src/HOL/Ring_and_Field.thy
author wenzelm
Wed, 09 Jun 2004 18:52:42 +0200
changeset 14898 a25550451b51
parent 14770 fe9504ba63d5
child 14940 b9ab8babd8b3
permissions -rw-r--r--
Url.File;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     1
(*  Title:   HOL/Ring_and_Field.thy
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     2
    ID:      $Id$
14770
fe9504ba63d5 removed duplicate thms;
wenzelm
parents: 14754
diff changeset
     3
    Author:  Gertrud Bauer, Steven Obua, Lawrence C Paulson and Markus Wenzel
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     4
    License: GPL (GNU GENERAL PUBLIC LICENSE)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     5
*)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     6
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
     7
header {* (Ordered) Rings and Fields *}
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     8
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
     9
theory Ring_and_Field = OrderedGroup:
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    10
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    11
text {*
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    12
  The theory of partially ordered rings is taken from the books:
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    13
  \begin{itemize}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    14
  \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    15
  \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    16
  \end{itemize}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    17
  Most of the used notions can also be looked up in 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    18
  \begin{itemize}
14770
fe9504ba63d5 removed duplicate thms;
wenzelm
parents: 14754
diff changeset
    19
  \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    20
  \item \emph{Algebra I} by van der Waerden, Springer.
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    21
  \end{itemize}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    22
*}
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    23
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    24
axclass semiring \<subseteq> ab_semigroup_add, semigroup_mult
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    25
  left_distrib: "(a + b) * c = a * c + b * c"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    26
  right_distrib: "a * (b + c) = a * b + a * c"
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    27
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    28
axclass semiring_0 \<subseteq> semiring, comm_monoid_add
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    29
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    30
axclass comm_semiring \<subseteq> ab_semigroup_add, ab_semigroup_mult  
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    31
  mult_commute: "a * b = b * a"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    32
  distrib: "(a + b) * c = a * c + b * c"
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    33
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    34
instance comm_semiring \<subseteq> semiring
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    35
proof
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    36
  fix a b c :: 'a
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    37
  show "(a + b) * c = a * c + b * c" by (simp add: distrib)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    38
  have "a * (b + c) = (b + c) * a" by (simp add: mult_ac)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    39
  also have "... = b * a + c * a" by (simp only: distrib)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    40
  also have "... = a * b + a * c" by (simp add: mult_ac)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    41
  finally show "a * (b + c) = a * b + a * c" by blast
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    42
qed
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    43
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    44
axclass comm_semiring_0 \<subseteq> comm_semiring, comm_monoid_add
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    45
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    46
instance comm_semiring_0 \<subseteq> semiring_0 ..
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    47
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    48
axclass axclass_0_neq_1 \<subseteq> zero, one
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    49
  zero_neq_one [simp]: "0 \<noteq> 1"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    50
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    51
axclass semiring_1 \<subseteq> axclass_0_neq_1, semiring_0, monoid_mult
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    52
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    53
axclass comm_semiring_1 \<subseteq> axclass_0_neq_1, comm_semiring_0, comm_monoid_mult (* previously almost_semiring *)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    54
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    55
instance comm_semiring_1 \<subseteq> semiring_1 ..
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
    56
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    57
axclass axclass_no_zero_divisors \<subseteq> zero, times
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    58
  no_zero_divisors: "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a * b \<noteq> 0"
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    59
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    60
axclass comm_semiring_1_cancel \<subseteq> comm_semiring_1, cancel_ab_semigroup_add (* previously semiring *)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    61
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    62
axclass ring \<subseteq> semiring, ab_group_add
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    63
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    64
instance ring \<subseteq> semiring_0 ..
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    65
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    66
axclass comm_ring \<subseteq> comm_semiring_0, ab_group_add
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    67
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    68
instance comm_ring \<subseteq> ring ..
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    69
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    70
instance comm_ring \<subseteq> comm_semiring_0 ..
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    71
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    72
axclass ring_1 \<subseteq> ring, semiring_1
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    73
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    74
axclass comm_ring_1 \<subseteq> comm_ring, comm_semiring_1 (* previously ring *)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    75
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    76
instance comm_ring_1 \<subseteq> ring_1 ..
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
    77
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    78
instance comm_ring_1 \<subseteq> comm_semiring_1_cancel ..
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    79
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    80
axclass idom \<subseteq> comm_ring_1, axclass_no_zero_divisors
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
    81
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    82
axclass field \<subseteq> comm_ring_1, inverse
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    83
  left_inverse [simp]: "a \<noteq> 0 ==> inverse a * a = 1"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
    84
  divide_inverse:      "a / b = a * inverse b"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    85
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    86
lemma mult_zero_left [simp]: "0 * a = (0::'a::{semiring_0, cancel_semigroup_add})"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    87
proof -
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    88
  have "0*a + 0*a = 0*a + 0"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    89
    by (simp add: left_distrib [symmetric])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    90
  thus ?thesis 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    91
    by (simp only: add_left_cancel)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    92
qed
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    93
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    94
lemma mult_zero_right [simp]: "a * 0 = (0::'a::{semiring_0, cancel_semigroup_add})"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    95
proof -
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    96
  have "a*0 + a*0 = a*0 + 0"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    97
    by (simp add: right_distrib [symmetric])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    98
  thus ?thesis 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    99
    by (simp only: add_left_cancel)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   100
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   101
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   102
lemma field_mult_eq_0_iff [simp]: "(a*b = (0::'a::field)) = (a = 0 | b = 0)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   103
proof cases
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   104
  assume "a=0" thus ?thesis by simp
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   105
next
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   106
  assume anz [simp]: "a\<noteq>0"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   107
  { assume "a * b = 0"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   108
    hence "inverse a * (a * b) = 0" by simp
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   109
    hence "b = 0"  by (simp (no_asm_use) add: mult_assoc [symmetric])}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   110
  thus ?thesis by force
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   111
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   112
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   113
instance field \<subseteq> idom
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   114
by (intro_classes, simp)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   115
  
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   116
axclass division_by_zero \<subseteq> zero, inverse
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   117
  inverse_zero [simp]: "inverse 0 = 0"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   118
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   119
subsection {* Distribution rules *}
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   120
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   121
theorems ring_distrib = right_distrib left_distrib
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   122
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   123
text{*For the @{text combine_numerals} simproc*}
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   124
lemma combine_common_factor:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   125
     "a*e + (b*e + c) = (a+b)*e + (c::'a::semiring)"
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   126
by (simp add: left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   127
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   128
lemma minus_mult_left: "- (a * b) = (-a) * (b::'a::ring)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   129
apply (rule equals_zero_I)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   130
apply (simp add: left_distrib [symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   131
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   132
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   133
lemma minus_mult_right: "- (a * b) = a * -(b::'a::ring)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   134
apply (rule equals_zero_I)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   135
apply (simp add: right_distrib [symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   136
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   137
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   138
lemma minus_mult_minus [simp]: "(- a) * (- b) = a * (b::'a::ring)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   139
  by (simp add: minus_mult_left [symmetric] minus_mult_right [symmetric])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   140
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   141
lemma minus_mult_commute: "(- a) * b = a * (- b::'a::ring)"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   142
  by (simp add: minus_mult_left [symmetric] minus_mult_right [symmetric])
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   143
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   144
lemma right_diff_distrib: "a * (b - c) = a * b - a * (c::'a::ring)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   145
by (simp add: right_distrib diff_minus 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   146
              minus_mult_left [symmetric] minus_mult_right [symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   147
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   148
lemma left_diff_distrib: "(a - b) * c = a * c - b * (c::'a::ring)"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   149
by (simp add: left_distrib diff_minus 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   150
              minus_mult_left [symmetric] minus_mult_right [symmetric]) 
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   151
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   152
axclass pordered_semiring \<subseteq> semiring_0, pordered_ab_semigroup_add 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   153
  mult_left_mono: "a <= b \<Longrightarrow> 0 <= c \<Longrightarrow> c * a <= c * b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   154
  mult_right_mono: "a <= b \<Longrightarrow> 0 <= c \<Longrightarrow> a * c <= b * c"
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   155
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   156
axclass pordered_cancel_semiring \<subseteq> pordered_semiring, cancel_ab_semigroup_add
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   157
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   158
axclass ordered_semiring_strict \<subseteq> semiring_0, ordered_cancel_ab_semigroup_add
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   159
  mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   160
  mult_strict_right_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> a * c < b * c"
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   161
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   162
instance ordered_semiring_strict \<subseteq> pordered_cancel_semiring
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   163
apply intro_classes
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   164
apply (case_tac "a < b & 0 < c")
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   165
apply (auto simp add: mult_strict_left_mono order_less_le)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   166
apply (auto simp add: mult_strict_left_mono order_le_less)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   167
apply (simp add: mult_strict_right_mono)
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   168
done
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   169
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   170
axclass pordered_comm_semiring \<subseteq> comm_semiring_0, pordered_ab_semigroup_add
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   171
  mult_mono: "a <= b \<Longrightarrow> 0 <= c \<Longrightarrow> c * a <= c * b"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   172
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   173
axclass pordered_cancel_comm_semiring \<subseteq> pordered_comm_semiring, cancel_ab_semigroup_add
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   174
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   175
instance pordered_cancel_comm_semiring \<subseteq> pordered_comm_semiring ..
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   176
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   177
axclass ordered_comm_semiring_strict \<subseteq> comm_semiring_0, ordered_cancel_ab_semigroup_add
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   178
  mult_strict_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   179
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   180
instance pordered_comm_semiring \<subseteq> pordered_semiring
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   181
by (intro_classes, insert mult_mono, simp_all add: mult_commute, blast+)
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   182
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   183
instance pordered_cancel_comm_semiring \<subseteq> pordered_cancel_semiring ..
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   184
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   185
instance ordered_comm_semiring_strict \<subseteq> ordered_semiring_strict
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   186
by (intro_classes, insert mult_strict_mono, simp_all add: mult_commute, blast+)
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   187
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   188
instance ordered_comm_semiring_strict \<subseteq> pordered_cancel_comm_semiring
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   189
apply (intro_classes)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   190
apply (case_tac "a < b & 0 < c")
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   191
apply (auto simp add: mult_strict_left_mono order_less_le)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   192
apply (auto simp add: mult_strict_left_mono order_le_less)
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   193
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   194
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   195
axclass pordered_ring \<subseteq> ring, pordered_semiring 
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   196
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   197
instance pordered_ring \<subseteq> pordered_ab_group_add ..
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   198
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   199
instance pordered_ring \<subseteq> pordered_cancel_semiring ..
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   200
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   201
axclass lordered_ring \<subseteq> pordered_ring, lordered_ab_group_abs
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   202
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   203
axclass axclass_abs_if \<subseteq> minus, ord, zero
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   204
  abs_if: "abs a = (if (a < 0) then (-a) else a)"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   205
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   206
axclass ordered_ring_strict \<subseteq> ring, ordered_semiring_strict, axclass_abs_if
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   207
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   208
instance ordered_ring_strict \<subseteq> lordered_ab_group ..
