src/HOL/OrderedGroup.thy
author haftmann
Mon, 08 Feb 2010 14:22:22 +0100
changeset 35042 a27b48967b26
parent 35036 b8c8d01cc20d
permissions -rw-r--r--
NEWS: ax_simps
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
14770
fe9504ba63d5 removed duplicate thms;
wenzelm
parents: 14754
diff changeset
     1
(*  Title:   HOL/OrderedGroup.thy
29269
5c25a2012975 moved term order operations to structure TermOrd (cf. Pure/term_ord.ML);
wenzelm
parents: 28823
diff changeset
     2
    Author:  Gertrud Bauer, Steven Obua, Lawrence C Paulson, Markus Wenzel, Jeremy Avigad
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
     3
*)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
     4
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
     5
header {* Ordered Groups *}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
     6
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15093
diff changeset
     7
theory OrderedGroup
22452
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
     8
imports Lattices
19798
wenzelm
parents: 19527
diff changeset
     9
uses "~~/src/Provers/Arith/abel_cancel.ML"
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15093
diff changeset
    10
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    11
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    12
text {*
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    13
  The theory of partially ordered groups is taken from the books:
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    14
  \begin{itemize}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    15
  \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    16
  \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    17
  \end{itemize}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    18
  Most of the used notions can also be looked up in 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    19
  \begin{itemize}
14770
fe9504ba63d5 removed duplicate thms;
wenzelm
parents: 14754
diff changeset
    20
  \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    21
  \item \emph{Algebra I} by van der Waerden, Springer.
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    22
  \end{itemize}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    23
*}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    24
31902
862ae16a799d renamed NamedThmsFun to Named_Thms;
wenzelm
parents: 31034
diff changeset
    25
ML {*
34973
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    26
structure Algebra_Simps = Named_Thms(
31902
862ae16a799d renamed NamedThmsFun to Named_Thms;
wenzelm
parents: 31034
diff changeset
    27
  val name = "algebra_simps"
862ae16a799d renamed NamedThmsFun to Named_Thms;
wenzelm
parents: 31034
diff changeset
    28
  val description = "algebra simplification rules"
862ae16a799d renamed NamedThmsFun to Named_Thms;
wenzelm
parents: 31034
diff changeset
    29
)
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
    30
*}
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
    31
31902
862ae16a799d renamed NamedThmsFun to Named_Thms;
wenzelm
parents: 31034
diff changeset
    32
setup Algebra_Simps.setup
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
    33
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
    34
text{* The rewrites accumulated in @{text algebra_simps} deal with the
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
    35
classical algebraic structures of groups, rings and family. They simplify
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
    36
terms by multiplying everything out (in case of a ring) and bringing sums and
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
    37
products into a canonical form (by ordered rewriting). As a result it decides
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
    38
group and ring equalities but also helps with inequalities.
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
    39
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
    40
Of course it also works for fields, but it knows nothing about multiplicative
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
    41
inverses or division. This is catered for by @{text field_simps}. *}
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
    42
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
    43
subsection {* Semigroups and Monoids *}
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    44
22390
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
    45
class semigroup_add = plus +
34973
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    46
  assumes add_assoc [algebra_simps]: "(a + b) + c = a + (b + c)"
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    47
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    48
sublocale semigroup_add < plus!: semigroup plus proof
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    49
qed (fact add_assoc)
22390
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
    50
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
    51
class ab_semigroup_add = semigroup_add +
34973
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    52
  assumes add_commute [algebra_simps]: "a + b = b + a"
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    53
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    54
sublocale ab_semigroup_add < plus!: abel_semigroup plus proof
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    55
qed (fact add_commute)
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    56
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    57
context ab_semigroup_add
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    58
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    59
34973
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    60
lemmas add_left_commute [algebra_simps] = plus.left_commute
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    61
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    62
theorems add_ac = add_assoc add_commute add_left_commute
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    63
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    64
end
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    65
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    66
theorems add_ac = add_assoc add_commute add_left_commute
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    67
22390
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
    68
class semigroup_mult = times +
34973
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    69
  assumes mult_assoc [algebra_simps]: "(a * b) * c = a * (b * c)"
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    70
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    71
sublocale semigroup_mult < times!: semigroup times proof
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    72
qed (fact mult_assoc)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    73
22390
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
    74
class ab_semigroup_mult = semigroup_mult +
34973
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    75
  assumes mult_commute [algebra_simps]: "a * b = b * a"
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    76
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    77
sublocale ab_semigroup_mult < times!: abel_semigroup times proof
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    78
qed (fact mult_commute)
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    79
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    80
context ab_semigroup_mult
23181
f52b555f8141 localized
haftmann
parents: 23085
diff changeset
    81
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    82
34973
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    83
lemmas mult_left_commute [algebra_simps] = times.left_commute
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    84
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    85
theorems mult_ac = mult_assoc mult_commute mult_left_commute
23181
f52b555f8141 localized
haftmann
parents: 23085
diff changeset
    86
f52b555f8141 localized
haftmann
parents: 23085
diff changeset
    87
end
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    88
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    89
theorems mult_ac = mult_assoc mult_commute mult_left_commute
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
    90
26015
ad2756de580e idempotent semigroups
haftmann
parents: 25762
diff changeset
    91
class ab_semigroup_idem_mult = ab_semigroup_mult +
34973
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    92
  assumes mult_idem: "x * x = x"
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    93
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    94
sublocale ab_semigroup_idem_mult < times!: semilattice times proof
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    95
qed (fact mult_idem)
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    96
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
    97
context ab_semigroup_idem_mult
26015
ad2756de580e idempotent semigroups
haftmann
parents: 25762
diff changeset
    98
begin
ad2756de580e idempotent semigroups
haftmann
parents: 25762
diff changeset
    99
34973
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
   100
lemmas mult_left_idem = times.left_idem
26015
ad2756de580e idempotent semigroups
haftmann
parents: 25762
diff changeset
   101
ad2756de580e idempotent semigroups
haftmann
parents: 25762
diff changeset
   102
end
ad2756de580e idempotent semigroups
haftmann
parents: 25762
diff changeset
   103
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   104
