author | blanchet |
Fri, 14 Mar 2014 10:08:33 +0100 | |
changeset 56123 | a27859b0ef7d |
parent 55380 | 4de48353034e |
child 58889 | 5b7a9633cfa8 |
permissions | -rw-r--r-- |
17481 | 1 |
(* Title: Sequents/LK/Nat.thy |
7091 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
7095 | 3 |
Copyright 1999 University of Cambridge |
7091 | 4 |
*) |
5 |
||
17481 | 6 |
header {* Theory of the natural numbers: Peano's axioms, primitive recursion *} |
7 |
||
8 |
theory Nat |
|
55229 | 9 |
imports "../LK" |
17481 | 10 |
begin |
11 |
||
12 |
typedecl nat |
|
55380
4de48353034e
prefer vacuous definitional type classes over axiomatic ones;
wenzelm
parents:
55230
diff
changeset
|
13 |
instance nat :: "term" .. |
7091 | 14 |
|
51309 | 15 |
axiomatization |
16 |
Zero :: nat ("0") and |
|
17 |
Suc :: "nat=>nat" and |
|
18 |
rec :: "[nat, 'a, [nat,'a]=>'a] => 'a" |
|
19 |
where |
|
17481 | 20 |
induct: "[| $H |- $E, P(0), $F; |
51309 | 21 |
!!x. $H, P(x) |- $E, P(Suc(x)), $F |] ==> $H |- $E, P(n), $F" and |
7095 | 22 |
|
51309 | 23 |
Suc_inject: "|- Suc(m)=Suc(n) --> m=n" and |
24 |
Suc_neq_0: "|- Suc(m) ~= 0" and |
|
25 |
rec_0: "|- rec(0,a,f) = a" and |
|
17481 | 26 |
rec_Suc: "|- rec(Suc(m), a, f) = f(m, rec(m,a,f))" |
51309 | 27 |
|
28 |
definition add :: "[nat, nat] => nat" (infixl "+" 60) |
|
29 |
where "m + n == rec(m, n, %x y. Suc(y))" |
|
17481 | 30 |
|
21426 | 31 |
|
32 |
declare Suc_neq_0 [simp] |
|
33 |
||
34 |
lemma Suc_inject_rule: "$H, $G, m = n |- $E \<Longrightarrow> $H, Suc(m) = Suc(n), $G |- $E" |
|
35 |
by (rule L_of_imp [OF Suc_inject]) |
|
36 |
||
37 |
lemma Suc_n_not_n: "|- Suc(k) ~= k" |
|
38 |
apply (rule_tac n = k in induct) |
|
55230 | 39 |
apply simp |
55228 | 40 |
apply (fast add!: Suc_inject_rule) |
21426 | 41 |
done |
42 |
||
43 |
lemma add_0: "|- 0+n = n" |
|
44 |
apply (unfold add_def) |
|
45 |
apply (rule rec_0) |
|
46 |
done |
|
47 |
||
48 |
lemma add_Suc: "|- Suc(m)+n = Suc(m+n)" |
|
49 |
apply (unfold add_def) |
|
50 |
apply (rule rec_Suc) |
|
51 |
done |
|
52 |
||
53 |
declare add_0 [simp] add_Suc [simp] |
|
54 |
||
55 |
lemma add_assoc: "|- (k+m)+n = k+(m+n)" |
|
56 |
apply (rule_tac n = "k" in induct) |
|
55230 | 57 |
apply simp_all |
21426 | 58 |
done |
59 |
||
60 |
lemma add_0_right: "|- m+0 = m" |
|
61 |
apply (rule_tac n = "m" in induct) |
|
55230 | 62 |
apply simp_all |
21426 | 63 |
done |
64 |
||
65 |
lemma add_Suc_right: "|- m+Suc(n) = Suc(m+n)" |
|
66 |
apply (rule_tac n = "m" in induct) |
|
55230 | 67 |
apply simp_all |
21426 | 68 |
done |
69 |
||
70 |
lemma "(!!n. |- f(Suc(n)) = Suc(f(n))) ==> |- f(i+j) = i+f(j)" |
|
71 |
apply (rule_tac n = "i" in induct) |
|
55230 | 72 |
apply simp_all |
21426 | 73 |
done |
17481 | 74 |
|
7091 | 75 |
end |