = compact_bot") (auto simp add: basis_emb_rec fin2 place_eqD)  | 
|
713  | 
qed  | 
|
| 27411 | 714  | 
|
715  | 
definition  | 
|
| 30505 | 716  | 
basis_prj :: "ubasis \<Rightarrow> 'a compact_basis"  | 
| 27411 | 717  | 
where  | 
718  | 
"basis_prj x = inv basis_emb  | 
|
| 30505 | 719  | 
(ubasis_until (\<lambda>x. x \<in> range (basis_emb :: 'a compact_basis \<Rightarrow> ubasis)) x)"  | 
| 27411 | 720  | 
|
721  | 
lemma basis_prj_basis_emb: "\<And>x. basis_prj (basis_emb x) = x"  | 
|
722  | 
unfolding basis_prj_def  | 
|
723  | 
apply (subst ubasis_until_same)  | 
|
724  | 
apply (rule rangeI)  | 
|
725  | 
apply (rule inv_f_f)  | 
|
726  | 
apply (rule inj_basis_emb)  | 
|
727  | 
done  | 
|
728  | 
||
729  | 
lemma basis_prj_node:  | 
|
| 30505 | 730  | 
"\<lbrakk>finite S; node i a S \<notin> range (basis_emb :: 'a compact_basis \<Rightarrow> nat)\<rbrakk>  | 
731  | 
\<Longrightarrow> basis_prj (node i a S) = (basis_prj a :: 'a compact_basis)"  | 
|
| 27411 | 732  | 
unfolding basis_prj_def by simp  | 
733  | 
||
734  | 
lemma basis_prj_0: "basis_prj 0 = compact_bot"  | 
|
735  | 
apply (subst basis_emb_compact_bot [symmetric])  | 
|
736  | 
apply (rule basis_prj_basis_emb)  | 
|
737  | 
done  | 
|
738  | 
||
| 30505 | 739  | 
lemma node_eq_basis_emb_iff:  | 
740  | 
"finite S \<Longrightarrow> node i a S = basis_emb x \<longleftrightarrow>  | 
|
741  | 
x \<noteq> compact_bot \<and> i = place x \<and> a = basis_emb (sub x) \<and>  | 
|
742  | 
        S = basis_emb ` {y. place y < place x \<and> x \<sqsubseteq> y}"
 | 
|
743  | 
apply (cases "x = compact_bot", simp)  | 
|
744  | 
apply (simp add: basis_emb.simps [of x])  | 
|
745  | 
apply (simp add: fin2)  | 
|
| 27411 | 746  | 
done  | 
747  | 
||
| 30505 | 748  | 
lemma basis_prj_mono: "ubasis_le a b \<Longrightarrow> basis_prj a \<sqsubseteq> basis_prj b"  | 
749  | 
proof (induct a b rule: ubasis_le.induct)  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
750  | 
case (ubasis_le_refl a) show ?case by (rule below_refl)  | 
| 30505 | 751  | 
next  | 
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
30729 
diff
changeset
 | 
752  | 
case (ubasis_le_trans a b c) thus ?case by - (rule below_trans)  | 
| 30505 | 753  | 
next  | 
754  | 
case (ubasis_le_lower S a i) thus ?case  | 
|
| 30561 | 755  | 
apply (cases "node i a S \<in> range (basis_emb :: 'a compact_basis \<Rightarrow> nat)")  | 
| 30505 | 756  | 
apply (erule rangeE, rename_tac x)  | 
757  | 
apply (simp add: basis_prj_basis_emb)  | 
|
758  | 
apply (simp add: node_eq_basis_emb_iff)  | 
|
759  | 
apply (simp add: basis_prj_basis_emb)  | 
|
760  | 
apply (rule sub_below)  | 
|
761  | 
apply (simp add: basis_prj_node)  | 
|
762  | 
done  | 
|
763  | 
next  | 
|
764  | 
case (ubasis_le_upper S b a i) thus ?case  | 
|
| 30561 | 765  | 
apply (cases "node i a S \<in> range (basis_emb :: 'a compact_basis \<Rightarrow> nat)")  | 
| 30505 | 766  | 
apply (erule rangeE, rename_tac x)  | 
767  | 
apply (simp add: basis_prj_basis_emb)  | 
|
768  | 
apply (clarsimp simp add: node_eq_basis_emb_iff)  | 
|
769  | 
apply (simp add: basis_prj_basis_emb)  | 
|
770  | 
apply (simp add: basis_prj_node)  | 
|
771  | 
done  | 
|
772  | 
qed  | 
|
773  | 
||
| 27411 | 774  | 
lemma basis_emb_prj_less: "ubasis_le (basis_emb (basis_prj x)) x"  | 
775  | 
unfolding basis_prj_def  | 
|
| 
33071
 