class monoid_add = zero + semigroup_add +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   105
  assumes add_0_left [simp]: "0 + a = a"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   106
    and add_0_right [simp]: "a + 0 = a"
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   107
26071
046fe7ddfc4b moved *_reorient lemmas here
haftmann
parents: 26015
diff changeset
   108
lemma zero_reorient: "0 = x \<longleftrightarrow> x = 0"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   109
by (rule eq_commute)
26071
046fe7ddfc4b moved *_reorient lemmas here
haftmann
parents: 26015
diff changeset
   110
22390
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
   111
class comm_monoid_add = zero + ab_semigroup_add +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   112
  assumes add_0: "0 + a = a"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   113
begin
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   114
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   115
subclass monoid_add
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28262
diff changeset
   116
  proof qed (insert add_0, simp_all add: add_commute)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   117
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   118
end
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   119
22390
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
   120
class monoid_mult = one + semigroup_mult +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   121
  assumes mult_1_left [simp]: "1 * a  = a"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   122
  assumes mult_1_right [simp]: "a * 1 = a"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   123
26071
046fe7ddfc4b moved *_reorient lemmas here
haftmann
parents: 26015
diff changeset
   124
lemma one_reorient: "1 = x \<longleftrightarrow> x = 1"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   125
by (rule eq_commute)
26071
046fe7ddfc4b moved *_reorient lemmas here
haftmann
parents: 26015
diff changeset
   126
22390
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
   127
class comm_monoid_mult = one + ab_semigroup_mult +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   128
  assumes mult_1: "1 * a = a"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   129
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   130
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   131
subclass monoid_mult
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28262
diff changeset
   132
  proof qed (insert mult_1, simp_all add: mult_commute)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   133
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   134
end
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   135
22390
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
   136
class cancel_semigroup_add = semigroup_add +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   137
  assumes add_left_imp_eq: "a + b = a + c \<Longrightarrow> b = c"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   138
  assumes add_right_imp_eq: "b + a = c + a \<Longrightarrow> b = c"
27474
a89d755b029d move proofs of add_left_cancel and add_right_cancel into the correct locale
huffman
parents: 27250
diff changeset
   139
begin
a89d755b029d move proofs of add_left_cancel and add_right_cancel into the correct locale
huffman
parents: 27250
diff changeset
   140
a89d755b029d move proofs of add_left_cancel and add_right_cancel into the correct locale
huffman
parents: 27250
diff changeset
   141
lemma add_left_cancel [simp]:
a89d755b029d move proofs of add_left_cancel and add_right_cancel into the correct locale
huffman
parents: 27250
diff changeset
   142
  "a + b = a + c \<longleftrightarrow> b = c"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   143
by (blast dest: add_left_imp_eq)
27474
a89d755b029d move proofs of add_left_cancel and add_right_cancel into the correct locale
huffman
parents: 27250
diff changeset
   144
a89d755b029d move proofs of add_left_cancel and add_right_cancel into the correct locale
huffman
parents: 27250
diff changeset
   145
lemma add_right_cancel [simp]:
a89d755b029d move proofs of add_left_cancel and add_right_cancel into the correct locale
huffman
parents: 27250
diff changeset
   146
  "b + a = c + a \<longleftrightarrow> b = c"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   147
by (blast dest: add_right_imp_eq)
27474
a89d755b029d move proofs of add_left_cancel and add_right_cancel into the correct locale
huffman
parents: 27250
diff changeset
   148
a89d755b029d move proofs of add_left_cancel and add_right_cancel into the correct locale
huffman
parents: 27250
diff changeset
   149
end
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   150
22390
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
   151
class cancel_ab_semigroup_add = ab_semigroup_add +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   152
  assumes add_imp_eq: "a + b = a + c \<Longrightarrow> b = c"
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25230
diff changeset
   153
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   154
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25230
diff changeset
   155
subclass cancel_semigroup_add
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28262
diff changeset
   156
proof
22390
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
   157
  fix a b c :: 'a
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
   158
  assume "a + b = a + c" 
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
   159
  then show "b = c" by (rule add_imp_eq)
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
   160
next
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   161
  fix a b c :: 'a
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   162
  assume "b + a = c + a"
22390
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
   163
  then have "a + b = a + c" by (simp only: add_commute)
378f34b1e380 now using "class"
haftmann
parents: 21382
diff changeset
   164
  then show "b = c" by (rule add_imp_eq)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   165
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   166
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25230
diff changeset
   167
end
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25230
diff changeset
   168
29904
856f16a3b436 add class cancel_comm_monoid_add
huffman
parents: 29886
diff changeset
   169
class cancel_comm_monoid_add = cancel_ab_semigroup_add + comm_monoid_add
856f16a3b436 add class cancel_comm_monoid_add
huffman
parents: 29886
diff changeset
   170
856f16a3b436 add class cancel_comm_monoid_add
huffman
parents: 29886
diff changeset
   171
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   172
subsection {* Groups *}
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   173
25762
c03e9d04b3e4 splitted class uminus from class minus
haftmann
parents: 25613
diff changeset
   174
class group_add = minus + uminus + monoid_add +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   175
  assumes left_minus [simp]: "- a + a = 0"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   176
  assumes diff_minus: "a - b = a + (- b)"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   177
begin
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   178
34147
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   179
lemma minus_unique:
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   180
  assumes "a + b = 0" shows "- a = b"
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   181
proof -
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   182
  have "- a = - a + (a + b)" using assms by simp
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   183
  also have "\<dots> = b" by (simp add: add_assoc [symmetric])
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   184
  finally show ?thesis .
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   185
qed
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   186
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   187
lemmas equals_zero_I = minus_unique (* legacy name *)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   188
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   189
lemma minus_zero [simp]: "- 0 = 0"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   190
proof -
34147
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   191
  have "0 + 0 = 0" by (rule add_0_right)
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   192
  thus "- 0 = 0" by (rule minus_unique)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   193
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   194
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   195
lemma minus_minus [simp]: "- (- a) = a"
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   196
proof -
34147
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   197
  have "- a + a = 0" by (rule left_minus)
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   198
  thus "- (- a) = a" by (rule minus_unique)
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   199
qed
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   200
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   201
lemma right_minus [simp]: "a + - a = 0"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   202
proof -
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   203
  have "a + - a = - (- a) + - a" by simp
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   204
  also have "\<dots> = 0" by (rule left_minus)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   205
  finally show ?thesis .