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   209
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   210
instance ordered_ring_strict \<subseteq> lordered_ring
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   211
by (intro_classes, simp add: abs_if join_eq_if)
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   212
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   213
axclass pordered_comm_ring \<subseteq> comm_ring, pordered_comm_semiring
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   214
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   215
axclass ordered_semidom \<subseteq> comm_semiring_1_cancel, ordered_comm_semiring_strict (* previously ordered_semiring *)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   216
  zero_less_one [simp]: "0 < 1"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   217
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   218
axclass ordered_idom \<subseteq> comm_ring_1, ordered_comm_semiring_strict, axclass_abs_if (* previously ordered_ring *)
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   219
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   220
instance ordered_idom \<subseteq> ordered_ring_strict ..
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   221
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   222
axclass ordered_field \<subseteq> field, ordered_idom
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   223
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   224
lemma eq_add_iff1:
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   225
     "(a*e + c = b*e + d) = ((a-b)*e + c = (d::'a::ring))"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   226
apply (simp add: diff_minus left_distrib)
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   227
apply (simp add: diff_minus left_distrib add_ac)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   228
apply (simp add: compare_rls minus_mult_left [symmetric])
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   229
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   230
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   231
lemma eq_add_iff2:
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   232
     "(a*e + c = b*e + d) = (c = (b-a)*e + (d::'a::ring))"
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   233
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   234
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   235
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   236
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   237
lemma less_add_iff1:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   238
     "(a*e + c < b*e + d) = ((a-b)*e + c < (d::'a::pordered_ring))"
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   239
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   240
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   241
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   242
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   243
lemma less_add_iff2:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   244
     "(a*e + c < b*e + d) = (c < (b-a)*e + (d::'a::pordered_ring))"
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   245
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   246
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   247
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   248
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   249
lemma le_add_iff1:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   250
     "(a*e + c \<le> b*e + d) = ((a-b)*e + c \<le> (d::'a::pordered_ring))"
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   251
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   252
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   253
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   254
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   255
lemma le_add_iff2:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   256
     "(a*e + c \<le> b*e + d) = (c \<le> (b-a)*e + (d::'a::pordered_ring))"
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   257
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   258
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   259
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   260
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   261
subsection {* Ordering Rules for Multiplication *}
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   262
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   263
lemma mult_left_le_imp_le:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   264
     "[|c*a \<le> c*b; 0 < c|] ==> a \<le> (b::'a::ordered_semiring_strict)"
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   265
  by (force simp add: mult_strict_left_mono linorder_not_less [symmetric])
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   266
 
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   267
lemma mult_right_le_imp_le:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   268
     "[|a*c \<le> b*c; 0 < c|] ==> a \<le> (b::'a::ordered_semiring_strict)"
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   269
  by (force simp add: mult_strict_right_mono linorder_not_less [symmetric])
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   270
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   271
lemma mult_left_less_imp_less:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   272
     "[|c*a < c*b; 0 \<le> c|] ==> a < (b::'a::ordered_semiring_strict)"
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   273
  by (force simp add: mult_left_mono linorder_not_le [symmetric])
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   274
 
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   275
lemma mult_right_less_imp_less:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   276
     "[|a*c < b*c; 0 \<le> c|] ==> a < (b::'a::ordered_semiring_strict)"
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   277
  by (force simp add: mult_right_mono linorder_not_le [symmetric])
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   278
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   279
lemma mult_strict_left_mono_neg:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   280
     "[|b < a; c < 0|] ==> c * a < c * (b::'a::ordered_ring_strict)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   281
apply (drule mult_strict_left_mono [of _ _ "-c"])
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   282
apply (simp_all add: minus_mult_left [symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   283
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   284
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   285
lemma mult_left_mono_neg:
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   286
     "[|b \<le> a; c \<le> 0|] ==> c * a \<le>  c * (b::'a::pordered_ring)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   287
apply (drule mult_left_mono [of _ _ "-c"])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   288
apply (simp_all add: minus_mult_left [symmetric]) 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   289
done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   290
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   291
lemma mult_strict_right_mono_neg:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   292
     "[|b < a; c < 0|] ==> a * c < b * (c::'a::ordered_ring_strict)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   293
apply (drule mult_strict_right_mono [of _ _ "-c"])
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   294
apply (simp_all add: minus_mult_right [symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   295
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   296
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   297
lemma mult_right_mono_neg:
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   298
     "[|b \<le> a; c \<le> 0|] ==> a * c \<le>  (b::'a::pordered_ring) * c"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   299
apply (drule mult_right_mono [of _ _ "-c"])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   300
apply (simp)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   301
apply (simp_all add: minus_mult_right [symmetric]) 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   302
done
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   303
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   304
subsection{* Products of Signs *}
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   305
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   306
lemma mult_pos: "[| (0::'a::ordered_semiring_strict) < a; 0 < b |] ==> 0 < a*b"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   307
by (drule mult_strict_left_mono [of 0 b], auto)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   308
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   309
lemma mult_pos_le: "[| (0::'a::pordered_cancel_semiring) \<le> a; 0 \<le> b |] ==> 0 \<le> a*b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   310
by (drule mult_left_mono [of 0 b], auto)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   311
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   312
lemma mult_pos_neg: "[| (0::'a::ordered_semiring_strict) < a; b < 0 |] ==> a*b < 0"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   313
by (drule mult_strict_left_mono [of b 0], auto)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   314
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   315
lemma mult_pos_neg_le: "[| (0::'a::pordered_cancel_semiring) \<le> a; b \<le> 0 |] ==> a*b \<le> 0"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   316
by (drule mult_left_mono [of b 0], auto)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   317
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   318
lemma mult_pos_neg2: "[| (0::'a::ordered_semiring_strict) < a; b < 0 |] ==> b*a < 0" 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   319
by (drule mult_strict_right_mono[of b 0], auto)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   320
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   321
lemma mult_pos_neg2_le: "[| (0::'a::pordered_cancel_semiring) \<le> a; b \<le> 0 |] ==> b*a \<le> 0" 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   322
by (drule mult_right_mono[of b 0], auto)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   323
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   324
lemma mult_neg: "[| a < (0::'a::ordered_ring_strict); b < 0 |] ==> 0 < a*b"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   325
by (drule mult_strict_right_mono_neg, auto)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   326
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   327
lemma mult_neg_le: "[| a \<le> (0::'a::pordered_ring); b \<le> 0 |] ==> 0 \<le> a*b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   328
by (drule mult_right_mono_neg[of a 0 b ], auto)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   329
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   330
lemma zero_less_mult_pos:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   331
     "[| 0 < a*b; 0 < a|] ==> 0 < (b::'a::ordered_semiring_strict)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   332
apply (case_tac "b\<le>0") 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   333
 apply (auto simp add: order_le_less linorder_not_less)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   334
apply (drule_tac mult_pos_neg [of a b]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   335
 apply (auto dest: order_less_not_sym)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   336
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   337
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   338
lemma zero_less_mult_pos2:
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   339
     "[| 0 < b*a; 0 < a|] ==> 0 < (b::'a::ordered_semiring_strict)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   340
apply (case_tac "b\<le>0") 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   341
 apply (auto simp add: order_le_less linorder_not_less)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   342
apply (drule_tac mult_pos_neg2 [of a b]) 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   343
 apply (auto dest: order_less_not_sym)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   344
done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   345
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   346
lemma zero_less_mult_iff:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   347
     "((0::'a::ordered_ring_strict) < a*b) = (0 < a & 0 < b | a < 0 & b < 0)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   348
apply (auto simp add: order_le_less linorder_not_less mult_pos mult_neg)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   349
apply (blast dest: zero_less_mult_pos) 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   350
apply (blast dest: zero_less_mult_pos2)
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   351
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   352
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   353
text{*A field has no "zero divisors", and this theorem holds without the
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   354
      assumption of an ordering.  See @{text field_mult_eq_0_iff} below.*}
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   355
lemma mult_eq_0_iff [simp]: "(a*b = (0::'a::ordered_ring_strict)) = (a = 0 | b = 0)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   356
apply (case_tac "a < 0")
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   357
apply (auto simp add: linorder_not_less order_le_less linorder_neq_iff)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   358
apply (force dest: mult_strict_right_mono_neg mult_strict_right_mono)+
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   359
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   360
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   361
lemma zero_le_mult_iff:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   362
     "((0::'a::ordered_ring_strict) \<le> a*b) = (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   363
by (auto simp add: eq_commute [of 0] order_le_less linorder_not_less
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   364
                   zero_less_mult_iff)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   365
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   366
lemma mult_less_0_iff:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   367
     "(a*b < (0::'a::ordered_ring_strict)) = (0 < a & b < 0 | a < 0 & 0 < b)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   368
apply (insert zero_less_mult_iff [of "-a" b]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   369
apply (force simp add: minus_mult_left[symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   370
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   371
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   372
lemma mult_le_0_iff:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   373
     "(a*b \<le> (0::'a::ordered_ring_strict)) = (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   374
apply (insert zero_le_mult_iff [of "-a" b]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   375
apply (force simp add: minus_mult_left[symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   376
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   377
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   378
lemma split_mult_pos_le: "(0 \<le> a & 0 \<le> b) | (a \<le> 0 & b \<le> 0) \<Longrightarrow> 0 \<le> a * (b::_::pordered_ring)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   379
by (auto simp add: mult_pos_le mult_neg_le)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   380
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   381
lemma split_mult_neg_le: "(0 \<le> a & b \<le> 0) | (a \<le> 0 & 0 \<le> b) \<Longrightarrow> a * b \<le> (0::_::pordered_cancel_semiring)" 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   382
by (auto simp add: mult_pos_neg_le mult_pos_neg2_le)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   383
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   384
lemma zero_le_square: "(0::'a::ordered_ring_strict) \<le> a*a"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   385
by (simp add: zero_le_mult_iff linorder_linear) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   386
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   387
text{*Proving axiom @{text zero_less_one} makes all @{text ordered_semidom}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   388
      theorems available to members of @{term ordered_idom} *}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   389
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   390
instance ordered_idom \<subseteq> ordered_semidom
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   391
proof
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   392
  have "(0::'a) \<le> 1*1" by (rule zero_le_square)
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   393
  thus "(0::'a) < 1" by (simp add: order_le_less) 
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   394
qed
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   395
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   396
instance ordered_ring_strict \<subseteq> axclass_no_zero_divisors 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   397
by (intro_classes, simp)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   398
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   399
instance ordered_idom \<subseteq> idom ..