362f59fe5092
renamed f_inv_onto_f to f_inv_into_f (cf. 764547b68538);
 
wenzelm 
parents: 
32997 
diff
changeset
 | 
776  | 
apply (subst f_inv_into_f [where f=basis_emb])  | 
| 27411 | 777  | 
apply (rule ubasis_until)  | 
778  | 
apply (rule range_eqI [where x=compact_bot])  | 
|
779  | 
apply simp  | 
|
780  | 
apply (rule ubasis_until_less)  | 
|
781  | 
done  | 
|
782  | 
||
| 
41286
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41182 
diff
changeset
 | 
783  | 
lemma ideal_completion:  | 
| 
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41182 
diff
changeset
 | 
784  | 
"ideal_completion below Rep_compact_basis (approximants :: 'a \<Rightarrow> _)"  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
785  | 
proof  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
786  | 
fix w :: "'a"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
787  | 
show "below.ideal (approximants w)"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
788  | 
proof (rule below.idealI)  | 
| 
41370
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
789  | 
have "Abs_compact_basis (approx 0\<cdot>w) \<in> approximants w"  | 
| 
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
790  | 
by (simp add: approximants_def approx_below)  | 
| 
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
791  | 
thus "\<exists>x. x \<in> approximants w" ..  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
792  | 
next  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
793  | 
fix x y :: "'a compact_basis"  | 
| 
41370
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
794  | 
assume x: "x \<in> approximants w" and y: "y \<in> approximants w"  | 
| 
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
795  | 
obtain i where i: "approx i\<cdot>(Rep_compact_basis x) = Rep_compact_basis x"  | 
| 
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
796  | 
using compact_eq_approx Rep_compact_basis' by fast  | 
| 
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
797  | 
obtain j where j: "approx j\<cdot>(Rep_compact_basis y) = Rep_compact_basis y"  | 
| 
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
798  | 
using compact_eq_approx Rep_compact_basis' by fast  | 
| 
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
799  | 
let ?z = "Abs_compact_basis (approx (max i j)\<cdot>w)"  | 
| 
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
800  | 
have "?z \<in> approximants w"  | 
| 
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
801  | 
by (simp add: approximants_def approx_below)  | 
| 
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
802  | 
moreover from x y have "x \<sqsubseteq> ?z \<and> y \<sqsubseteq> ?z"  | 
| 
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
803  | 
by (simp add: approximants_def compact_le_def)  | 
| 
54863
 