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   206
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   207
34147
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   208
lemma minus_add_cancel: "- a + (a + b) = b"
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   209
by (simp add: add_assoc [symmetric])
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   210
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   211
lemma add_minus_cancel: "a + (- a + b) = b"
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   212
by (simp add: add_assoc [symmetric])
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   213
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   214
lemma minus_add: "- (a + b) = - b + - a"
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   215
proof -
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   216
  have "(a + b) + (- b + - a) = 0"
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   217
    by (simp add: add_assoc add_minus_cancel)
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   218
  thus "- (a + b) = - b + - a"
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   219
    by (rule minus_unique)
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   220
qed
319616f4eecf generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
huffman
parents: 34146
diff changeset
   221
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   222
lemma right_minus_eq: "a - b = 0 \<longleftrightarrow> a = b"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   223
proof
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   224
  assume "a - b = 0"
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   225
  have "a = (a - b) + b" by (simp add:diff_minus add_assoc)
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   226
  also have "\<dots> = b" using `a - b = 0` by simp
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   227
  finally show "a = b" .
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   228
next
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
   229
  assume "a = b" thus "a - b = 0" by (simp add: diff_minus)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   230
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   231
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   232
lemma diff_self [simp]: "a - a = 0"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   233
by (simp add: diff_minus)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   234
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   235
lemma diff_0 [simp]: "0 - a = - a"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   236
by (simp add: diff_minus)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   237
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   238
lemma diff_0_right [simp]: "a - 0 = a" 
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   239
by (simp add: diff_minus)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   240
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   241
lemma diff_minus_eq_add [simp]: "a - - b = a + b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   242
by (simp add: diff_minus)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   243
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   244
lemma neg_equal_iff_equal [simp]:
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   245
  "- a = - b \<longleftrightarrow> a = b" 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   246
proof 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   247
  assume "- a = - b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   248
  hence "- (- a) = - (- b)" by simp
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   249
  thus "a = b" by simp
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   250
next
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   251
  assume "a = b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   252
  thus "- a = - b" by simp
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   253
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   254
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   255
lemma neg_equal_0_iff_equal [simp]:
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   256
  "- a = 0 \<longleftrightarrow> a = 0"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   257
by (subst neg_equal_iff_equal [symmetric], simp)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   258
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   259
lemma neg_0_equal_iff_equal [simp]:
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   260
  "0 = - a \<longleftrightarrow> 0 = a"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   261
by (subst neg_equal_iff_equal [symmetric], simp)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   262
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   263
text{*The next two equations can make the simplifier loop!*}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   264
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   265
lemma equation_minus_iff:
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   266
  "a = - b \<longleftrightarrow> b = - a"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   267
proof -
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   268
  have "- (- a) = - b \<longleftrightarrow> - a = b" by (rule neg_equal_iff_equal)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   269
  thus ?thesis by (simp add: eq_commute)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   270
qed
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   271
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   272
lemma minus_equation_iff:
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   273
  "- a = b \<longleftrightarrow> - b = a"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   274
proof -
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   275
  have "- a = - (- b) \<longleftrightarrow> a = -b" by (rule neg_equal_iff_equal)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   276
  thus ?thesis by (simp add: eq_commute)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   277
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   278
28130
32b4185bfdc7 move diff_add_cancel, add_diff_cancel from class ab_group_add to group_add
huffman
parents: 27516
diff changeset
   279
lemma diff_add_cancel: "a - b + b = a"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   280
by (simp add: diff_minus add_assoc)
28130
32b4185bfdc7 move diff_add_cancel, add_diff_cancel from class ab_group_add to group_add
huffman
parents: 27516
diff changeset
   281
32b4185bfdc7 move diff_add_cancel, add_diff_cancel from class ab_group_add to group_add
huffman
parents: 27516
diff changeset
   282
lemma add_diff_cancel: "a + b - b = a"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   283
by (simp add: diff_minus add_assoc)
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   284
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   285
declare diff_minus[symmetric, algebra_simps]
28130
32b4185bfdc7 move diff_add_cancel, add_diff_cancel from class ab_group_add to group_add
huffman
parents: 27516
diff changeset
   286
29914
c9ced4f54e82 generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
huffman
parents: 29904
diff changeset
   287
lemma eq_neg_iff_add_eq_0: "a = - b \<longleftrightarrow> a + b = 0"
c9ced4f54e82 generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
huffman
parents: 29904
diff changeset
   288
proof
c9ced4f54e82 generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
huffman
parents: 29904
diff changeset
   289
  assume "a = - b" then show "a + b = 0" by simp
c9ced4f54e82 generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
huffman
parents: 29904
diff changeset
   290
next
c9ced4f54e82 generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
huffman
parents: 29904
diff changeset
   291
  assume "a + b = 0"
c9ced4f54e82 generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
huffman
parents: 29904
diff changeset
   292
  moreover have "a + (b + - b) = (a + b) + - b"
c9ced4f54e82 generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
huffman
parents: 29904
diff changeset
   293
    by (simp only: add_assoc)
c9ced4f54e82 generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
huffman
parents: 29904
diff changeset
   294
  ultimately show "a = - b" by simp
c9ced4f54e82 generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
huffman
parents: 29904
diff changeset
   295
qed
c9ced4f54e82 generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
huffman
parents: 29904
diff changeset
   296
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   297
end
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   298
25762
c03e9d04b3e4 splitted class uminus from class minus
haftmann
parents: 25613
diff changeset
   299
class ab_group_add = minus + uminus + comm_monoid_add +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   300
  assumes ab_left_minus: "- a + a = 0"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   301
  assumes ab_diff_minus: "a - b = a + (- b)"
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25230
diff changeset
   302
begin
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   303
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25230
diff changeset
   304
subclass group_add
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28262
diff changeset
   305
  proof qed (simp_all add: ab_left_minus ab_diff_minus)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   306
29904
856f16a3b436 add class cancel_comm_monoid_add
huffman
parents: 29886
diff changeset
   307
subclass cancel_comm_monoid_add
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28262
diff changeset
   308
proof
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   309
  fix a b c :: 'a
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   310
  assume "a + b = a + c"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   311
  then have "- a + a + b = - a + a + c"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   312