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   400
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   401
text{*All three types of comparision involving 0 and 1 are covered.*}
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   402
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   403
declare zero_neq_one [THEN not_sym, simp]
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   404
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   405
lemma zero_le_one [simp]: "(0::'a::ordered_semidom) \<le> 1"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   406
  by (rule zero_less_one [THEN order_less_imp_le]) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   407
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   408
lemma not_one_le_zero [simp]: "~ (1::'a::ordered_semidom) \<le> 0"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   409
by (simp add: linorder_not_le) 
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   410
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   411
lemma not_one_less_zero [simp]: "~ (1::'a::ordered_semidom) < 0"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   412
by (simp add: linorder_not_less) 
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   413
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   414
subsection{*More Monotonicity*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   415
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   416
text{*Strict monotonicity in both arguments*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   417
lemma mult_strict_mono:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   418
     "[|a<b; c<d; 0<b; 0\<le>c|] ==> a * c < b * (d::'a::ordered_semiring_strict)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   419
apply (case_tac "c=0")
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   420
 apply (simp add: mult_pos) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   421
apply (erule mult_strict_right_mono [THEN order_less_trans])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   422
 apply (force simp add: order_le_less) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   423
apply (erule mult_strict_left_mono, assumption)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   424
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   425
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   426
text{*This weaker variant has more natural premises*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   427
lemma mult_strict_mono':
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   428
     "[| a<b; c<d; 0 \<le> a; 0 \<le> c|] ==> a * c < b * (d::'a::ordered_semiring_strict)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   429
apply (rule mult_strict_mono)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   430
apply (blast intro: order_le_less_trans)+
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   431
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   432
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   433
lemma mult_mono:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   434
     "[|a \<le> b; c \<le> d; 0 \<le> b; 0 \<le> c|] 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   435
      ==> a * c  \<le>  b * (d::'a::pordered_semiring)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   436
apply (erule mult_right_mono [THEN order_trans], assumption)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   437
apply (erule mult_left_mono, assumption)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   438
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   439
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   440
lemma less_1_mult: "[| 1 < m; 1 < n |] ==> 1 < m*(n::'a::ordered_semidom)"
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   441
apply (insert mult_strict_mono [of 1 m 1 n]) 
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   442
apply (simp add:  order_less_trans [OF zero_less_one]) 
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   443
done
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   444
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   445
subsection{*Cancellation Laws for Relationships With a Common Factor*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   446
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   447
text{*Cancellation laws for @{term "c*a < c*b"} and @{term "a*c < b*c"},
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   448
   also with the relations @{text "\<le>"} and equality.*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   449
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   450
lemma mult_less_cancel_right:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   451
    "(a*c < b*c) = ((0 < c & a < b) | (c < 0 & b < (a::'a::ordered_ring_strict)))"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   452
apply (case_tac "c = 0")
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   453
apply (auto simp add: linorder_neq_iff mult_strict_right_mono 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   454
                      mult_strict_right_mono_neg)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   455
apply (auto simp add: linorder_not_less 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   456
                      linorder_not_le [symmetric, of "a*c"]
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   457
                      linorder_not_le [symmetric, of a])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   458
apply (erule_tac [!] notE)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   459
apply (auto simp add: order_less_imp_le mult_right_mono 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   460
                      mult_right_mono_neg)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   461
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   462
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   463
lemma mult_less_cancel_left:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   464
    "(c*a < c*b) = ((0 < c & a < b) | (c < 0 & b < (a::'a::ordered_ring_strict)))"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   465
apply (case_tac "c = 0")
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   466
apply (auto simp add: linorder_neq_iff mult_strict_left_mono 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   467
                      mult_strict_left_mono_neg)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   468
apply (auto simp add: linorder_not_less 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   469
                      linorder_not_le [symmetric, of "c*a"]
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   470
                      linorder_not_le [symmetric, of a])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   471
apply (erule_tac [!] notE)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   472
apply (auto simp add: order_less_imp_le mult_left_mono 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   473
                      mult_left_mono_neg)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   474
done
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   475
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   476
lemma mult_le_cancel_right:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   477
     "(a*c \<le> b*c) = ((0<c --> a\<le>b) & (c<0 --> b \<le> (a::'a::ordered_ring_strict)))"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   478
by (simp add: linorder_not_less [symmetric] mult_less_cancel_right)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   479
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   480
lemma mult_le_cancel_left:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   481
     "(c*a \<le> c*b) = ((0<c --> a\<le>b) & (c<0 --> b \<le> (a::'a::ordered_ring_strict)))"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   482
by (simp add: linorder_not_less [symmetric] mult_less_cancel_left)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   483
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   484
lemma mult_less_imp_less_left:
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   485
      assumes less: "c*a < c*b" and nonneg: "0 \<le> c"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   486
      shows "a < (b::'a::ordered_semiring_strict)"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   487
proof (rule ccontr)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   488
  assume "~ a < b"
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   489
  hence "b \<le> a" by (simp add: linorder_not_less)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   490
  hence "c*b \<le> c*a" by (rule mult_left_mono)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   491
  with this and less show False 
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   492
    by (simp add: linorder_not_less [symmetric])
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   493
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   494
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   495
lemma mult_less_imp_less_right:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   496
  assumes less: "a*c < b*c" and nonneg: "0 <= c"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   497
  shows "a < (b::'a::ordered_semiring_strict)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   498
proof (rule ccontr)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   499
  assume "~ a < b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   500
  hence "b \<le> a" by (simp add: linorder_not_less)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   501
  hence "b*c \<le> a*c" by (rule mult_right_mono)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   502
  with this and less show False 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   503
    by (simp add: linorder_not_less [symmetric])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   504
qed  
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   505
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   506
text{*Cancellation of equalities with a common factor*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   507
lemma mult_cancel_right [simp]:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   508
     "(a*c = b*c) = (c = (0::'a::ordered_ring_strict) | a=b)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   509
apply (cut_tac linorder_less_linear [of 0 c])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   510
apply (force dest: mult_strict_right_mono_neg mult_strict_right_mono
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   511
             simp add: linorder_neq_iff)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   512
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   513
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   514
text{*These cancellation theorems require an ordering. Versions are proved
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   515
      below that work for fields without an ordering.*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   516
lemma mult_cancel_left [simp]:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   517
     "(c*a = c*b) = (c = (0::'a::ordered_ring_strict) | a=b)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   518
apply (cut_tac linorder_less_linear [of 0 c])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   519
apply (force dest: mult_strict_left_mono_neg mult_strict_left_mono
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   520
             simp add: linorder_neq_iff)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   521
done
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   522
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   523
text{*This list of rewrites decides ring equalities by ordered rewriting.*}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   524
lemmas ring_eq_simps =
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   525
  mult_ac
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   526
  left_distrib right_distrib left_diff_distrib right_diff_distrib
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   527
  add_ac
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   528
  add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   529
  diff_eq_eq eq_diff_eq
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   530
    
14770
fe9504ba63d5 removed duplicate thms;
wenzelm
parents: 14754
diff changeset
   531
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   532
subsection {* Fields *}
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   533
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   534
lemma right_inverse [simp]:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   535
      assumes not0: "a \<noteq> 0" shows "a * inverse (a::'a::field) = 1"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   536
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   537
  have "a * inverse a = inverse a * a" by (simp add: mult_ac)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   538
  also have "... = 1" using not0 by simp
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   539
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   540
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   541
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   542
lemma right_inverse_eq: "b \<noteq> 0 ==> (a / b = 1) = (a = (b::'a::field))"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   543
proof
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   544
  assume neq: "b \<noteq> 0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   545
  {
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   546
    hence "a = (a / b) * b" by (simp add: divide_inverse mult_ac)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   547
    also assume "a / b = 1"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   548
    finally show "a = b" by simp
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   549
  next
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   550
    assume "a = b"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   551
    with neq show "a / b = 1" by (simp add: divide_inverse)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   552
  }
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   553
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   554
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   555
lemma nonzero_inverse_eq_divide: "a \<noteq> 0 ==> inverse (a::'a::field) = 1/a"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   556
by (simp add: divide_inverse)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   557
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   558
lemma divide_self [simp]: "a \<noteq> 0 ==> a / (a::'a::field) = 1"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   559
  by (simp add: divide_inverse)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   560
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   561
lemma divide_zero [simp]: "a / 0 = (0::'a::{field,division_by_zero})"
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   562
by (simp add: divide_inverse)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   563
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   564
lemma divide_zero_left [simp]: "0/a = (0::'a::field)"
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   565
by (simp add: divide_inverse)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   566
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   567
lemma inverse_eq_divide: "inverse (a::'a::field) = 1/a"
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   568
by (simp add: divide_inverse)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   569
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   570
lemma add_divide_distrib: "(a+b)/(c::'a::field) = a/c + b/c"
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   571
by (simp add: divide_inverse left_distrib) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   572
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   573
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   574
text{*Compared with @{text mult_eq_0_iff}, this version removes the requirement
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   575
      of an ordering.*}
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   576
lemma field_mult_eq_0_iff [simp]: "(a*b = (0::'a::field)) = (a = 0 | b = 0)"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   577
proof cases
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   578
  assume "a=0" thus ?thesis by simp
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   579
next
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   580
  assume anz [simp]: "a\<noteq>0"
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   581
  { assume "a * b = 0"
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   582
    hence "inverse a * (a * b) = 0" by simp
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   583
    hence "b = 0"  by (simp (no_asm_use) add: mult_assoc [symmetric])}
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   584
  thus ?thesis by force
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   585
qed
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   586
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   587
text{*Cancellation of equalities with a common factor*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   588
lemma field_mult_cancel_right_lemma:
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   589
      assumes cnz: "c \<noteq> (0::'a::field)"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   590
	  and eq:  "a*c = b*c"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   591
	 shows "a=b"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   592
proof -
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   593
  have "(a * c) * inverse c = (b * c) * inverse c"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   594
    by (simp add: eq)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   595
  thus "a=b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   596
    by (simp add: mult_assoc cnz)
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   597
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   598
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   599
lemma field_mult_cancel_right [simp]:
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   600
     "(a*c = b*c) = (c = (0::'a::field) | a=b)"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   601
proof cases
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   602
  assume "c=0" thus ?thesis by simp
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   603
next
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   604
  assume "c\<noteq>0" 
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   605
  thus ?thesis by (force dest: field_mult_cancel_right_lemma)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   606
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   607
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   608
lemma field_mult_cancel_left [simp]:
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   609
     "(c*a = c*b) = (c = (0::'a::field) | a=b)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   610
  by (simp add: mult_commute [of c] field_mult_cancel_right) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   611
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   612
lemma nonzero_imp_inverse_nonzero: "a \<noteq> 0 ==> inverse a \<noteq> (0::'a::field)"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   613
proof
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   614
  assume ianz: "inverse a = 0"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   615
  assume "a \<noteq> 0"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   616
  hence "1 = a * inverse a" by simp
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   617
  also have "... = 0" by (simp add: ianz)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   618
  finally have "1 = (0::'a::field)" .
