author | wenzelm |
Wed, 09 Jun 2004 18:52:42 +0200 | |
changeset 14898 | a25550451b51 |
parent 14793 | 32d94d1e4842 |
child 14981 | e73f8140af78 |
permissions | -rw-r--r-- |
6134 | 1 |
(* Title: Pure/General/graph.ML |
2 |
ID: $Id$ |
|
3 |
Author: Markus Wenzel, TU Muenchen |
|
8806 | 4 |
License: GPL (GNU GENERAL PUBLIC LICENSE) |
6134 | 5 |
|
6 |
Directed graphs. |
|
7 |
*) |
|
8 |
||
9 |
signature GRAPH = |
|
10 |
sig |
|
11 |
type key |
|
12 |
type 'a T |
|
9321 | 13 |
exception UNDEF of key |
14 |
exception DUP of key |
|
15 |
exception DUPS of key list |
|
6134 | 16 |
val empty: 'a T |
6659 | 17 |
val keys: 'a T -> key list |
14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
18 |
val dest: 'a T -> (key * key list) list |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
19 |
val minimals: 'a T -> key list |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
20 |
val maximals: 'a T -> key list |
6142 | 21 |
val map_nodes: ('a -> 'b) -> 'a T -> 'b T |
22 |
val get_node: 'a T -> key -> 'a |
|
23 |
val map_node: key -> ('a -> 'a) -> 'a T -> 'a T |
|
24 |
val imm_preds: 'a T -> key -> key list |
|
25 |
val imm_succs: 'a T -> key -> key list |
|
6134 | 26 |
val all_preds: 'a T -> key list -> key list |
27 |
val all_succs: 'a T -> key list -> key list |
|
14161
73ad4884441f
Added function strong_conn for computing the strongly connected components
berghofe
parents:
12451
diff
changeset
|
28 |
val strong_conn: 'a T -> key list list |
6134 | 29 |
val find_paths: 'a T -> key * key -> key list list |
6152 | 30 |
val new_node: key * 'a -> 'a T -> 'a T |
6659 | 31 |
val del_nodes: key list -> 'a T -> 'a T |
14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
32 |
val is_edge: 'a T -> key * key -> bool |
6134 | 33 |
val add_edge: key * key -> 'a T -> 'a T |
6152 | 34 |
val del_edge: key * key -> 'a T -> 'a T |
14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
35 |
val merge: ('a * 'a -> bool) -> 'a T * 'a T -> 'a T |
6142 | 36 |
exception CYCLES of key list list |
6134 | 37 |
val add_edge_acyclic: key * key -> 'a T -> 'a T |
9321 | 38 |
val add_deps_acyclic: key * key list -> 'a T -> 'a T |
39 |
val merge_acyclic: ('a * 'a -> bool) -> 'a T * 'a T -> 'a T |
|
14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
40 |
val add_edge_trans_acyclic: key * key -> 'a T -> 'a T |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
41 |
val merge_trans_acyclic: ('a * 'a -> bool) -> 'a T * 'a T -> 'a T |
6134 | 42 |
end; |
43 |
||
44 |
functor GraphFun(Key: KEY): GRAPH = |
|
45 |
struct |
|
46 |
||
47 |
(* keys *) |
|
48 |
||
49 |
type key = Key.key; |
|
50 |
||
51 |
val eq_key = equal EQUAL o Key.ord; |
|
52 |
||
53 |
infix mem_key; |
|
54 |
val op mem_key = gen_mem eq_key; |
|
55 |
||
56 |
infix ins_key; |
|
57 |
val op ins_key = gen_ins eq_key; |
|
58 |
||
6152 | 59 |
infix del_key; |
60 |
fun xs del_key x = if x mem_key xs then gen_rem eq_key (xs, x) else xs; |
|
61 |
||
6134 | 62 |
|
63 |
(* tables and sets of keys *) |
|
64 |
||
65 |
structure Table = TableFun(Key); |
|
66 |
type keys = unit Table.table; |
|
67 |
||
6142 | 68 |
val empty_keys = Table.empty: keys; |
69 |
||
6134 | 70 |
infix mem_keys; |
71 |
fun x mem_keys tab = is_some (Table.lookup (tab: keys, x)); |
|
72 |
||
73 |
infix ins_keys; |
|
74 |
fun x ins_keys tab = if x mem_keys tab then tab else Table.update ((x, ()), tab); |
|
75 |
||
76 |
||
6142 | 77 |
(* graphs *) |
6134 | 78 |
|
79 |
datatype 'a T = Graph of ('a * (key list * key list)) Table.table; |
|
80 |
||
9321 | 81 |
exception UNDEF of key; |
82 |
exception DUP = Table.DUP; |
|
83 |
exception DUPS = Table.DUPS; |
|
6134 | 84 |
|
85 |
val empty = Graph Table.empty; |
|
6659 | 86 |
fun keys (Graph tab) = Table.keys tab; |
14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
87 |
fun dest (Graph tab) = map (fn (x, (_, (_, succs))) => (x, succs)) (Table.dest tab); |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
88 |
|
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
89 |
fun minimals (Graph tab) = |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
90 |
Table.foldl (fn (ms, (m, (_, ([], _)))) => m :: ms | (ms, _) => ms) ([], tab); |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
91 |
fun maximals (Graph tab) = |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
92 |
Table.foldl (fn (ms, (m, (_, (_, [])))) => m :: ms | (ms, _) => ms) ([], tab); |