    unfolding add_assoc by simp
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   313
  then show "b = c" by simp
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   314
qed
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   315
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   316
lemma uminus_add_conv_diff[algebra_simps]:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   317
  "- a + b = b - a"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   318
by (simp add:diff_minus add_commute)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   319
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   320
lemma minus_add_distrib [simp]:
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   321
  "- (a + b) = - a + - b"
34146
14595e0c27e8 rename equals_zero_I to minus_unique (keep old name too)
huffman
parents: 33364
diff changeset
   322
by (rule minus_unique) (simp add: add_ac)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   323
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   324
lemma minus_diff_eq [simp]:
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   325
  "- (a - b) = b - a"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   326
by (simp add: diff_minus add_commute)
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   327
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   328
lemma add_diff_eq[algebra_simps]: "a + (b - c) = (a + b) - c"
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   329
by (simp add: diff_minus add_ac)
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   330
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   331
lemma diff_add_eq[algebra_simps]: "(a - b) + c = (a + c) - b"
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   332
by (simp add: diff_minus add_ac)
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   333
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   334
lemma diff_eq_eq[algebra_simps]: "a - b = c \<longleftrightarrow> a = c + b"
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   335
by (auto simp add: diff_minus add_assoc)
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   336
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   337
lemma eq_diff_eq[algebra_simps]: "a = c - b \<longleftrightarrow> a + b = c"
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   338
by (auto simp add: diff_minus add_assoc)
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   339
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   340
lemma diff_diff_eq[algebra_simps]: "(a - b) - c = a - (b + c)"
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   341
by (simp add: diff_minus add_ac)
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   342
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   343
lemma diff_diff_eq2[algebra_simps]: "a - (b - c) = (a + c) - b"
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   344
by (simp add: diff_minus add_ac)
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   345
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   346
lemma eq_iff_diff_eq_0: "a = b \<longleftrightarrow> a - b = 0"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   347
by (simp add: algebra_simps)
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   348
30629
5cd9b19edef3 move diff_eq_0_iff_eq into class locale context
huffman
parents: 29914
diff changeset
   349
lemma diff_eq_0_iff_eq [simp, noatp]: "a - b = 0 \<longleftrightarrow> a = b"
5cd9b19edef3 move diff_eq_0_iff_eq into class locale context
huffman
parents: 29914
diff changeset
   350
by (simp add: algebra_simps)
5cd9b19edef3 move diff_eq_0_iff_eq into class locale context
huffman
parents: 29914
diff changeset
   351
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   352
end
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   353
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   354
subsection {* (Partially) Ordered Groups *} 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   355
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
   356
class ordered_ab_semigroup_add = order + ab_semigroup_add +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   357
  assumes add_left_mono: "a \<le> b \<Longrightarrow> c + a \<le> c + b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   358
begin
24380
c215e256beca moved ordered_ab_semigroup_add to OrderedGroup.thy
haftmann
parents: 24286
diff changeset
   359
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   360
lemma add_right_mono:
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   361
  "a \<le> b \<Longrightarrow> a + c \<le> b + c"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   362
by (simp add: add_commute [of _ c] add_left_mono)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   363
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   364
text {* non-strict, in both arguments *}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   365
lemma add_mono:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   366
  "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c \<le> b + d"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   367
  apply (erule add_right_mono [THEN order_trans])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   368
  apply (simp add: add_commute add_left_mono)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   369
  done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   370
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   371
end
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   372
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
   373
class ordered_cancel_ab_semigroup_add =
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
   374
  ordered_ab_semigroup_add + cancel_ab_semigroup_add
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   375
begin
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   376
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   377
lemma add_strict_left_mono:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   378
  "a < b \<Longrightarrow> c + a < c + b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   379
by (auto simp add: less_le add_left_mono)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   380
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   381
lemma add_strict_right_mono:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   382
  "a < b \<Longrightarrow> a + c < b + c"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   383
by (simp add: add_commute [of _ c] add_strict_left_mono)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   384
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   385
text{*Strict monotonicity in both arguments*}
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   386
lemma add_strict_mono:
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   387
  "a < b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   388
apply (erule add_strict_right_mono [THEN less_trans])
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   389
apply (erule add_strict_left_mono)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   390
done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   391
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   392
lemma add_less_le_mono:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   393
  "a < b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c < b + d"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   394
apply (erule add_strict_right_mono [THEN less_le_trans])
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   395
apply (erule add_left_mono)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   396
done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   397
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   398
lemma add_le_less_mono:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   399
  "a \<le> b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   400
apply (erule add_right_mono [THEN le_less_trans])
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   401
apply (erule add_strict_left_mono) 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   402
done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   403
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   404
end
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   405
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
   406
class ordered_ab_semigroup_add_imp_le =
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
   407
  ordered_cancel_ab_semigroup_add +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   408
  assumes add_le_imp_le_left: "c + a \<le> c + b \<Longrightarrow> a \<le> b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   409
begin
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   410
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   411
lemma add_less_imp_less_left:
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   412
  assumes less: "c + a < c + b" shows "a < b"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   413
proof -
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   414
  from less have le: "c + a <= c + b" by (simp add: order_le_less)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   415
  have "a <= b" 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   416
    apply (insert le)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   417
    apply (drule add_le_imp_le_left)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   418
    by (insert le, drule add_le_imp_le_left, assumption)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   419
  moreover have "a \<noteq> b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   420
  proof (rule ccontr)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   421
    assume "~(a \<noteq> b)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   422
    then have "a = b" by simp
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   423
    then have "c + a = c + b" by simp
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   424
    with less show "False"by simp