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   619
  thus False by (simp add: eq_commute)
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   620
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   621
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   622
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   623
subsection{*Basic Properties of @{term inverse}*}
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   624
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   625
lemma inverse_zero_imp_zero: "inverse a = 0 ==> a = (0::'a::field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   626
apply (rule ccontr) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   627
apply (blast dest: nonzero_imp_inverse_nonzero) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   628
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   629
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   630
lemma inverse_nonzero_imp_nonzero:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   631
   "inverse a = 0 ==> a = (0::'a::field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   632
apply (rule ccontr) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   633
apply (blast dest: nonzero_imp_inverse_nonzero) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   634
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   635
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   636
lemma inverse_nonzero_iff_nonzero [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   637
   "(inverse a = 0) = (a = (0::'a::{field,division_by_zero}))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   638
by (force dest: inverse_nonzero_imp_nonzero) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   639
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   640
lemma nonzero_inverse_minus_eq:
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   641
      assumes [simp]: "a\<noteq>0"  shows "inverse(-a) = -inverse(a::'a::field)"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   642
proof -
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   643
  have "-a * inverse (- a) = -a * - inverse a"
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   644
    by simp
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   645
  thus ?thesis 
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   646
    by (simp only: field_mult_cancel_left, simp)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   647
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   648
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   649
lemma inverse_minus_eq [simp]:
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   650
   "inverse(-a) = -inverse(a::'a::{field,division_by_zero})";
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   651
proof cases
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   652
  assume "a=0" thus ?thesis by (simp add: inverse_zero)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   653
next
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   654
  assume "a\<noteq>0" 
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   655
  thus ?thesis by (simp add: nonzero_inverse_minus_eq)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   656
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   657
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   658
lemma nonzero_inverse_eq_imp_eq:
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   659
      assumes inveq: "inverse a = inverse b"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   660
	  and anz:  "a \<noteq> 0"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   661
	  and bnz:  "b \<noteq> 0"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   662
	 shows "a = (b::'a::field)"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   663
proof -
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   664
  have "a * inverse b = a * inverse a"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   665
    by (simp add: inveq)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   666
  hence "(a * inverse b) * b = (a * inverse a) * b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   667
    by simp
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   668
  thus "a = b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   669
    by (simp add: mult_assoc anz bnz)
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   670
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   671
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   672
lemma inverse_eq_imp_eq:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   673
     "inverse a = inverse b ==> a = (b::'a::{field,division_by_zero})"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   674
apply (case_tac "a=0 | b=0") 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   675
 apply (force dest!: inverse_zero_imp_zero
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   676
              simp add: eq_commute [of "0::'a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   677
apply (force dest!: nonzero_inverse_eq_imp_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   678
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   679
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   680
lemma inverse_eq_iff_eq [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   681
     "(inverse a = inverse b) = (a = (b::'a::{field,division_by_zero}))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   682
by (force dest!: inverse_eq_imp_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   683
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   684
lemma nonzero_inverse_inverse_eq:
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   685
      assumes [simp]: "a \<noteq> 0"  shows "inverse(inverse (a::'a::field)) = a"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   686
  proof -
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   687
  have "(inverse (inverse a) * inverse a) * a = a" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   688
    by (simp add: nonzero_imp_inverse_nonzero)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   689
  thus ?thesis
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   690
    by (simp add: mult_assoc)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   691
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   692
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   693
lemma inverse_inverse_eq [simp]:
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   694
     "inverse(inverse (a::'a::{field,division_by_zero})) = a"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   695
  proof cases
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   696
    assume "a=0" thus ?thesis by simp
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   697
  next
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   698
    assume "a\<noteq>0" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   699
    thus ?thesis by (simp add: nonzero_inverse_inverse_eq)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   700
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   701
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   702
lemma inverse_1 [simp]: "inverse 1 = (1::'a::field)"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   703
  proof -
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   704
  have "inverse 1 * 1 = (1::'a::field)" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   705
    by (rule left_inverse [OF zero_neq_one [symmetric]])
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   706
  thus ?thesis  by simp
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   707
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   708
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   709
lemma nonzero_inverse_mult_distrib: 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   710
      assumes anz: "a \<noteq> 0"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   711
          and bnz: "b \<noteq> 0"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   712
      shows "inverse(a*b) = inverse(b) * inverse(a::'a::field)"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   713
  proof -
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   714
  have "inverse(a*b) * (a * b) * inverse(b) = inverse(b)" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   715
    by (simp add: field_mult_eq_0_iff anz bnz)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   716
  hence "inverse(a*b) * a = inverse(b)" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   717
    by (simp add: mult_assoc bnz)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   718
  hence "inverse(a*b) * a * inverse(a) = inverse(b) * inverse(a)" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   719
    by simp
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   720
  thus ?thesis
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   721
    by (simp add: mult_assoc anz)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   722
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   723
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   724
text{*This version builds in division by zero while also re-orienting
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   725
      the right-hand side.*}
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   726
lemma inverse_mult_distrib [simp]:
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   727
     "inverse(a*b) = inverse(a) * inverse(b::'a::{field,division_by_zero})"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   728
  proof cases
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   729
    assume "a \<noteq> 0 & b \<noteq> 0" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   730
    thus ?thesis  by (simp add: nonzero_inverse_mult_distrib mult_commute)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   731
  next
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   732
    assume "~ (a \<noteq> 0 & b \<noteq> 0)" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   733
    thus ?thesis  by force
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   734
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   735
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   736
text{*There is no slick version using division by zero.*}
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   737
lemma inverse_add:
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   738
     "[|a \<noteq> 0;  b \<noteq> 0|]
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   739
      ==> inverse a + inverse b = (a+b) * inverse a * inverse (b::'a::field)"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   740
apply (simp add: left_distrib mult_assoc)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   741
apply (simp add: mult_commute [of "inverse a"]) 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   742
apply (simp add: mult_assoc [symmetric] add_commute)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   743
done
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   744
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   745
lemma inverse_divide [simp]:
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   746
      "inverse (a/b) = b / (a::'a::{field,division_by_zero})"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   747
  by (simp add: divide_inverse mult_commute)
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   748
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   749
lemma nonzero_mult_divide_cancel_left:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   750
  assumes [simp]: "b\<noteq>0" and [simp]: "c\<noteq>0" 
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   751
    shows "(c*a)/(c*b) = a/(b::'a::field)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   752
proof -
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   753
  have "(c*a)/(c*b) = c * a * (inverse b * inverse c)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   754
    by (simp add: field_mult_eq_0_iff divide_inverse 
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   755
                  nonzero_inverse_mult_distrib)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   756
  also have "... =  a * inverse b * (inverse c * c)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   757
    by (simp only: mult_ac)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   758
  also have "... =  a * inverse b"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   759
    by simp
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   760
    finally show ?thesis 
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   761
    by (simp add: divide_inverse)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   762
qed
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   763
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   764
lemma mult_divide_cancel_left:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   765
     "c\<noteq>0 ==> (c*a) / (c*b) = a / (b::'a::{field,division_by_zero})"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   766
apply (case_tac "b = 0")
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   767
apply (simp_all add: nonzero_mult_divide_cancel_left)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   768
done
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   769
14321
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   770
lemma nonzero_mult_divide_cancel_right:
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   771
     "[|b\<noteq>0; c\<noteq>0|] ==> (a*c) / (b*c) = a/(b::'a::field)"
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   772
by (simp add: mult_commute [of _ c] nonzero_mult_divide_cancel_left) 
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   773
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   774
lemma mult_divide_cancel_right:
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   775
     "c\<noteq>0 ==> (a*c) / (b*c) = a / (b::'a::{field,division_by_zero})"
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   776
apply (case_tac "b = 0")
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   777
apply (simp_all add: nonzero_mult_divide_cancel_right)
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   778
done
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   779
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   780
(*For ExtractCommonTerm*)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   781
lemma mult_divide_cancel_eq_if:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   782
     "(c*a) / (c*b) = 
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   783
      (if c=0 then 0 else a / (b::'a::{field,division_by_zero}))"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   784
  by (simp add: mult_divide_cancel_left)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   785
14284
f1abe67c448a re-organisation of Real/RealArith0.ML; more `Isar scripts
paulson
parents: 14277
diff changeset
   786
lemma divide_1 [simp]: "a/1 = (a::'a::field)"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   787
  by (simp add: divide_inverse)
14284
f1abe67c448a re-organisation of Real/RealArith0.ML; more `Isar scripts
paulson
parents: 14277
diff changeset
   788
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   789
lemma times_divide_eq_right [simp]: "a * (b/c) = (a*b) / (c::'a::field)"
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   790
by (simp add: divide_inverse mult_assoc)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   791
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   792
lemma times_divide_eq_left: "(b/c) * a = (b*a) / (c::'a::field)"
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   793
by (simp add: divide_inverse mult_ac)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   794
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   795
lemma divide_divide_eq_right [simp]:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   796
     "a / (b/c) = (a*c) / (b::'a::{field,division_by_zero})"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   797
by (simp add: divide_inverse mult_ac)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   798
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   799
lemma divide_divide_eq_left [simp]:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   800
     "(a / b) / (c::'a::{field,division_by_zero}) = a / (b*c)"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   801
by (simp add: divide_inverse mult_assoc)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   802
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   803
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   804
subsection {* Division and Unary Minus *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   805
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   806
lemma nonzero_minus_divide_left: "b \<noteq> 0 ==> - (a/b) = (-a) / (b::'a::field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   807
by (simp add: divide_inverse minus_mult_left)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   808
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   809
lemma nonzero_minus_divide_right: "b \<noteq> 0 ==> - (a/b) = a / -(b::'a::field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   810
by (simp add: divide_inverse nonzero_inverse_minus_eq minus_mult_right)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   811
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   812
lemma nonzero_minus_divide_divide: "b \<noteq> 0 ==> (-a)/(-b) = a / (b::'a::field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   813
by (simp add: divide_inverse nonzero_inverse_minus_eq)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   814
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   815
lemma minus_divide_left: "- (a/b) = (-a) / (b::'a::field)"
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   816
by (simp add: divide_inverse minus_mult_left [symmetric])
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   817
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   818
lemma minus_divide_right: "- (a/b) = a / -(b::'a::{field,division_by_zero})"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   819
by (simp add: divide_inverse minus_mult_right [symmetric])
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   820
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   821
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   822
text{*The effect is to extract signs from divisions*}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   823
declare minus_divide_left  [symmetric, simp]
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   824
declare minus_divide_right [symmetric, simp]
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   825
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   826
text{*Also, extract signs from products*}
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   827
declare minus_mult_left [symmetric, simp]
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   828
declare minus_mult_right [symmetric, simp]
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   829
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   830