82acc20ded73
prefer more canonical names for lemmas on min/max
 
haftmann 
parents: 
49834 
diff
changeset
 | 
804  | 
(metis i j monofun_cfun chain_mono chain_approx max.cobounded1 max.cobounded2)  | 
| 
41370
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
805  | 
ultimately show "\<exists>z \<in> approximants w. x \<sqsubseteq> z \<and> y \<sqsubseteq> z" ..  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
806  | 
next  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
807  | 
fix x y :: "'a compact_basis"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
808  | 
assume "x \<sqsubseteq> y" "y \<in> approximants w" thus "x \<in> approximants w"  | 
| 
41370
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
809  | 
unfolding approximants_def compact_le_def  | 
| 
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
810  | 
by (auto elim: below_trans)  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
811  | 
qed  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
812  | 
next  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
813  | 
fix Y :: "nat \<Rightarrow> 'a"  | 
| 
41370
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
814  | 
assume "chain Y"  | 
| 
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
815  | 
thus "approximants (\<Squnion>i. Y i) = (\<Union>i. approximants (Y i))"  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
816  | 
unfolding approximants_def  | 
| 
41370
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
817  | 
by (auto simp add: compact_below_lub_iff)  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
818  | 
next  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
819  | 
fix a :: "'a compact_basis"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
820  | 
  show "approximants (Rep_compact_basis a) = {b. b \<sqsubseteq> a}"
 | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
821  | 
unfolding approximants_def compact_le_def ..  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
822  | 
next  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
823  | 
fix x y :: "'a"  | 
| 
41370
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
824  | 
assume "approximants x \<subseteq> approximants y"  | 
| 
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
825  | 
hence "\<forall>z. compact z \<longrightarrow> z \<sqsubseteq> x \<longrightarrow> z \<sqsubseteq> y"  | 
| 
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
826  | 
by (simp add: approximants_def subset_eq)  | 
| 
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
827  | 
(metis Abs_compact_basis_inverse')  | 
| 
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
828  | 
hence "(\<Squnion>i. approx i\<cdot>x) \<sqsubseteq> y"  | 
| 
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
829  | 
by (simp add: lub_below approx_below)  | 
| 
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
830  | 
thus "x \<sqsubseteq> y"  | 
| 
 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 
huffman 
parents: 
41295 
diff
changeset
 | 
831  | 
by (simp add: lub_distribs)  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
832  | 
next  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
833  | 
show "\<exists>f::'a compact_basis \<Rightarrow> nat. inj f"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
834  | 
by (rule exI, rule inj_place)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
835  | 
qed  | 
| 27411 | 836  | 
|
| 
41286
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41182 
diff
changeset
 | 
837  | 
end  | 
| 
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41182 
diff
changeset
 | 
838  | 
|
| 61605 | 839  | 
interpretation compact_basis:  | 
| 
41286
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41182 
diff
changeset
 | 
840  | 
ideal_completion below Rep_compact_basis  | 
| 
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41182 
diff
changeset
 | 
841  | 
"approximants :: 'a::bifinite \<Rightarrow> 'a compact_basis set"  | 
| 
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41182 
diff
changeset
 | 
842  | 
proof -  | 
| 
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41182 
diff
changeset
 | 
843  | 
obtain a :: "nat \<Rightarrow> 'a \<rightarrow> 'a" where "approx_chain a"  | 
| 
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41182 
diff
changeset
 | 
844  | 
using bifinite ..  | 
| 
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41182 
diff
changeset
 | 
845  | 
hence "bifinite_approx_chain a"  | 
| 
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41182 
diff
changeset
 | 
846  | 
unfolding bifinite_approx_chain_def .  | 
| 
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41182 
diff
changeset
 | 
847  | 
thus "ideal_completion below Rep_compact_basis (approximants :: 'a \<Rightarrow> _)"  | 
| 
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41182 
diff
changeset
 | 
848  | 
by (rule bifinite_approx_chain.ideal_completion)  | 
| 
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41182 
diff
changeset
 | 
849  | 
qed  | 
| 
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41182 
diff
changeset
 | 
850  | 
|
| 62175 | 851  | 
subsubsection \<open>EP-pair from any bifinite domain into \emph{udom}\<close>
 | 
| 27411 | 852  | 
|
| 
41286
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41182 
diff
changeset
 | 
853  | 
context bifinite_approx_chain begin  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
854  | 
|
| 27411 | 855  | 
definition  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
856  | 
udom_emb :: "'a \<rightarrow> udom"  | 
| 27411 | 857  | 
where  | 
| 
41394
 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 
huffman 
parents: 
41370 
diff
changeset
 | 
858  | 
"udom_emb = compact_basis.extension (\<lambda>x. udom_principal (basis_emb x))"  | 
| 27411 | 859  | 
|
860  | 
definition  | 
|
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
861  | 
udom_prj :: "udom \<rightarrow> 'a"  | 
| 27411 | 862  | 
where  | 
| 
41394
 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 
huffman 
parents: 
41370 
diff
changeset
 | 
863  | 
"udom_prj = udom.extension (\<lambda>x. Rep_compact_basis (basis_prj x))"  | 
| 27411 | 864  | 
|
865  | 
lemma udom_emb_principal:  | 
|
866  | 
"udom_emb\<cdot>(Rep_compact_basis x) = udom_principal (basis_emb x)"  | 
|
867  | 
unfolding udom_emb_def  | 
|
| 
41394
 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 
huffman 
parents: 
41370 
diff
changeset
 | 
868  | 
apply (rule compact_basis.extension_principal)  | 
| 27411 | 869  | 
apply (rule udom.principal_mono)  | 
870  | 
apply (erule basis_emb_mono)  | 
|
871  | 
done  | 
|
872  | 
||
873  | 
lemma udom_prj_principal:  | 
|
874  | 
"udom_prj\<cdot>(udom_principal x) = Rep_compact_basis (basis_prj x)"  | 
|
875  | 
unfolding udom_prj_def  | 
|
| 
41394
 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 
huffman 
parents: 
41370 
diff
changeset
 | 
876  | 
apply (rule udom.extension_principal)  | 
| 27411 | 877  | 
apply (rule compact_basis.principal_mono)  | 
878  | 
apply (erule basis_prj_mono)  | 
|
879  | 
done  | 
|
880  | 
||
881  | 
lemma ep_pair_udom: "ep_pair udom_emb udom_prj"  | 
|
| 61169 | 882  | 
apply standard  | 
| 27411 | 883  | 
apply (rule compact_basis.principal_induct, simp)  | 
884  | 
apply (simp add: udom_emb_principal udom_prj_principal)  | 
|
885  | 
apply (simp add: basis_prj_basis_emb)  | 
|
886  | 
apply (rule udom.principal_induct, simp)  | 
|
887  | 
apply (simp add: udom_emb_principal udom_prj_principal)  | 
|
888  | 
apply (rule basis_emb_prj_less)  | 