6134 | 93 |
|
6142 | 94 |
fun get_entry (Graph tab) x = |
6134 | 95 |
(case Table.lookup (tab, x) of |
6142 | 96 |
Some entry => entry |
9321 | 97 |
| None => raise UNDEF x); |
6134 | 98 |
|
6142 | 99 |
fun map_entry x f (G as Graph tab) = Graph (Table.update ((x, f (get_entry G x)), tab)); |
6134 | 100 |
|
101 |
||
6142 | 102 |
(* nodes *) |
103 |
||
104 |
fun map_nodes f (Graph tab) = Graph (Table.map (fn (i, ps) => (f i, ps)) tab); |
|
6134 | 105 |
|
6142 | 106 |
fun get_node G = #1 o get_entry G; |
107 |
fun map_node x f = map_entry x (fn (i, ps) => (f i, ps)); |
|
108 |
||
109 |
||
110 |
(* reachability *) |
|
111 |
||
6659 | 112 |
(*nodes reachable from xs -- topologically sorted for acyclic graphs*) |
6142 | 113 |
fun reachable next xs = |
6134 | 114 |
let |
14161
73ad4884441f
Added function strong_conn for computing the strongly connected components
berghofe
parents:
12451
diff
changeset
|
115 |
fun reach ((R, rs), x) = |
73ad4884441f
Added function strong_conn for computing the strongly connected components
berghofe
parents:
12451
diff
changeset
|
116 |
if x mem_keys R then (R, rs) |
73ad4884441f
Added function strong_conn for computing the strongly connected components
berghofe
parents:
12451
diff
changeset
|
117 |
else apsnd (cons x) (reachs ((x ins_keys R, rs), next x)) |
6134 | 118 |
and reachs R_xs = foldl reach R_xs; |
14161
73ad4884441f
Added function strong_conn for computing the strongly connected components
berghofe
parents:
12451
diff
changeset
|
119 |
in foldl_map (reach o apfst (rpair [])) (empty_keys, xs) end; |
6134 | 120 |
|
6142 | 121 |
(*immediate*) |
122 |
fun imm_preds G = #1 o #2 o get_entry G; |
|
123 |
fun imm_succs G = #2 o #2 o get_entry G; |
|
6134 | 124 |
|
6142 | 125 |
(*transitive*) |
14161
73ad4884441f
Added function strong_conn for computing the strongly connected components
berghofe
parents:
12451
diff
changeset
|
126 |
fun all_preds G = flat o snd o reachable (imm_preds G); |
73ad4884441f
Added function strong_conn for computing the strongly connected components
berghofe
parents:
12451
diff
changeset
|
127 |
fun all_succs G = flat o snd o reachable (imm_succs G); |
73ad4884441f
Added function strong_conn for computing the strongly connected components
berghofe
parents:
12451
diff
changeset
|
128 |
|
14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
129 |
(*strongly connected components; see: David King and John Launchbury, |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
130 |
"Structuring Depth First Search Algorithms in Haskell"*) |
14161
73ad4884441f
Added function strong_conn for computing the strongly connected components
berghofe
parents:
12451
diff
changeset
|
131 |
fun strong_conn G = filter_out null (snd (reachable (imm_preds G) |
73ad4884441f
Added function strong_conn for computing the strongly connected components
berghofe
parents:
12451
diff
changeset
|
132 |
(flat (rev (snd (reachable (imm_succs G) (keys G))))))); |
6134 | 133 |
|
134 |
||
6142 | 135 |
(* paths *) |
6134 | 136 |
|
137 |
fun find_paths G (x, y) = |
|
138 |
let |
|
14161
73ad4884441f
Added function strong_conn for computing the strongly connected components
berghofe
parents:
12451
diff
changeset
|
139 |
val (X, _) = reachable (imm_succs G) [x]; |
6134 | 140 |
fun paths ps p = |
12451 | 141 |
if not (null ps) andalso eq_key (p, x) then [p :: ps] |
142 |
else if p mem_keys X andalso not (p mem_key ps) |
|
143 |
then flat (map (paths (p :: ps)) (imm_preds G p)) |
|
144 |
else []; |
|
145 |
in paths [] y end; |
|
6134 | 146 |
|
147 |
||
9321 | 148 |
(* nodes *) |
6134 | 149 |
|
6142 | 150 |
exception DUPLICATE of key; |
151 |
||
6152 | 152 |
fun new_node (x, info) (Graph tab) = |
9321 | 153 |
Graph (Table.update_new ((x, (info, ([], []))), tab)); |
6134 | 154 |
|
6659 | 155 |
fun del_nodes xs (Graph tab) = |
156 |
let |
|
157 |
fun del (x, (i, (preds, succs))) = |
|
158 |
if x mem_key xs then None |
|
14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
159 |
else Some (x, (i, (foldl op del_key (preds, xs), foldl op del_key (succs, xs)))); |
6659 | 160 |
in Graph (Table.make (mapfilter del (Table.dest tab))) end; |
161 |
||
6152 | 162 |
|
9321 | 163 |
(* edges *) |
164 |
||
14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
165 |
fun is_edge G (x, y) = y mem_key imm_succs G x handle UNDEF _ => false; |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