lemma minus_divide_divide [simp]:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   831
     "(-a)/(-b) = a / (b::'a::{field,division_by_zero})"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   832
apply (case_tac "b=0", simp) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   833
apply (simp add: nonzero_minus_divide_divide) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   834
done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   835
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   836
lemma diff_divide_distrib: "(a-b)/(c::'a::field) = a/c - b/c"
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   837
by (simp add: diff_minus add_divide_distrib) 
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   838
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   839
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   840
subsection {* Ordered Fields *}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   841
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   842
lemma positive_imp_inverse_positive: 
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   843
      assumes a_gt_0: "0 < a"  shows "0 < inverse (a::'a::ordered_field)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   844
  proof -
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   845
  have "0 < a * inverse a" 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   846
    by (simp add: a_gt_0 [THEN order_less_imp_not_eq2] zero_less_one)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   847
  thus "0 < inverse a" 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   848
    by (simp add: a_gt_0 [THEN order_less_not_sym] zero_less_mult_iff)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   849
  qed
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   850
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   851
lemma negative_imp_inverse_negative:
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   852
     "a < 0 ==> inverse a < (0::'a::ordered_field)"
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   853
  by (insert positive_imp_inverse_positive [of "-a"], 
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   854
      simp add: nonzero_inverse_minus_eq order_less_imp_not_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   855
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   856
lemma inverse_le_imp_le:
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   857
      assumes invle: "inverse a \<le> inverse b"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   858
	  and apos:  "0 < a"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   859
	 shows "b \<le> (a::'a::ordered_field)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   860
  proof (rule classical)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   861
  assume "~ b \<le> a"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   862
  hence "a < b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   863
    by (simp add: linorder_not_le)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   864
  hence bpos: "0 < b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   865
    by (blast intro: apos order_less_trans)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   866
  hence "a * inverse a \<le> a * inverse b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   867
    by (simp add: apos invle order_less_imp_le mult_left_mono)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   868
  hence "(a * inverse a) * b \<le> (a * inverse b) * b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   869
    by (simp add: bpos order_less_imp_le mult_right_mono)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   870
  thus "b \<le> a"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   871
    by (simp add: mult_assoc apos bpos order_less_imp_not_eq2)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   872
  qed
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   873
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   874
lemma inverse_positive_imp_positive:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   875
      assumes inv_gt_0: "0 < inverse a"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   876
          and [simp]:   "a \<noteq> 0"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   877
        shows "0 < (a::'a::ordered_field)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   878
  proof -
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   879
  have "0 < inverse (inverse a)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   880
    by (rule positive_imp_inverse_positive)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   881
  thus "0 < a"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   882
    by (simp add: nonzero_inverse_inverse_eq)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   883
  qed
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   884
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   885
lemma inverse_positive_iff_positive [simp]:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   886
      "(0 < inverse a) = (0 < (a::'a::{ordered_field,division_by_zero}))"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   887
apply (case_tac "a = 0", simp)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   888
apply (blast intro: inverse_positive_imp_positive positive_imp_inverse_positive)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   889
done
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   890
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   891
lemma inverse_negative_imp_negative:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   892
      assumes inv_less_0: "inverse a < 0"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   893
          and [simp]:   "a \<noteq> 0"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   894
        shows "a < (0::'a::ordered_field)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   895
  proof -
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   896
  have "inverse (inverse a) < 0"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   897
    by (rule negative_imp_inverse_negative)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   898
  thus "a < 0"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   899
    by (simp add: nonzero_inverse_inverse_eq)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   900
  qed
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   901
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   902
lemma inverse_negative_iff_negative [simp]:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   903
      "(inverse a < 0) = (a < (0::'a::{ordered_field,division_by_zero}))"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   904
apply (case_tac "a = 0", simp)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   905
apply (blast intro: inverse_negative_imp_negative negative_imp_inverse_negative)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   906
done
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   907
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   908
lemma inverse_nonnegative_iff_nonnegative [simp]:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   909
      "(0 \<le> inverse a) = (0 \<le> (a::'a::{ordered_field,division_by_zero}))"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   910
by (simp add: linorder_not_less [symmetric])
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   911
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   912
lemma inverse_nonpositive_iff_nonpositive [simp]:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   913
      "(inverse a \<le> 0) = (a \<le> (0::'a::{ordered_field,division_by_zero}))"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   914
by (simp add: linorder_not_less [symmetric])
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   915
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   916
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   917
subsection{*Anti-Monotonicity of @{term inverse}*}
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   918
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   919
lemma less_imp_inverse_less:
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   920
      assumes less: "a < b"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   921
	  and apos:  "0 < a"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   922
	shows "inverse b < inverse (a::'a::ordered_field)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   923
  proof (rule ccontr)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   924
  assume "~ inverse b < inverse a"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   925
  hence "inverse a \<le> inverse b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   926
    by (simp add: linorder_not_less)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   927
  hence "~ (a < b)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   928
    by (simp add: linorder_not_less inverse_le_imp_le [OF _ apos])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   929
  thus False
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   930
    by (rule notE [OF _ less])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   931
  qed
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   932
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   933
lemma inverse_less_imp_less:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   934
   "[|inverse a < inverse b; 0 < a|] ==> b < (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   935
apply (simp add: order_less_le [of "inverse a"] order_less_le [of "b"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   936
apply (force dest!: inverse_le_imp_le nonzero_inverse_eq_imp_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   937
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   938
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   939
text{*Both premises are essential. Consider -1 and 1.*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   940
lemma inverse_less_iff_less [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   941
     "[|0 < a; 0 < b|] 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   942
      ==> (inverse a < inverse b) = (b < (a::'a::ordered_field))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   943
by (blast intro: less_imp_inverse_less dest: inverse_less_imp_less) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   944
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   945
lemma le_imp_inverse_le:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   946
   "[|a \<le> b; 0 < a|] ==> inverse b \<le> inverse (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   947
  by (force simp add: order_le_less less_imp_inverse_less)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   948
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   949
lemma inverse_le_iff_le [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   950
     "[|0 < a; 0 < b|] 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   951
      ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::ordered_field))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   952
by (blast intro: le_imp_inverse_le dest: inverse_le_imp_le) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   953
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   954
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   955
text{*These results refer to both operands being negative.  The opposite-sign
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   956
case is trivial, since inverse preserves signs.*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   957
lemma inverse_le_imp_le_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   958
   "[|inverse a \<le> inverse b; b < 0|] ==> b \<le> (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   959
  apply (rule classical) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   960
  apply (subgoal_tac "a < 0") 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   961
   prefer 2 apply (force simp add: linorder_not_le intro: order_less_trans) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   962
  apply (insert inverse_le_imp_le [of "-b" "-a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   963
  apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   964
  done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   965
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   966
lemma less_imp_inverse_less_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   967
   "[|a < b; b < 0|] ==> inverse b < inverse (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   968
  apply (subgoal_tac "a < 0") 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   969
   prefer 2 apply (blast intro: order_less_trans) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   970
  apply (insert less_imp_inverse_less [of "-b" "-a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   971
  apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   972
  done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   973
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   974
lemma inverse_less_imp_less_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   975
   "[|inverse a < inverse b; b < 0|] ==> b < (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   976
  apply (rule classical) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   977
  apply (subgoal_tac "a < 0") 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   978
   prefer 2
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   979
   apply (force simp add: linorder_not_less intro: order_le_less_trans) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   980
  apply (insert inverse_less_imp_less [of "-b" "-a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   981
  apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   982
  done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   983
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   984
lemma inverse_less_iff_less_neg [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   985
     "[|a < 0; b < 0|] 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   986
      ==> (inverse a < inverse b) = (b < (a::'a::ordered_field))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   987
  apply (insert inverse_less_iff_less [of "-b" "-a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   988
  apply (simp del: inverse_less_iff_less 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   989
	      add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   990
  done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   991
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   992
lemma le_imp_inverse_le_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   993
   "[|a \<le> b; b < 0|] ==> inverse b \<le> inverse (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   994
  by (force simp add: order_le_less less_imp_inverse_less_neg)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   995
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   996
lemma inverse_le_iff_le_neg [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   997
     "[|a < 0; b < 0|] 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   998
      ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::ordered_field))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   999
by (blast intro: le_imp_inverse_le_neg dest: inverse_le_imp_le_neg) 
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  1000
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1001
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1002
subsection{*Inverses and the Number One*}
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1003
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1004
lemma one_less_inverse_iff:
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1005
    "(1 < inverse x) = (0 < x & x < (1::'a::{ordered_field,division_by_zero}))"proof cases
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1006
  assume "0 < x"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1007
    with inverse_less_iff_less [OF zero_less_one, of x]
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1008
    show ?thesis by simp
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1009
next
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1010
  assume notless: "~ (0 < x)"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1011
  have "~ (1 < inverse x)"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1012
  proof
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1013
    assume "1 < inverse x"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1014
    also with notless have "... \<le> 0" by (simp add: linorder_not_less)
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1015
    also have "... < 1" by (rule zero_less_one) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1016
    finally show False by auto
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1017
  qed
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1018
  with notless show ?thesis by simp
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1019
qed
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1020
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1021
lemma inverse_eq_1_iff [simp]:
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1022
    "(inverse x = 1) = (x = (1::'a::{field,division_by_zero}))"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1023
by (insert inverse_eq_iff_eq [of x 1], simp) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1024
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1025
lemma one_le_inverse_iff:
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1026
   "(1 \<le> inverse x) = (0 < x & x \<le> (1::'a::{ordered_field,division_by_zero}))"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1027
by (force simp add: order_le_less one_less_inverse_iff zero_less_one 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1028
                    eq_commute [of 1]) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1029
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1030
lemma inverse_less_1_iff:
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1031
   "(inverse x < 1) = (x \<le> 0 | 1 < (x::'a::{ordered_field,division_by_zero}))"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1032
by (simp add: linorder_not_le [symmetric] one_le_inverse_iff) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1033
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1034
lemma inverse_le_1_iff:
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1035
   "(inverse x \<le> 1) = (x \<le> 0 | 1 \<le> (x::'a::{ordered_field,division_by_zero}))"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1036
by (simp add: linorder_not_less [symmetric] one_less_inverse_iff) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1037
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1038
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1039
subsection{*Division and Signs*}
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1040
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1041