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   425
  qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   426
  ultimately show "a < b" by (simp add: order_le_less)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   427
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   428
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   429
lemma add_less_imp_less_right:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   430
  "a + c < b + c \<Longrightarrow> a < b"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   431
apply (rule add_less_imp_less_left [of c])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   432
apply (simp add: add_commute)  
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   433
done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   434
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   435
lemma add_less_cancel_left [simp]:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   436
  "c + a < c + b \<longleftrightarrow> a < b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   437
by (blast intro: add_less_imp_less_left add_strict_left_mono) 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   438
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   439
lemma add_less_cancel_right [simp]:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   440
  "a + c < b + c \<longleftrightarrow> a < b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   441
by (blast intro: add_less_imp_less_right add_strict_right_mono)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   442
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   443
lemma add_le_cancel_left [simp]:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   444
  "c + a \<le> c + b \<longleftrightarrow> a \<le> b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   445
by (auto, drule add_le_imp_le_left, simp_all add: add_left_mono) 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   446
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   447
lemma add_le_cancel_right [simp]:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   448
  "a + c \<le> b + c \<longleftrightarrow> a \<le> b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   449
by (simp add: add_commute [of a c] add_commute [of b c])
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   450
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   451
lemma add_le_imp_le_right:
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   452
  "a + c \<le> b + c \<Longrightarrow> a \<le> b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   453
by simp
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   454
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   455
lemma max_add_distrib_left:
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   456
  "max x y + z = max (x + z) (y + z)"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   457
  unfolding max_def by auto
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   458
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   459
lemma min_add_distrib_left:
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   460
  "min x y + z = min (x + z) (y + z)"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   461
  unfolding min_def by auto
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   462
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   463
end
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   464
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   465
subsection {* Support for reasoning about signs *}
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   466
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
   467
class ordered_comm_monoid_add =
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
   468
  ordered_cancel_ab_semigroup_add + comm_monoid_add
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   469
begin
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   470
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   471
lemma add_pos_nonneg:
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   472
  assumes "0 < a" and "0 \<le> b" shows "0 < a + b"
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   473
proof -
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   474
  have "0 + 0 < a + b" 
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   475
    using assms by (rule add_less_le_mono)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   476
  then show ?thesis by simp
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   477
qed
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   478
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   479
lemma add_pos_pos:
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   480
  assumes "0 < a" and "0 < b" shows "0 < a + b"
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   481
by (rule add_pos_nonneg) (insert assms, auto)
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   482
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   483
lemma add_nonneg_pos:
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   484
  assumes "0 \<le> a" and "0 < b" shows "0 < a + b"
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   485
proof -
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   486
  have "0 + 0 < a + b" 
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   487
    using assms by (rule add_le_less_mono)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   488
  then show ?thesis by simp
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   489
qed
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   490
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   491
lemma add_nonneg_nonneg:
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   492
  assumes "0 \<le> a" and "0 \<le> b" shows "0 \<le> a + b"
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   493
proof -
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   494
  have "0 + 0 \<le> a + b" 
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   495
    using assms by (rule add_mono)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   496
  then show ?thesis by simp
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   497
qed
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   498
30691
0047f57f6669 lemmas add_sign_intros
huffman
parents: 30629
diff changeset
   499
lemma add_neg_nonpos:
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   500
  assumes "a < 0" and "b \<le> 0" shows "a + b < 0"
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   501
proof -
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   502
  have "a + b < 0 + 0"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   503
    using assms by (rule add_less_le_mono)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   504
  then show ?thesis by simp
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   505
qed
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   506
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   507
lemma add_neg_neg: 
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   508
  assumes "a < 0" and "b < 0" shows "a + b < 0"
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   509
by (rule add_neg_nonpos) (insert assms, auto)
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   510
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   511
lemma add_nonpos_neg:
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   512
  assumes "a \<le> 0" and "b < 0" shows "a + b < 0"
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   513
proof -
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   514
  have "a + b < 0 + 0"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   515
    using assms by (rule add_le_less_mono)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   516
  then show ?thesis by simp
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   517
qed
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   518
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   519
lemma add_nonpos_nonpos:
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   520
  assumes "a \<le> 0" and "b \<le> 0" shows "a + b \<le> 0"
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   521
proof -
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   522
  have "a + b \<le> 0 + 0"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   523
    using assms by (rule add_mono)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   524
  then show ?thesis by simp
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   525
qed
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   526
30691
0047f57f6669 lemmas add_sign_intros
huffman
parents: 30629
diff changeset
   527
lemmas add_sign_intros =
0047f57f6669 lemmas add_sign_intros
huffman
parents: 30629
diff changeset
   528
  add_pos_nonneg add_pos_pos add_nonneg_pos add_nonneg_nonneg
0047f57f6669 lemmas add_sign_intros
huffman
parents: 30629
diff changeset
   529
  add_neg_nonpos add_neg_neg add_nonpos_neg add_nonpos_nonpos
0047f57f6669 lemmas add_sign_intros
huffman
parents: 30629
diff changeset
   530
29886
b8a6b9c56fdd add lemma add_nonneg_eq_0_iff
huffman
parents: 29833
diff changeset
   531
lemma add_nonneg_eq_0_iff:
b8a6b9c56fdd add lemma add_nonneg_eq_0_iff
huffman
parents: 29833
diff changeset
   532
  assumes x: "0 \<le> x" and y: "0 \<le> y"
b8a6b9c56fdd add lemma add_nonneg_eq_0_iff
huffman
parents: 29833
diff changeset
   533
  shows "x + y = 0 \<longleftrightarrow> x = 0 \<and> y = 0"
b8a6b9c56fdd add lemma add_nonneg_eq_0_iff
huffman
parents: 29833
diff changeset
   534
proof (intro iffI conjI)
b8a6b9c56fdd add lemma add_nonneg_eq_0_iff
huffman
parents: 29833
diff changeset
   535
  have "x = x + 0" by simp
b8a6b9c56fdd add lemma add_nonneg_eq_0_iff
huffman
parents: 29833
diff changeset
   536
  also have "x + 0 \<le> x + y" using y by (rule add_left_mono)
b8a6b9c56fdd add lemma add_nonneg_eq_0_iff
huffman
parents: 29833
diff changeset
   537
  also assume "x + y = 0"
b8a6b9c56fdd add lemma add_nonneg_eq_0_iff
huffman
parents: 29833
diff changeset
   538
  also have "0 \<le> x" using x .