|
889  | 
done  | 
|
890  | 
||
891  | 
end  | 
|
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
892  | 
|
| 
41286
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41182 
diff
changeset
 | 
893  | 
abbreviation "udom_emb \<equiv> bifinite_approx_chain.udom_emb"  | 
| 
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41182 
diff
changeset
 | 
894  | 
abbreviation "udom_prj \<equiv> bifinite_approx_chain.udom_prj"  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
895  | 
|
| 
41286
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41182 
diff
changeset
 | 
896  | 
lemmas ep_pair_udom =  | 
| 
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41182 
diff
changeset
 | 
897  | 
bifinite_approx_chain.ep_pair_udom [unfolded bifinite_approx_chain_def]  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
898  | 
|
| 62175 | 899  | 
subsection \<open>Chain of approx functions for type \emph{udom}\<close>
 | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
900  | 
|
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
901  | 
definition  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
902  | 
udom_approx :: "nat \<Rightarrow> udom \<rightarrow> udom"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
903  | 
where  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
904  | 
"udom_approx i =  | 
| 
41394
 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 
huffman 
parents: 
41370 
diff
changeset
 | 
905  | 
udom.extension (\<lambda>x. udom_principal (ubasis_until (\<lambda>y. y \<le> i) x))"  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
906  | 
|
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
907  | 
lemma udom_approx_mono:  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
908  | 
"ubasis_le a b \<Longrightarrow>  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
909  | 
udom_principal (ubasis_until (\<lambda>y. y \<le> i) a) \<sqsubseteq>  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
910  | 
udom_principal (ubasis_until (\<lambda>y. y \<le> i) b)"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
911  | 
apply (rule udom.principal_mono)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
912  | 
apply (rule ubasis_until_mono)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
913  | 
apply (frule (2) order_less_le_trans [OF node_gt2])  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
914  | 
apply (erule order_less_imp_le)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
915  | 
apply assumption  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
916  | 
done  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
917  | 
|
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
918  | 
lemma adm_mem_finite: "\<lbrakk>cont f; finite S\<rbrakk> \<Longrightarrow> adm (\<lambda>x. f x \<in> S)"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
919  | 
by (erule adm_subst, induct set: finite, simp_all)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
920  | 
|
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
921  | 
lemma udom_approx_principal:  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
922  | 
"udom_approx i\<cdot>(udom_principal x) =  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
923  | 
udom_principal (ubasis_until (\<lambda>y. y \<le> i) x)"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
924  | 
unfolding udom_approx_def  | 
| 
41394
 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 
huffman 
parents: 
41370 
diff
changeset
 | 
925  | 
apply (rule udom.extension_principal)  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
926  | 
apply (erule udom_approx_mono)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
927  | 
done  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
928  | 
|
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
929  | 
lemma finite_deflation_udom_approx: "finite_deflation (udom_approx i)"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
930  | 
proof  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
931  | 
fix x show "udom_approx i\<cdot>(udom_approx i\<cdot>x) = udom_approx i\<cdot>x"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
932  | 
by (induct x rule: udom.principal_induct, simp)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
933  | 
(simp add: udom_approx_principal ubasis_until_idem)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
934  | 
next  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
935  | 
fix x show "udom_approx i\<cdot>x \<sqsubseteq> x"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
936  | 
by (induct x rule: udom.principal_induct, simp)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
937  | 
(simp add: udom_approx_principal ubasis_until_less)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
938  | 
next  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
939  | 
have *: "finite (range (\<lambda>x. udom_principal (ubasis_until (\<lambda>y. y \<le> i) x)))"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
940  | 
apply (subst range_composition [where f=udom_principal])  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
941  | 
apply (simp add: finite_range_ubasis_until)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
942  | 
done  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
943  | 
  show "finite {x. udom_approx i\<cdot>x = x}"
 | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
944  | 
apply (rule finite_range_imp_finite_fixes)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
945  | 
apply (rule rev_finite_subset [OF *])  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
946  | 
apply (clarsimp, rename_tac x)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
947  | 
apply (induct_tac x rule: udom.principal_induct)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
948  | 
apply (simp add: adm_mem_finite *)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
949  | 
apply (simp add: udom_approx_principal)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
950  | 
done  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
951  | 
qed  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
952  | 
|
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
953  | 
interpretation udom_approx: finite_deflation "udom_approx i"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
954  | 
by (rule finite_deflation_udom_approx)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
955  | 
|
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
956  | 
lemma chain_udom_approx [simp]: "chain (\<lambda>i. udom_approx i)"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
957  | 
unfolding udom_approx_def  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
958  | 
apply (rule chainI)  | 
| 
41394
 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 
huffman 
parents: 
41370 
diff
changeset
 | 
959  | 
apply (rule udom.extension_mono)  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
960  | 
apply (erule udom_approx_mono)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
961  | 
apply (erule udom_approx_mono)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
962  | 
apply (rule udom.principal_mono)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
963  | 
apply (rule ubasis_until_chain, simp)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
964  | 
done  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
965  | 
|
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
966  | 
lemma lub_udom_approx [simp]: "(\<Squnion>i. udom_approx i) = ID"  | 
| 
40002
 