lemma zero_less_divide_iff:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1042
     "((0::'a::{ordered_field,division_by_zero}) < a/b) = (0 < a & 0 < b | a < 0 & b < 0)"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1043
by (simp add: divide_inverse zero_less_mult_iff)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1044
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1045
lemma divide_less_0_iff:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1046
     "(a/b < (0::'a::{ordered_field,division_by_zero})) = 
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1047
      (0 < a & b < 0 | a < 0 & 0 < b)"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1048
by (simp add: divide_inverse mult_less_0_iff)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1049
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1050
lemma zero_le_divide_iff:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1051
     "((0::'a::{ordered_field,division_by_zero}) \<le> a/b) =
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1052
      (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1053
by (simp add: divide_inverse zero_le_mult_iff)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1054
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1055
lemma divide_le_0_iff:
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1056
     "(a/b \<le> (0::'a::{ordered_field,division_by_zero})) =
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1057
      (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1058
by (simp add: divide_inverse mult_le_0_iff)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1059
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1060
lemma divide_eq_0_iff [simp]:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1061
     "(a/b = 0) = (a=0 | b=(0::'a::{field,division_by_zero}))"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1062
by (simp add: divide_inverse field_mult_eq_0_iff)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1063
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1064
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1065
subsection{*Simplification of Inequalities Involving Literal Divisors*}
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1066
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1067
lemma pos_le_divide_eq: "0 < (c::'a::ordered_field) ==> (a \<le> b/c) = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1068
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1069
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1070
  hence "(a \<le> b/c) = (a*c \<le> (b/c)*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1071
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1072
  also have "... = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1073
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1074
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1075
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1076
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1077
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1078
lemma neg_le_divide_eq: "c < (0::'a::ordered_field) ==> (a \<le> b/c) = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1079
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1080
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1081
  hence "(a \<le> b/c) = ((b/c)*c \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1082
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1083
  also have "... = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1084
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1085
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1086
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1087
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1088
lemma le_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1089
  "(a \<le> b/c) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1090
   (if 0 < c then a*c \<le> b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1091
             else if c < 0 then b \<le> a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1092
             else  a \<le> (0::'a::{ordered_field,division_by_zero}))"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1093
apply (case_tac "c=0", simp) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1094
apply (force simp add: pos_le_divide_eq neg_le_divide_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1095
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1096
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1097
lemma pos_divide_le_eq: "0 < (c::'a::ordered_field) ==> (b/c \<le> a) = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1098
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1099
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1100
  hence "(b/c \<le> a) = ((b/c)*c \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1101
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1102
  also have "... = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1103
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1104
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1105
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1106
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1107
lemma neg_divide_le_eq: "c < (0::'a::ordered_field) ==> (b/c \<le> a) = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1108
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1109
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1110
  hence "(b/c \<le> a) = (a*c \<le> (b/c)*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1111
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1112
  also have "... = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1113
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1114
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1115
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1116
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1117
lemma divide_le_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1118
  "(b/c \<le> a) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1119
   (if 0 < c then b \<le> a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1120
             else if c < 0 then a*c \<le> b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1121
             else 0 \<le> (a::'a::{ordered_field,division_by_zero}))"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1122
apply (case_tac "c=0", simp) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1123
apply (force simp add: pos_divide_le_eq neg_divide_le_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1124
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1125
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1126
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1127
lemma pos_less_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1128
     "0 < (c::'a::ordered_field) ==> (a < b/c) = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1129
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1130
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1131
  hence "(a < b/c) = (a*c < (b/c)*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1132
    by (simp add: mult_less_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1133
  also have "... = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1134
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1135
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1136
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1137
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1138
lemma neg_less_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1139
 "c < (0::'a::ordered_field) ==> (a < b/c) = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1140
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1141
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1142
  hence "(a < b/c) = ((b/c)*c < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1143
    by (simp add: mult_less_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1144
  also have "... = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1145
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1146
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1147
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1148
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1149
lemma less_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1150
  "(a < b/c) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1151
   (if 0 < c then a*c < b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1152
             else if c < 0 then b < a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1153
             else  a < (0::'a::{ordered_field,division_by_zero}))"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1154
apply (case_tac "c=0", simp) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1155
apply (force simp add: pos_less_divide_eq neg_less_divide_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1156
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1157
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1158
lemma pos_divide_less_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1159
     "0 < (c::'a::ordered_field) ==> (b/c < a) = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1160
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1161
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1162
  hence "(b/c < a) = ((b/c)*c < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1163
    by (simp add: mult_less_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1164
  also have "... = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1165
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1166
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1167
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1168
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1169
lemma neg_divide_less_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1170
 "c < (0::'a::ordered_field) ==> (b/c < a) = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1171
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1172
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1173
  hence "(b/c < a) = (a*c < (b/c)*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1174
    by (simp add: mult_less_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1175
  also have "... = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1176
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1177
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1178
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1179
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1180
lemma divide_less_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1181
  "(b/c < a) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1182
   (if 0 < c then b < a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1183
             else if c < 0 then a*c < b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1184
             else 0 < (a::'a::{ordered_field,division_by_zero}))"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1185
apply (case_tac "c=0", simp) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1186
apply (force simp add: pos_divide_less_eq neg_divide_less_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1187
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1188
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1189
lemma nonzero_eq_divide_eq: "c\<noteq>0 ==> ((a::'a::field) = b/c) = (a*c = b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1190
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1191
  assume [simp]: "c\<noteq>0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1192
  have "(a = b/c) = (a*c = (b/c)*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1193
    by (simp add: field_mult_cancel_right)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1194
  also have "... = (a*c = b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1195
    by (simp add: divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1196
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1197
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1198
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1199
lemma eq_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1200
  "((a::'a::{field,division_by_zero}) = b/c) = (if c\<noteq>0 then a*c = b else a=0)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1201
by (simp add: nonzero_eq_divide_eq) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1202
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1203
lemma nonzero_divide_eq_eq: "c\<noteq>0 ==> (b/c = (a::'a::field)) = (b = a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1204
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1205
  assume [simp]: "c\<noteq>0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1206
  have "(b/c = a) = ((b/c)*c = a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1207
    by (simp add: field_mult_cancel_right)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1208
  also have "... = (b = a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1209
    by (simp add: divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1210
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1211
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1212
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1213
lemma divide_eq_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1214
  "(b/c = (a::'a::{field,division_by_zero})) = (if c\<noteq>0 then b = a*c else a=0)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1215
by (force simp add: nonzero_divide_eq_eq) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1216
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1217
subsection{*Cancellation Laws for Division*}
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1218
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1219
lemma divide_cancel_right [simp]:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1220
     "(a/c = b/c) = (c = 0 | a = (b::'a::{field,division_by_zero}))"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1221
apply (case_tac "c=0", simp) 
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1222
apply (simp add: divide_inverse field_mult_cancel_right) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1223
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1224
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1225
lemma divide_cancel_left [simp]:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1226
     "(c/a = c/b) = (c = 0 | a = (b::'a::{field,division_by_zero}))" 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1227
apply (case_tac "c=0", simp) 
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1228
apply (simp add: divide_inverse field_mult_cancel_left) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1229
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1230
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1231
subsection {* Division and the Number One *}
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1232
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1233
text{*Simplify expressions equated with 1*}
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1234
lemma divide_eq_1_iff [simp]:
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1235
     "(a/b = 1) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1236
apply (case_tac "b=0", simp) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1237
apply (simp add: right_inverse_eq) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1238
done
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1239
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1240
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1241
lemma one_eq_divide_iff [simp]:
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1242
     "(1 = a/b) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1243
by (simp add: eq_commute [of 1])  
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1244
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1245
lemma zero_eq_1_divide_iff [simp]:
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1246
     "((0::'a::{ordered_field,division_by_zero}) = 1/a) = (a = 0)"
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1247
apply (case_tac "a=0", simp) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1248
apply (auto simp add: nonzero_eq_divide_eq) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1249
done
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1250
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1251
lemma one_divide_eq_0_iff [simp]:
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1252
     "(1/a = (0::'a::{ordered_field,division_by_zero})) = (a = 0)"
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1253
apply (case_tac "a=0", simp) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1254
apply (insert zero_neq_one [THEN not_sym]) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1255
apply (auto simp add: nonzero_divide_eq_eq) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1256
done
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1257
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1258
text{*Simplify expressions such as @{text "0 < 1/x"} to @{text "0 < x"}*}
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1259
declare zero_less_divide_iff [of "1", simp]
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1260
declare divide_less_0_iff [of "1", simp]
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1261
declare zero_le_divide_iff [of "1", simp]
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1262
declare divide_le_0_iff [of "1", simp]
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1263
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1264
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1265
subsection {* Ordering Rules for Division *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1266
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1267
lemma divide_strict_right_mono:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1268
     "[|a < b; 0 < c|] ==> a / c < b / (c::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1269
by (simp add: order_less_imp_not_eq2 divide_inverse mult_strict_right_mono 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1270
              positive_imp_inverse_positive) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1271
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1272
lemma divide_right_mono:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1273
     "[|a \<le> b; 0 \<le> c|] ==> a/c \<le> b/(c::'a::{ordered_field,division_by_zero})"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1274
  by (force simp add: divide_strict_right_mono order_le_less) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1275
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1276
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1277
text{*The last premise ensures that @{term a} and @{term b} 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1278
      have the same sign*}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1279
lemma divide_strict_left_mono:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1280
       "[|b < a; 0 < c; 0 < a*b|] ==> c / a < c / (b::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1281