b8a6b9c56fdd add lemma add_nonneg_eq_0_iff
huffman
parents: 29833
diff changeset
   539
  finally show "x = 0" .
b8a6b9c56fdd add lemma add_nonneg_eq_0_iff
huffman
parents: 29833
diff changeset
   540
next
b8a6b9c56fdd add lemma add_nonneg_eq_0_iff
huffman
parents: 29833
diff changeset
   541
  have "y = 0 + y" by simp
b8a6b9c56fdd add lemma add_nonneg_eq_0_iff
huffman
parents: 29833
diff changeset
   542
  also have "0 + y \<le> x + y" using x by (rule add_right_mono)
b8a6b9c56fdd add lemma add_nonneg_eq_0_iff
huffman
parents: 29833
diff changeset
   543
  also assume "x + y = 0"
b8a6b9c56fdd add lemma add_nonneg_eq_0_iff
huffman
parents: 29833
diff changeset
   544
  also have "0 \<le> y" using y .
b8a6b9c56fdd add lemma add_nonneg_eq_0_iff
huffman
parents: 29833
diff changeset
   545
  finally show "y = 0" .
b8a6b9c56fdd add lemma add_nonneg_eq_0_iff
huffman
parents: 29833
diff changeset
   546
next
b8a6b9c56fdd add lemma add_nonneg_eq_0_iff
huffman
parents: 29833
diff changeset
   547
  assume "x = 0 \<and> y = 0"
b8a6b9c56fdd add lemma add_nonneg_eq_0_iff
huffman
parents: 29833
diff changeset
   548
  then show "x + y = 0" by simp
b8a6b9c56fdd add lemma add_nonneg_eq_0_iff
huffman
parents: 29833
diff changeset
   549
qed
b8a6b9c56fdd add lemma add_nonneg_eq_0_iff
huffman
parents: 29833
diff changeset
   550
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   551
end
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   552
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
   553
class ordered_ab_group_add =
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
   554
  ab_group_add + ordered_ab_semigroup_add
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   555
begin
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   556
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
   557
subclass ordered_cancel_ab_semigroup_add ..
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   558
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
   559
subclass ordered_ab_semigroup_add_imp_le
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28262
diff changeset
   560
proof
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   561
  fix a b c :: 'a
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   562
  assume "c + a \<le> c + b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   563
  hence "(-c) + (c + a) \<le> (-c) + (c + b)" by (rule add_left_mono)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   564
  hence "((-c) + c) + a \<le> ((-c) + c) + b" by (simp only: add_assoc)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   565
  thus "a \<le> b" by simp
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   566
qed
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   567
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
   568
subclass ordered_comm_monoid_add ..
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   569
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   570
lemma max_diff_distrib_left:
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   571
  shows "max x y - z = max (x - z) (y - z)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   572
by (simp add: diff_minus, rule max_add_distrib_left) 
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   573
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   574
lemma min_diff_distrib_left:
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   575
  shows "min x y - z = min (x - z) (y - z)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   576
by (simp add: diff_minus, rule min_add_distrib_left) 
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   577
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   578
lemma le_imp_neg_le:
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   579
  assumes "a \<le> b" shows "-b \<le> -a"
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   580
proof -
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   581
  have "-a+a \<le> -a+b" using `a \<le> b` by (rule add_left_mono) 
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   582
  hence "0 \<le> -a+b" by simp
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   583
  hence "0 + (-b) \<le> (-a + b) + (-b)" by (rule add_right_mono) 
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   584
  thus ?thesis by (simp add: add_assoc)
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   585
qed
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   586
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   587
lemma neg_le_iff_le [simp]: "- b \<le> - a \<longleftrightarrow> a \<le> b"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   588
proof 
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   589
  assume "- b \<le> - a"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   590
  hence "- (- a) \<le> - (- b)" by (rule le_imp_neg_le)
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   591
  thus "a\<le>b" by simp
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   592
next
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   593
  assume "a\<le>b"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   594
  thus "-b \<le> -a" by (rule le_imp_neg_le)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   595
qed
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   596
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   597
lemma neg_le_0_iff_le [simp]: "- a \<le> 0 \<longleftrightarrow> 0 \<le> a"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   598
by (subst neg_le_iff_le [symmetric], simp)
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   599
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   600
lemma neg_0_le_iff_le [simp]: "0 \<le> - a \<longleftrightarrow> a \<le> 0"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   601
by (subst neg_le_iff_le [symmetric], simp)
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   602
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   603
lemma neg_less_iff_less [simp]: "- b < - a \<longleftrightarrow> a < b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   604
by (force simp add: less_le) 
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   605
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   606
lemma neg_less_0_iff_less [simp]: "- a < 0 \<longleftrightarrow> 0 < a"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   607
by (subst neg_less_iff_less [symmetric], simp)
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   608
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   609
lemma neg_0_less_iff_less [simp]: "0 < - a \<longleftrightarrow> a < 0"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   610
by (subst neg_less_iff_less [symmetric], simp)
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   611
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   612
text{*The next several equations can make the simplifier loop!*}
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   613
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   614
lemma less_minus_iff: "a < - b \<longleftrightarrow> b < - a"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   615
proof -
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   616
  have "(- (-a) < - b) = (b < - a)" by (rule neg_less_iff_less)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   617
  thus ?thesis by simp
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   618
qed
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   619
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   620
lemma minus_less_iff: "- a < b \<longleftrightarrow> - b < a"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   621
proof -
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   622
  have "(- a < - (-b)) = (- b < a)" by (rule neg_less_iff_less)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   623
  thus ?thesis by simp
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   624
qed
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   625
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   626
lemma le_minus_iff: "a \<le> - b \<longleftrightarrow> b \<le> - a"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   627
proof -
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   628
  have mm: "!! a (b::'a). (-(-a)) < -b \<Longrightarrow> -(-b) < -a" by (simp only: minus_less_iff)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   629
  have "(- (- a) <= -b) = (b <= - a)" 
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   630
    apply (auto simp only: le_less)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   631
    apply (drule mm)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   632
    apply (simp_all)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   633
    apply (drule mm[simplified], assumption)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   634
    done
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   635
  then show ?thesis by simp
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   636
qed
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   637
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   638
lemma minus_le_iff: "- a \<le> b \<longleftrightarrow> - b \<le> a"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   639
by (auto simp add: le_less minus_less_iff)
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   640
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   641
lemma less_iff_diff_less_0: "a < b \<longleftrightarrow> a - b < 0"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   642
proof -
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   643
  have  "(a < b) = (a + (- b) < b + (-b))"  
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   644
    by (simp only: add_less_cancel_right)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   645
  also have "... =  (a - b < 0)" by (simp add: diff_minus)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   646
  finally show ?thesis .
