14500
|
1 |
%
|
|
2 |
\begin{isabellebody}%
|
|
3 |
\def\isabellecontext{a{\isadigit{4}}}%
|
|
4 |
\isamarkupfalse%
|
|
5 |
%
|
|
6 |
\isamarkupsubsection{Natural Deduction -- Predicate Logic; Sets as Lists%
|
|
7 |
}
|
|
8 |
\isamarkuptrue%
|
|
9 |
%
|
|
10 |
\isamarkupsubsubsection{Predicate Logic Formulae%
|
|
11 |
}
|
|
12 |
\isamarkuptrue%
|
|
13 |
%
|
|
14 |
\begin{isamarkuptext}%
|
|
15 |
We are again talking about proofs in the calculus of Natural
|
|
16 |
Deduction. In addition to the rules of section~\ref{psv0304a3}, you may now also use
|
|
17 |
|
|
18 |
|
|
19 |
\isa{exI{\isacharcolon}}~\isa{P\ x\ {\isasymLongrightarrow}\ {\isasymexists}x{\isachardot}\ P\ x}\\
|
|
20 |
\isa{exE{\isacharcolon}}~\isa{{\isasymlbrakk}{\isasymexists}x{\isachardot}\ P\ x{\isacharsemicolon}\ {\isasymAnd}x{\isachardot}\ P\ x\ {\isasymLongrightarrow}\ Q{\isasymrbrakk}\ {\isasymLongrightarrow}\ Q}\\
|
|
21 |
\isa{allI{\isacharcolon}}~\isa{{\isacharparenleft}{\isasymAnd}x{\isachardot}\ P\ x{\isacharparenright}\ {\isasymLongrightarrow}\ {\isasymforall}x{\isachardot}\ P\ x}\\
|
|
22 |
\isa{allE{\isacharcolon}}~\isa{{\isasymlbrakk}{\isasymforall}x{\isachardot}\ P\ x{\isacharsemicolon}\ P\ x\ {\isasymLongrightarrow}\ R{\isasymrbrakk}\ {\isasymLongrightarrow}\ R}\\
|
|
23 |
|
|
24 |
Give a proof of the following propositions or an argument why the formula is not valid:%
|
|
25 |
\end{isamarkuptext}%
|
|
26 |
\isamarkuptrue%
|
|
27 |
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}{\isasymexists}x{\isachardot}\ {\isasymforall}y{\isachardot}\ P\ x\ y{\isacharparenright}\ {\isasymlongrightarrow}\ {\isacharparenleft}{\isasymforall}y{\isachardot}\ {\isasymexists}x{\isachardot}\ P\ x\ y{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
|
|
28 |
\isanewline
|
|
29 |
\isamarkupfalse%
|
|
30 |
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}{\isasymforall}x{\isachardot}\ P\ x\ {\isasymlongrightarrow}\ Q{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}{\isacharparenleft}{\isasymexists}x{\isachardot}\ P\ x{\isacharparenright}\ {\isasymlongrightarrow}\ Q{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
|
|
31 |
\isanewline
|
|
32 |
\isamarkupfalse%
|
|
33 |
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}{\isacharparenleft}{\isasymforall}\ x{\isachardot}\ P\ x{\isacharparenright}\ \ {\isasymand}\ {\isacharparenleft}{\isasymforall}\ x{\isachardot}\ Q\ x{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}{\isasymforall}\ x{\isachardot}\ {\isacharparenleft}P\ x\ {\isasymand}\ Q\ x{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
|
|
34 |
\isanewline
|
|
35 |
\isamarkupfalse%
|
|
36 |
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}{\isacharparenleft}{\isasymforall}\ x{\isachardot}\ P\ x{\isacharparenright}\ {\isasymor}\ {\isacharparenleft}{\isasymforall}\ x{\isachardot}\ Q\ x{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}{\isasymforall}\ x{\isachardot}\ {\isacharparenleft}P\ x\ {\isasymor}\ Q\ x{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
|
|
37 |
\isanewline
|
|
38 |
\isamarkupfalse%
|
|
39 |
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}{\isacharparenleft}{\isasymexists}\ x{\isachardot}\ P\ x{\isacharparenright}\ {\isasymor}\ {\isacharparenleft}{\isasymexists}\ x{\isachardot}\ Q\ x{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}{\isasymexists}\ x{\isachardot}\ {\isacharparenleft}P\ x\ {\isasymor}\ Q\ x{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
|
|
40 |
\isanewline
|
|
41 |
\isamarkupfalse%
|
|
42 |
\isacommand{lemma}\ {\isachardoublequote}{\isasymexists}x{\isachardot}\ {\isacharparenleft}P\ x\ {\isasymlongrightarrow}\ {\isacharparenleft}{\isasymforall}x{\isachardot}\ P\ x{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