166 |
|
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
167 |
fun add_edge (x, y) G = |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
168 |
if is_edge G (x, y) then G |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
169 |
else |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
170 |
G |> map_entry y (fn (i, (preds, succs)) => (i, (x :: preds, succs))) |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
171 |
|> map_entry x (fn (i, (preds, succs)) => (i, (preds, y :: succs))); |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
172 |
|
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
173 |
fun del_edge (x, y) G = |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
174 |
if is_edge G (x, y) then |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
175 |
G |> map_entry y (fn (i, (preds, succs)) => (i, (preds del_key x, succs))) |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
176 |
|> map_entry x (fn (i, (preds, succs)) => (i, (preds, succs del_key y))) |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
177 |
else G; |
9321 | 178 |
|
14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
179 |
fun diff_edges G1 G2 = |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
180 |
flat (dest G1 |> map (fn (x, ys) => ys |> mapfilter (fn y => |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
181 |
if is_edge G2 (x, y) then None else Some (x, y)))); |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
182 |
|
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
183 |
fun edges G = diff_edges G empty; |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
184 |
|
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
185 |
|
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
186 |
(* merge *) |
6152 | 187 |
|
14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
188 |
fun gen_merge add eq (Graph tab1, G2 as Graph tab2) = |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
189 |
let |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
190 |
fun eq_node ((i1, _), (i2, _)) = eq (i1, i2); |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
191 |
fun no_edges (i, _) = (i, ([], [])); |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
192 |
in fold add (edges G2) (Graph (Table.merge eq_node (tab1, Table.map no_edges tab2))) end; |
6152 | 193 |
|
14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
194 |
fun merge eq GG = gen_merge add_edge eq GG; |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
195 |
|
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
196 |
|
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
197 |
(* maintain acyclic graphs *) |
6142 | 198 |
|
199 |
exception CYCLES of key list list; |
|
6134 | 200 |
|
201 |
fun add_edge_acyclic (x, y) G = |
|
14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
202 |
if is_edge G (x, y) then G |
9347 | 203 |
else |
204 |
(case find_paths G (y, x) of |
|
205 |
[] => add_edge (x, y) G |
|
206 |
| cycles => raise CYCLES (map (cons x) cycles)); |
|
6134 | 207 |
|
9321 | 208 |
fun add_deps_acyclic (y, xs) G = |
209 |
foldl (fn (H, x) => add_edge_acyclic (x, y) H) (G, xs); |
|
210 |
||
14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
211 |
fun merge_acyclic eq GG = gen_merge add_edge_acyclic eq GG; |
9321 | 212 |
|
14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
213 |
|
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
214 |
(* maintain transitive acyclic graphs *) |
9321 | 215 |
|
14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
216 |
fun add_edge_trans_acyclic (x, y) G = |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
217 |
add_edge_acyclic (x, y) G |> |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
218 |
fold add_edge (Library.product (all_preds G [x]) (all_succs G [y])); |
9321 | 219 |
|
14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
220 |
fun merge_trans_acyclic eq (G1, G2) = |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
221 |
merge_acyclic eq (G1, G2) |> |
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset
|
222 |
fold add_edge_trans_acyclic (diff_edges G1 G2 @ diff_edges G2 G1); |
6134 | 223 |
|
224 |
end; |
|
225 |
||
226 |
||
227 |
(*graphs indexed by strings*) |
|
228 |
structure Graph = GraphFun(type key = string val ord = string_ord); |