c5b5f7a3a3b1
new theorem names: fun_below_iff, fun_belowI, cfun_eq_iff, cfun_eqI, cfun_below_iff, cfun_belowI
 
huffman 
parents: 
39984 
diff
changeset
 | 
967  | 
apply (rule cfun_eqI, simp add: contlub_cfun_fun)  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
968  | 
apply (rule below_antisym)  | 
| 
40500
 
ee9c8d36318e
add lemmas lub_below, below_lub; simplify some proofs; remove some unused lemmas
 
huffman 
parents: 
40002 
diff
changeset
 | 
969  | 
apply (rule lub_below)  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
970  | 
apply (simp)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
971  | 
apply (rule udom_approx.below)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
972  | 
apply (rule_tac x=x in udom.principal_induct)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
973  | 
apply (simp add: lub_distribs)  | 
| 
40500
 
ee9c8d36318e
add lemmas lub_below, below_lub; simplify some proofs; remove some unused lemmas
 
huffman 
parents: 
40002 
diff
changeset
 | 
974  | 
apply (rule_tac i=a in below_lub)  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
975  | 
apply simp  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
976  | 
apply (simp add: udom_approx_principal)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
977  | 
apply (simp add: ubasis_until_same ubasis_le_refl)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
978  | 
done  | 
| 
65552
 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 
wenzelm 
parents: 
64267 
diff
changeset
 | 
979  | 
|
| 
41286
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41182 
diff
changeset
 | 
980  | 
lemma udom_approx [simp]: "approx_chain udom_approx"  | 
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
981  | 
proof  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
982  | 
show "chain (\<lambda>i. udom_approx i)"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
983  | 
by (rule chain_udom_approx)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
984  | 
show "(\<Squnion>i. udom_approx i) = ID"  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
985  | 
by (rule lub_udom_approx)  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
986  | 
qed  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
987  | 
|
| 
41286
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41182 
diff
changeset
 | 
988  | 
instance udom :: bifinite  | 
| 61169 | 989  | 
by standard (fast intro: udom_approx)  | 
| 
41286
 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 
huffman 
parents: 
41182 
diff
changeset
 | 
990  | 
|
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
991  | 
hide_const (open) node  | 
| 
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
992  | 
|
| 
65552
 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 
wenzelm 
parents: 
64267 
diff
changeset
 | 
993  | 
notation binomial (infixl "choose" 65)  | 
| 
 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 
wenzelm 
parents: 
64267 
diff
changeset
 | 
994  | 
|
| 
39974
 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 
huffman 
parents: 
36452 
diff
changeset
 | 
995  | 
end  |