|
|
43 |
\isamarkupfalse%
|
|
44 |
%
|
|
45 |
\isamarkupsubsubsection{Sets as Lists%
|
|
46 |
}
|
|
47 |
\isamarkuptrue%
|
|
48 |
%
|
|
49 |
\begin{isamarkuptext}%
|
|
50 |
Finite sets can obviously be implemented by lists. In the
|
|
51 |
following, you will be asked to implement the set operations union,
|
|
52 |
intersection and difference and to show that these implementations are
|
|
53 |
correct. Thus, for a function%
|
|
54 |
\end{isamarkuptext}%
|
|
55 |
\isamarkuptrue%
|
|
56 |
\ \ list{\isacharunderscore}union\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharbrackleft}{\isacharprime}a\ list{\isacharcomma}\ {\isacharprime}a\ list{\isacharbrackright}\ {\isasymRightarrow}\ {\isacharprime}a\ list{\isachardoublequote}\isamarkupfalse%
|
|
57 |
%
|
|
58 |
\begin{isamarkuptext}%
|
|
59 |
to be defined by you it has to be shown that%
|
|
60 |
\end{isamarkuptext}%
|
|
61 |
\isamarkuptrue%
|
|
62 |
\isacommand{lemma}\ {\isachardoublequote}set\ {\isacharparenleft}list{\isacharunderscore}union\ xs\ ys{\isacharparenright}\ {\isacharequal}\ set\ xs\ {\isasymunion}\ set\ ys{\isachardoublequote}\isamarkupfalse%
|
|
63 |
\isamarkupfalse%
|
|
64 |
%
|
|
65 |
\begin{isamarkuptext}%
|
|
66 |
In addition, the functions should be space efficient in the
|
|
67 |
sense that one obtains lists without duplicates (\isa{distinct})
|
|
68 |
whenever the parameters of the functions are duplicate-free. Thus, for
|
|
69 |
example,%
|
|
70 |
\end{isamarkuptext}%
|
|
71 |
\isamarkuptrue%
|
|
72 |
\isacommand{lemma}\ {\isacharbrackleft}rule{\isacharunderscore}format{\isacharbrackright}{\isacharcolon}\ \isanewline
|
|
73 |
\ \ {\isachardoublequote}distinct\ xs\ {\isasymlongrightarrow}\ distinct\ ys\ {\isasymlongrightarrow}\ {\isacharparenleft}distinct\ {\isacharparenleft}list{\isacharunderscore}union\ xs\ ys{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
|
|
74 |
\isamarkupfalse%
|
|
75 |
%
|
|
76 |
\begin{isamarkuptext}%
|
|
77 |
\emph{Hint:} \isa{distinct} is defined in \isa{List{\isachardot}thy}. Also the function \isa{mem} and the lemma \isa{set{\isacharunderscore}mem{\isacharunderscore}eq} may be useful.%
|
|
78 |
\end{isamarkuptext}%
|
|
79 |
\isamarkuptrue%
|
|
80 |
%
|
|
81 |
\isamarkupsubsubsection{Quantification over Sets%
|
|
82 |
}
|
|
83 |
\isamarkuptrue%
|
|
84 |
%
|
|
85 |
\begin{isamarkuptext}%
|
|
86 |
Define a set \isa{S} such that the following proposition holds:%
|
|
87 |
\end{isamarkuptext}%
|
|
88 |
\isamarkuptrue%
|
|
89 |
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}{\isacharparenleft}{\isasymforall}\ x\ {\isasymin}\ A{\isachardot}\ P\ x{\isacharparenright}\ {\isasymand}\ {\isacharparenleft}{\isasymforall}\ x\ {\isasymin}\ B{\isachardot}\ P\ x{\isacharparenright}{\isacharparenright}\ {\isasymlongrightarrow}\ {\isacharparenleft}{\isasymforall}\ x\ {\isasymin}\ S{\isachardot}\ P\ x{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
|
|
90 |
\isamarkupfalse%
|
|
91 |
%
|
|
92 |
\begin{isamarkuptext}%
|
|
93 |
Define a predicate \isa{P} such that%
|
|
94 |
\end{isamarkuptext}%
|
|
95 |
\isamarkuptrue%
|
|
96 |
\isacommand{lemma}\ {\isachardoublequote}{\isasymforall}\ x\ {\isasymin}\ A{\isachardot}\ P\ {\isacharparenleft}f\ x{\isacharparenright}\ {\isasymLongrightarrow}\ \ {\isasymforall}\ y\ {\isasymin}\ f\ {\isacharbackquote}\ A{\isachardot}\ Q\ y{\isachardoublequote}\isamarkupfalse%
|
|
97 |
\isanewline
|
|
98 |
\isanewline
|
|
99 |
\isamarkupfalse%
|
|
100 |
\isanewline
|
|
101 |
\isamarkupfalse%
|
|
102 |
\end{isabellebody}%
|
|
103 |
%%% Local Variables:
|
|
104 |
%%% mode: latex
|
|
105 |
%%% TeX-master: "root"
|
|
106 |
%%% End:
|