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   647
qed
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   648
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   649
lemma diff_less_eq[algebra_simps]: "a - b < c \<longleftrightarrow> a < c + b"
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   650
apply (subst less_iff_diff_less_0 [of a])
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   651
apply (rule less_iff_diff_less_0 [of _ c, THEN ssubst])
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   652
apply (simp add: diff_minus add_ac)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   653
done
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   654
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   655
lemma less_diff_eq[algebra_simps]: "a < c - b \<longleftrightarrow> a + b < c"
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   656
apply (subst less_iff_diff_less_0 [of "plus a b"])
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   657
apply (subst less_iff_diff_less_0 [of a])
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   658
apply (simp add: diff_minus add_ac)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   659
done
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   660
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   661
lemma diff_le_eq[algebra_simps]: "a - b \<le> c \<longleftrightarrow> a \<le> c + b"
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   662
by (auto simp add: le_less diff_less_eq diff_add_cancel add_diff_cancel)
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   663
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   664
lemma le_diff_eq[algebra_simps]: "a \<le> c - b \<longleftrightarrow> a + b \<le> c"
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   665
by (auto simp add: le_less less_diff_eq diff_add_cancel add_diff_cancel)
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   666
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   667
lemma le_iff_diff_le_0: "a \<le> b \<longleftrightarrow> a - b \<le> 0"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   668
by (simp add: algebra_simps)
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   669
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   670
text{*Legacy - use @{text algebra_simps} *}
29833
409138c4de12 added noatps
nipkow
parents: 29670
diff changeset
   671
lemmas group_simps[noatp] = algebra_simps
25230
022029099a83 continued localization
haftmann
parents: 25194
diff changeset
   672
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   673
end
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   674
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   675
text{*Legacy - use @{text algebra_simps} *}
29833
409138c4de12 added noatps
nipkow
parents: 29670
diff changeset
   676
lemmas group_simps[noatp] = algebra_simps
25230
022029099a83 continued localization
haftmann
parents: 25194
diff changeset
   677
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
   678
class linordered_ab_semigroup_add =
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
   679
  linorder + ordered_ab_semigroup_add
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   680
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
   681
class linordered_cancel_ab_semigroup_add =
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
   682
  linorder + ordered_cancel_ab_semigroup_add
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25230
diff changeset
   683
begin
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   684
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
   685
subclass linordered_ab_semigroup_add ..
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   686
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
   687
subclass ordered_ab_semigroup_add_imp_le
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28262
diff changeset
   688
proof
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   689
  fix a b c :: 'a
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   690
  assume le: "c + a <= c + b"  
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   691
  show "a <= b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   692
  proof (rule ccontr)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   693
    assume w: "~ a \<le> b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   694
    hence "b <= a" by (simp add: linorder_not_le)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   695
    hence le2: "c + b <= c + a" by (rule add_left_mono)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   696
    have "a = b" 
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   697
      apply (insert le)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   698
      apply (insert le2)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   699
      apply (drule antisym, simp_all)
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   700
      done
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   701
    with w show False 
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   702
      by (simp add: linorder_not_le [symmetric])
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   703
  qed
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   704
qed
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   705
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25230
diff changeset
   706
end
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25230
diff changeset
   707
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
   708
class linordered_ab_group_add = linorder + ordered_ab_group_add
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25230
diff changeset
   709
begin
25230
022029099a83 continued localization
haftmann
parents: 25194
diff changeset
   710
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
   711
subclass linordered_cancel_ab_semigroup_add ..
25230
022029099a83 continued localization
haftmann
parents: 25194
diff changeset
   712
35036
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   713
lemma neg_less_eq_nonneg [simp]:
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   714
  "- a \<le> a \<longleftrightarrow> 0 \<le> a"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   715
proof
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   716
  assume A: "- a \<le> a" show "0 \<le> a"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   717
  proof (rule classical)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   718
    assume "\<not> 0 \<le> a"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   719
    then have "a < 0" by auto
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   720
    with A have "- a < 0" by (rule le_less_trans)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   721
    then show ?thesis by auto
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   722
  qed
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   723
next
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   724
  assume A: "0 \<le> a" show "- a \<le> a"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   725
  proof (rule order_trans)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   726
    show "- a \<le> 0" using A by (simp add: minus_le_iff)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   727
  next
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   728
    show "0 \<le> a" using A .
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   729
  qed
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   730
qed
35036
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   731
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   732
lemma neg_less_nonneg [simp]:
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   733
  "- a < a \<longleftrightarrow> 0 < a"
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   734
proof
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   735
  assume A: "- a < a" show "0 < a"
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   736
  proof (rule classical)
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   737
    assume "\<not> 0 < a"
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   738
    then have "a \<le> 0" by auto
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   739
    with A have "- a < 0" by (rule less_le_trans)
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   740
    then show ?thesis by auto
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   741
  qed
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   742
next
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   743
  assume A: "0 < a" show "- a < a"
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   744
  proof (rule less_trans)
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   745
    show "- a < 0" using A by (simp add: minus_le_iff)
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   746
  next
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   747
    show "0 < a" using A .