by (force simp add: zero_less_mult_iff divide_inverse mult_strict_left_mono 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1282
      order_less_imp_not_eq order_less_imp_not_eq2  
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1283
      less_imp_inverse_less less_imp_inverse_less_neg) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1284
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1285
lemma divide_left_mono:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1286
     "[|b \<le> a; 0 \<le> c; 0 < a*b|] ==> c / a \<le> c / (b::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1287
  apply (subgoal_tac "a \<noteq> 0 & b \<noteq> 0") 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1288
   prefer 2 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1289
   apply (force simp add: zero_less_mult_iff order_less_imp_not_eq) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1290
  apply (case_tac "c=0", simp add: divide_inverse)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1291
  apply (force simp add: divide_strict_left_mono order_le_less) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1292
  done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1294
lemma divide_strict_left_mono_neg:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1295
     "[|a < b; c < 0; 0 < a*b|] ==> c / a < c / (b::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1296
  apply (subgoal_tac "a \<noteq> 0 & b \<noteq> 0") 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1297
   prefer 2 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1298
   apply (force simp add: zero_less_mult_iff order_less_imp_not_eq) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1299
  apply (drule divide_strict_left_mono [of _ _ "-c"]) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1300
   apply (simp_all add: mult_commute nonzero_minus_divide_left [symmetric]) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1301
  done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1302
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1303
lemma divide_strict_right_mono_neg:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1304
     "[|b < a; c < 0|] ==> a / c < b / (c::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1305
apply (drule divide_strict_right_mono [of _ _ "-c"], simp) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1306
apply (simp add: order_less_imp_not_eq nonzero_minus_divide_right [symmetric]) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1307
done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1308
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1309
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1310
subsection {* Ordered Fields are Dense *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1311
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1312
lemma less_add_one: "a < (a+1::'a::ordered_semidom)"
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1313
proof -
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1314
  have "a+0 < (a+1::'a::ordered_semidom)"
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1315
    by (blast intro: zero_less_one add_strict_left_mono) 
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1316
  thus ?thesis by simp
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1317
qed
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1318
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1319
lemma zero_less_two: "0 < (1+1::'a::ordered_semidom)"
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1320
  by (blast intro: order_less_trans zero_less_one less_add_one) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1321
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1322
lemma less_half_sum: "a < b ==> a < (a+b) / (1+1::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1323
by (simp add: zero_less_two pos_less_divide_eq right_distrib) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1324
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1325
lemma gt_half_sum: "a < b ==> (a+b)/(1+1::'a::ordered_field) < b"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1326
by (simp add: zero_less_two pos_divide_less_eq right_distrib) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1327
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1328
lemma dense: "a < b ==> \<exists>r::'a::ordered_field. a < r & r < b"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1329
by (blast intro!: less_half_sum gt_half_sum)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1330
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1331
subsection {* Absolute Value *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1332
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1333
lemma abs_one [simp]: "abs 1 = (1::'a::ordered_idom)"
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1334
  by (simp add: abs_if zero_less_one [THEN order_less_not_sym]) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1335
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1336
lemma abs_le_mult: "abs (a * b) \<le> (abs a) * (abs (b::'a::lordered_ring))" 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1337
proof -
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1338
  let ?x = "pprt a * pprt b - pprt a * nprt b - nprt a * pprt b + nprt a * nprt b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1339
  let ?y = "pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1340
  have a: "(abs a) * (abs b) = ?x"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1341
    by (simp only: abs_prts[of a] abs_prts[of b] ring_eq_simps)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1342
  {
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1343
    fix u v :: 'a
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1344
    have bh: "\<lbrakk>u = a; v = b\<rbrakk> \<Longrightarrow> u * v = ?y"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1345
      apply (subst prts[of u], subst prts[of v])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1346
      apply (simp add: left_distrib right_distrib add_ac) 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1347
      done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1348
  }
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1349
  note b = this[OF refl[of a] refl[of b]]
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1350
  note addm = add_mono[of "0::'a" _ "0::'a", simplified]
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1351
  note addm2 = add_mono[of _ "0::'a" _ "0::'a", simplified]
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1352
  have xy: "- ?x <= ?y"
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1353
    apply (simp)
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1354
    apply (rule_tac y="0::'a" in order_trans)
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1355
    apply (rule addm2)+
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1356
    apply (simp_all add: mult_pos_le mult_neg_le)
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1357
    apply (rule addm)+
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1358
    apply (simp_all add: mult_pos_le mult_neg_le)
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1359
    done
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1360
  have yx: "?y <= ?x"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1361
    apply (simp add: add_ac)
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1362
    apply (rule_tac y=0 in order_trans)
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1363
    apply (rule addm2, (simp add: mult_pos_neg_le mult_pos_neg2_le)+)
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1364
    apply (rule addm, (simp add: mult_pos_neg_le mult_pos_neg2_le)+)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1365
    done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1366
  have i1: "a*b <= abs a * abs b" by (simp only: a b yx)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1367
  have i2: "- (abs a * abs b) <= a*b" by (simp only: a b xy)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1368
  show ?thesis
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1369
    apply (rule abs_leI)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1370
    apply (simp add: i1)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1371
    apply (simp add: i2[simplified minus_le_iff])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1372
    done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1373
qed
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1374
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1375
lemma abs_eq_mult: 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1376
  assumes "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1377
  shows "abs (a*b) = abs a * abs (b::'a::lordered_ring)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1378
proof -
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1379
  have s: "(0 <= a*b) | (a*b <= 0)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1380
    apply (auto)    
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1381
    apply (rule_tac split_mult_pos_le)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1382
    apply (rule_tac contrapos_np[of "a*b <= 0"])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1383
    apply (simp)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1384
    apply (rule_tac split_mult_neg_le)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1385
    apply (insert prems)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1386
    apply (blast)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1387
    done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1388
  have mulprts: "a * b = (pprt a + nprt a) * (pprt b + nprt b)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1389
    by (simp add: prts[symmetric])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1390
  show ?thesis
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1391
  proof cases
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1392
    assume "0 <= a * b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1393
    then show ?thesis
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1394
      apply (simp_all add: mulprts abs_prts)
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1395
      apply (simp add: 
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1396
	iff2imp[OF zero_le_iff_zero_nprt]
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1397
	iff2imp[OF le_zero_iff_pprt_id]
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1398
      )
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1399
      apply (insert prems)
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1400
      apply (auto simp add: 
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1401
	ring_eq_simps 
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1402
	iff2imp[OF zero_le_iff_zero_nprt] iff2imp[OF le_zero_iff_zero_pprt]
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1403
	iff2imp[OF le_zero_iff_pprt_id] iff2imp[OF zero_le_iff_nprt_id] 
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1404
	order_antisym mult_pos_neg_le[of a b] mult_pos_neg2_le[of b a])
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1405
      done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1406
  next
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1407
    assume "~(0 <= a*b)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1408
    with s have "a*b <= 0" by simp
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1409
    then show ?thesis
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1410
      apply (simp_all add: mulprts abs_prts)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1411
      apply (insert prems)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1412
      apply (auto simp add: ring_eq_simps iff2imp[OF zero_le_iff_zero_nprt] iff2imp[OF le_zero_iff_zero_pprt]
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1413
	iff2imp[OF le_zero_iff_pprt_id] iff2imp[OF zero_le_iff_nprt_id] order_antisym mult_pos_le[of a b] mult_neg_le[of a b])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1414
      done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1415
  qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1416
qed
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1417
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1418
lemma abs_mult: "abs (a * b) = abs a * abs (b::'a::ordered_idom)" 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1419
by (simp add: abs_eq_mult linorder_linear)
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1420
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1421
lemma abs_mult_self: "abs a * abs a = a * (a::'a::ordered_idom)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1422
by (simp add: abs_if) 
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1423
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1424
lemma nonzero_abs_inverse:
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1425
     "a \<noteq> 0 ==> abs (inverse (a::'a::ordered_field)) = inverse (abs a)"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1426
apply (auto simp add: linorder_neq_iff abs_if nonzero_inverse_minus_eq 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1427
                      negative_imp_inverse_negative)
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1428
apply (blast intro: positive_imp_inverse_positive elim: order_less_asym) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1429
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1430
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1431
lemma abs_inverse [simp]:
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1432
     "abs (inverse (a::'a::{ordered_field,division_by_zero})) = 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1433
      inverse (abs a)"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1434
apply (case_tac "a=0", simp) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1435
apply (simp add: nonzero_abs_inverse) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1436
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1437
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1438
lemma nonzero_abs_divide:
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1439
     "b \<noteq> 0 ==> abs (a / (b::'a::ordered_field)) = abs a / abs b"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1440
by (simp add: divide_inverse abs_mult nonzero_abs_inverse) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1441
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1442
lemma abs_divide:
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1443
     "abs (a / (b::'a::{ordered_field,division_by_zero})) = abs a / abs b"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1444
apply (case_tac "b=0", simp) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1445
apply (simp add: nonzero_abs_divide) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1446
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1447
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1448
lemma abs_mult_less:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1449
     "[| abs a < c; abs b < d |] ==> abs a * abs b < c*(d::'a::ordered_idom)"
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1450
proof -
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1451
  assume ac: "abs a < c"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1452
  hence cpos: "0<c" by (blast intro: order_le_less_trans abs_ge_zero)
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1453
  assume "abs b < d"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1454
  thus ?thesis by (simp add: ac cpos mult_strict_mono) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1455
qed
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1456
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1457
lemma eq_minus_self_iff: "(a = -a) = (a = (0::'a::ordered_idom))"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1458
by (force simp add: order_eq_iff le_minus_self_iff minus_le_self_iff)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1459
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1460
lemma less_minus_self_iff: "(a < -a) = (a < (0::'a::ordered_idom))"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1461
by (simp add: order_less_le le_minus_self_iff eq_minus_self_iff)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1462
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1463
lemma abs_less_iff: "(abs a < b) = (a < b & -a < (b::'a::ordered_idom))" 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1464
apply (simp add: order_less_le abs_le_iff)  
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1465
apply (auto simp add: abs_if minus_le_self_iff eq_minus_self_iff)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1466
apply (simp add: le_minus_self_iff linorder_neq_iff) 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1467
done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1468
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1469
text{*Moving this up spoils many proofs using @{text mult_le_cancel_right}*}
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1470
declare times_divide_eq_left [simp]
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1471
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1472
ML {*
14334
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14331
diff changeset
  1473
val left_distrib = thm "left_distrib";
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1474
val right_distrib = thm "right_distrib";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1475
val mult_commute = thm "mult_commute";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1476
val distrib = thm "distrib";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1477
val zero_neq_one = thm "zero_neq_one";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1478
val no_zero_divisors = thm "no_zero_divisors";
14331
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1479
val left_inverse = thm "left_inverse";
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1480
val divide_inverse = thm "divide_inverse";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1481
val mult_zero_left = thm "mult_zero_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1482
val mult_zero_right = thm "mult_zero_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1483
val field_mult_eq_0_iff = thm "field_mult_eq_0_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1484
val inverse_zero = thm "inverse_zero";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1485
val ring_distrib = thms "ring_distrib";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1486
val combine_common_factor = thm "combine_common_factor";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1487
val minus_mult_left = thm "minus_mult_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1488
val minus_mult_right = thm "minus_mult_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1489
val minus_mult_minus = thm "minus_mult_minus";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1490
val minus_mult_commute = thm "minus_mult_commute";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1491
val right_diff_distrib = thm "right_diff_distrib";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1492
val left_diff_distrib = thm "left_diff_distrib";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1493
val mult_left_mono = thm "mult_left_mono";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1494
val mult_right_mono = thm "mult_right_mono";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1495
val mult_strict_left_mono = thm "mult_strict_left_mono";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1496
val mult_strict_right_mono = thm "mult_strict_right_mono";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1497
val mult_mono = thm "mult_mono";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1498
val mult_strict_mono = thm "mult_strict_mono";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1499
val abs_if = thm "abs_if";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1500
val zero_less_one = thm "zero_less_one";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1501
val eq_add_iff1 = thm "eq_add_iff1";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1502
val eq_add_iff2 = thm "eq_add_iff2";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1503
val less_add_iff1 = thm "less_add_iff1";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1504
val less_add_iff2 = thm "less_add_iff2";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1505
val le_add_iff1 = thm "le_add_iff1";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1506
val le_add_iff2 = thm "le_add_iff2";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1507
val mult_left_le_imp_le = thm "mult_left_le_imp_le";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1508
val mult_right_le_imp_le = thm "mult_right_le_imp_le";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1509
val mult_left_less_imp_less = thm "mult_left_less_imp_less";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1510
val mult_right_less_imp_less = thm "mult_right_less_imp_less";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1511
val mult_strict_left_mono_neg = thm "mult_strict_left_mono_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1512
val mult_left_mono_neg = thm "mult_left_mono_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1513
val mult_strict_right_mono_neg = thm "mult_strict_right_mono_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1514
val mult_right_mono_neg = thm "mult_right_mono_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1515
val mult_pos = thm "mult_pos";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1516
val mult_pos_le = thm "mult_pos_le";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1517
val mult_pos_neg = thm "mult_pos_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1518
val mult_pos_neg_le = thm "mult_pos_neg_le";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1519
val mult_pos_neg2 = thm "mult_pos_neg2";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1520
val mult_pos_neg2_le = thm "mult_pos_neg2_le";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1521
val mult_neg = thm "mult_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1522
val mult_neg_le = thm "mult_neg_le";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1523
val zero_less_mult_pos = thm "zero_less_mult_pos";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1524
val zero_less_mult_pos2 = thm "zero_less_mult_pos2";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1525
val zero_less_mult_iff = thm "zero_less_mult_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1526
val mult_eq_0_iff = thm "mult_eq_0_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1527
val zero_le_mult_iff = thm "zero_le_mult_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1528
val mult_less_0_iff = thm "mult_less_0_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1529
val mult_le_0_iff = thm "mult_le_0_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1530
val split_mult_pos_le = thm "split_mult_pos_le";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1531
val split_mult_neg_le = thm "split_mult_neg_le";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1532
val zero_le_square = thm "zero_le_square";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1533
val zero_le_one = thm "zero_le_one";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1534
val not_one_le_zero = thm "not_one_le_zero";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1535
val not_one_less_zero = thm "not_one_less_zero";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1536
val mult_left_mono_neg = thm "mult_left_mono_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1537
val mult_right_mono_neg = thm "mult_right_mono_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1538
val mult_strict_mono = thm "mult_strict_mono";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1539
val mult_strict_mono' = thm "mult_strict_mono'";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1540
val mult_mono = thm "mult_mono";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1541
val less_1_mult = thm "less_1_mult";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1542
val mult_less_cancel_right = thm "mult_less_cancel_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1543
val mult_less_cancel_left = thm "mult_less_cancel_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1544
val mult_le_cancel_right = thm "mult_le_cancel_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1545
val mult_le_cancel_left = thm "mult_le_cancel_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1546
val mult_less_imp_less_left = thm "mult_less_imp_less_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1547
val mult_less_imp_less_right = thm "mult_less_imp_less_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1548
val mult_cancel_right = thm "mult_cancel_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1549
val mult_cancel_left = thm "mult_cancel_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1550
val ring_eq_simps = thms "ring_eq_simps";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1551
val right_inverse = thm "right_inverse";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1552
val right_inverse_eq = thm "right_inverse_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1553
val nonzero_inverse_eq_divide = thm "nonzero_inverse_eq_divide";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1554
val divide_self = thm "divide_self";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1555
val divide_zero = thm "divide_zero";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1556
val divide_zero_left = thm "divide_zero_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1557
val inverse_eq_divide = thm "inverse_eq_divide";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1558
val add_divide_distrib = thm "add_divide_distrib";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1559
val field_mult_eq_0_iff = thm "field_mult_eq_0_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1560
val field_mult_cancel_right_lemma = thm "field_mult_cancel_right_lemma";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1561
val field_mult_cancel_right = thm "field_mult_cancel_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1562
val field_mult_cancel_left = thm "field_mult_cancel_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1563
val nonzero_imp_inverse_nonzero = thm "nonzero_imp_inverse_nonzero";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1564
val inverse_zero_imp_zero = thm "inverse_zero_imp_zero";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1565
val inverse_nonzero_imp_nonzero = thm "inverse_nonzero_imp_nonzero";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1566
val inverse_nonzero_iff_nonzero = thm "inverse_nonzero_iff_nonzero";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1567
val nonzero_inverse_minus_eq = thm "nonzero_inverse_minus_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1568
val inverse_minus_eq = thm "inverse_minus_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1569
val nonzero_inverse_eq_imp_eq = thm "nonzero_inverse_eq_imp_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1570
val inverse_eq_imp_eq = thm "inverse_eq_imp_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1571
val inverse_eq_iff_eq = thm "inverse_eq_iff_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1572
val nonzero_inverse_inverse_eq = thm "nonzero_inverse_inverse_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1573
val inverse_inverse_eq = thm "inverse_inverse_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1574
val inverse_1 = thm "inverse_1";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1575
val nonzero_inverse_mult_distrib = thm "nonzero_inverse_mult_distrib";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1576
val inverse_mult_distrib = thm "inverse_mult_distrib";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1577
val inverse_add = thm "inverse_add";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1578
val inverse_divide = thm "inverse_divide";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1579
val nonzero_mult_divide_cancel_left = thm "nonzero_mult_divide_cancel_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1580
val mult_divide_cancel_left = thm "mult_divide_cancel_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1581
val nonzero_mult_divide_cancel_right = thm "nonzero_mult_divide_cancel_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1582
val mult_divide_cancel_right = thm "mult_divide_cancel_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1583
val mult_divide_cancel_eq_if = thm "mult_divide_cancel_eq_if";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1584
val divide_1 = thm "divide_1";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1585
val times_divide_eq_right = thm "times_divide_eq_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1586
val times_divide_eq_left = thm "times_divide_eq_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1587
val divide_divide_eq_right = thm "divide_divide_eq_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1588
val divide_divide_eq_left = thm "divide_divide_eq_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1589
val nonzero_minus_divide_left = thm "nonzero_minus_divide_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1590
val nonzero_minus_divide_right = thm "nonzero_minus_divide_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1591
val nonzero_minus_divide_divide = thm "nonzero_minus_divide_divide";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1592
val minus_divide_left = thm "minus_divide_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1593
val minus_divide_right = thm "minus_divide_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1594
val minus_divide_divide = thm "minus_divide_divide";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1595
val diff_divide_distrib = thm "diff_divide_distrib";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1596
val positive_imp_inverse_positive = thm "positive_imp_inverse_positive";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1597
val negative_imp_inverse_negative = thm "negative_imp_inverse_negative";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1598
val inverse_le_imp_le = thm "inverse_le_imp_le";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1599
val inverse_positive_imp_positive = thm "inverse_positive_imp_positive";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1600
val inverse_positive_iff_positive = thm "inverse_positive_iff_positive";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1601
val inverse_negative_imp_negative = thm "inverse_negative_imp_negative";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1602
val inverse_negative_iff_negative = thm "inverse_negative_iff_negative";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1603
val inverse_nonnegative_iff_nonnegative = thm "inverse_nonnegative_iff_nonnegative";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1604
val inverse_nonpositive_iff_nonpositive = thm "inverse_nonpositive_iff_nonpositive";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1605
val less_imp_inverse_less = thm "less_imp_inverse_less";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1606
val inverse_less_imp_less = thm "inverse_less_imp_less";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1607
val inverse_less_iff_less = thm "inverse_less_iff_less";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1608
val le_imp_inverse_le = thm "le_imp_inverse_le";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1609
val inverse_le_iff_le = thm "inverse_le_iff_le";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1610
val inverse_le_imp_le_neg = thm "inverse_le_imp_le_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1611
val less_imp_inverse_less_neg = thm "less_imp_inverse_less_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1612
val inverse_less_imp_less_neg = thm "inverse_less_imp_less_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1613
val inverse_less_iff_less_neg = thm "inverse_less_iff_less_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1614
val le_imp_inverse_le_neg = thm "le_imp_inverse_le_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1615
val inverse_le_iff_le_neg = thm "inverse_le_iff_le_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1616
val one_less_inverse_iff = thm "one_less_inverse_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1617
val inverse_eq_1_iff = thm "inverse_eq_1_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1618
val one_le_inverse_iff = thm "one_le_inverse_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1619
val inverse_less_1_iff = thm "inverse_less_1_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1620
val inverse_le_1_iff = thm "inverse_le_1_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1621
val zero_less_divide_iff = thm "zero_less_divide_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1622
val divide_less_0_iff = thm "divide_less_0_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1623
val zero_le_divide_iff = thm "zero_le_divide_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1624
val divide_le_0_iff = thm "divide_le_0_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1625
val divide_eq_0_iff = thm "divide_eq_0_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1626
val pos_le_divide_eq = thm "pos_le_divide_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1627
val neg_le_divide_eq = thm "neg_le_divide_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1628
val le_divide_eq = thm "le_divide_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1629
val pos_divide_le_eq = thm "pos_divide_le_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1630
val neg_divide_le_eq = thm "neg_divide_le_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1631
val divide_le_eq = thm "divide_le_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1632
val pos_less_divide_eq = thm "pos_less_divide_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1633
val neg_less_divide_eq = thm "neg_less_divide_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1634
val less_divide_eq = thm "less_divide_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1635
val pos_divide_less_eq = thm "pos_divide_less_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1636
val neg_divide_less_eq = thm "neg_divide_less_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1637
val divide_less_eq = thm "divide_less_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1638
val nonzero_eq_divide_eq = thm "nonzero_eq_divide_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1639
val eq_divide_eq = thm "eq_divide_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1640
val nonzero_divide_eq_eq = thm "nonzero_divide_eq_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1641
val divide_eq_eq = thm "divide_eq_eq";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1642
val divide_cancel_right = thm "divide_cancel_right";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1643
val divide_cancel_left = thm "divide_cancel_left";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1644
val divide_eq_1_iff = thm "divide_eq_1_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1645
val one_eq_divide_iff = thm "one_eq_divide_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1646
val zero_eq_1_divide_iff = thm "zero_eq_1_divide_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1647
val one_divide_eq_0_iff = thm "one_divide_eq_0_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1648
val divide_strict_right_mono = thm "divide_strict_right_mono";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1649
val divide_right_mono = thm "divide_right_mono";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1650
val divide_strict_left_mono = thm "divide_strict_left_mono";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1651
val divide_left_mono = thm "divide_left_mono";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1652
val divide_strict_left_mono_neg = thm "divide_strict_left_mono_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1653
val divide_strict_right_mono_neg = thm "divide_strict_right_mono_neg";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1654
val less_add_one = thm "less_add_one";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1655
val zero_less_two = thm "zero_less_two";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1656
val less_half_sum = thm "less_half_sum";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1657
val gt_half_sum = thm "gt_half_sum";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1658
val dense = thm "dense";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1659
val abs_one = thm "abs_one";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1660
val abs_le_mult = thm "abs_le_mult";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1661
val abs_eq_mult = thm "abs_eq_mult";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1662
val abs_mult = thm "abs_mult";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1663
val abs_mult_self = thm "abs_mult_self";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1664
val nonzero_abs_inverse = thm "nonzero_abs_inverse";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1665
val abs_inverse = thm "abs_inverse";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1666
val nonzero_abs_divide = thm "nonzero_abs_divide";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1667
val abs_divide = thm "abs_divide";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1668
val abs_mult_less = thm "abs_mult_less";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1669
val eq_minus_self_iff = thm "eq_minus_self_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1670
val less_minus_self_iff = thm "less_minus_self_iff";
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1671
val abs_less_iff = thm "abs_less_iff";
14331
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1672
*}
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1673
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  1674
end