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   748
  qed
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   749
qed
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   750
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   751
lemma less_eq_neg_nonpos [simp]:
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   752
  "a \<le> - a \<longleftrightarrow> a \<le> 0"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   753
proof
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   754
  assume A: "a \<le> - a" show "a \<le> 0"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   755
  proof (rule classical)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   756
    assume "\<not> a \<le> 0"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   757
    then have "0 < a" by auto
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   758
    then have "0 < - a" using A by (rule less_le_trans)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   759
    then show ?thesis by auto
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   760
  qed
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   761
next
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   762
  assume A: "a \<le> 0" show "a \<le> - a"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   763
  proof (rule order_trans)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   764
    show "0 \<le> - a" using A by (simp add: minus_le_iff)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   765
  next
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   766
    show "a \<le> 0" using A .
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   767
  qed
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   768
qed
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   769
35036
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   770
lemma equal_neg_zero [simp]:
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   771
  "a = - a \<longleftrightarrow> a = 0"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   772
proof
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   773
  assume "a = 0" then show "a = - a" by simp
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   774
next
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   775
  assume A: "a = - a" show "a = 0"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   776
  proof (cases "0 \<le> a")
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   777
    case True with A have "0 \<le> - a" by auto
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   778
    with le_minus_iff have "a \<le> 0" by simp
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   779
    with True show ?thesis by (auto intro: order_trans)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   780
  next
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   781
    case False then have B: "a \<le> 0" by auto
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   782
    with A have "- a \<le> 0" by auto
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   783
    with B show ?thesis by (auto intro: order_trans)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   784
  qed
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   785
qed
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   786
35036
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   787
lemma neg_equal_zero [simp]:
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   788
  "- a = a \<longleftrightarrow> a = 0"
35036
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   789
  by (auto dest: sym)
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   790
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   791
lemma double_zero [simp]:
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   792
  "a + a = 0 \<longleftrightarrow> a = 0"
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   793
proof
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   794
  assume assm: "a + a = 0"
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   795
  then have a: "- a = a" by (rule minus_unique)
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   796
  then show "a = 0" by (simp add: neg_equal_zero)
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   797
qed simp
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   798
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   799
lemma double_zero_sym [simp]:
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   800
  "0 = a + a \<longleftrightarrow> a = 0"
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   801
  by (rule, drule sym) simp_all
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   802
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   803
lemma zero_less_double_add_iff_zero_less_single_add [simp]:
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   804
  "0 < a + a \<longleftrightarrow> 0 < a"
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   805
proof
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   806
  assume "0 < a + a"
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   807
  then have "0 - a < a" by (simp only: diff_less_eq)
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   808
  then have "- a < a" by simp
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   809
  then show "0 < a" by (simp add: neg_less_nonneg)
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   810
next
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   811
  assume "0 < a"
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   812
  with this have "0 + 0 < a + a"
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   813
    by (rule add_strict_mono)
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   814
  then show "0 < a + a" by simp
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   815
qed
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   816
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   817
lemma zero_le_double_add_iff_zero_le_single_add [simp]:
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   818
  "0 \<le> a + a \<longleftrightarrow> 0 \<le> a"
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   819
  by (auto simp add: le_less)
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   820
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   821
lemma double_add_less_zero_iff_single_add_less_zero [simp]:
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   822
  "a + a < 0 \<longleftrightarrow> a < 0"
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   823
proof -
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   824
  have "\<not> a + a < 0 \<longleftrightarrow> \<not> a < 0"
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   825
    by (simp add: not_less)
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   826
  then show ?thesis by simp
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   827
qed
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   828
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   829
lemma double_add_le_zero_iff_single_add_le_zero [simp]:
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   830
  "a + a \<le> 0 \<longleftrightarrow> a \<le> 0" 
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   831
proof -
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   832
  have "\<not> a + a \<le> 0 \<longleftrightarrow> \<not> a \<le> 0"
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   833
    by (simp add: not_le)
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   834
  then show ?thesis by simp
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   835
qed
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   836
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   837
lemma le_minus_self_iff:
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   838
  "a \<le> - a \<longleftrightarrow> a \<le> 0"
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   839
proof -
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   840
  from add_le_cancel_left [of "- a" "a + a" 0]
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   841
  have "a \<le> - a \<longleftrightarrow> a + a \<le> 0" 
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   842
    by (simp add: add_assoc [symmetric])
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   843
  thus ?thesis by simp
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   844
qed
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   845
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   846
lemma minus_le_self_iff:
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   847
  "- a \<le> a \<longleftrightarrow> 0 \<le> a"
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   848
proof -
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   849
  from add_le_cancel_left [of "- a" 0 "a + a"]
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   850
  have "- a \<le> a \<longleftrightarrow> 0 \<le> a + a" 
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   851
    by (simp add: add_assoc [symmetric])
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   852
  thus ?thesis by simp
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   853
qed
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   854
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   855
lemma minus_max_eq_min:
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   856
  "- max x y = min (-x) (-y)"
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   857
  by (auto simp add: max_def min_def)
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   858
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   859
lemma minus_min_eq_max:
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   860
  "- min x y = max (-x) (-y)"
b8c8d01cc20d separate library theory for type classes combining lattices with various algebraic structures; more simp rules
haftmann
parents: 35028
diff changeset
   861
  by (auto simp add: max_def min_def)
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   862
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25230
diff changeset
   863
end
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25230
diff changeset
   864
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
   865
-- {* FIXME localize the following *}
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   866
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   867
lemma add_increasing:
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
   868
  fixes c :: "'a::{ordered_ab_semigroup_add_imp_le, comm_monoid_add}"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   869
  shows  "[|0\<le>a; b\<le>c|] ==> b \<le> a + c"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   870
by (insert add_mono [of 0 a b c], simp)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   871
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15481
diff changeset
   872
lemma add_increasing2:
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
   873
  fixes c :: "'a::{ordered_ab_semigroup_add_imp_le, comm_monoid_add}"
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15481
diff changeset
   874
  shows  "[|0\<le>c; b\<le>a|] ==> b \<le> a + c"
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15481
diff changeset
   875
by (simp add:add_increasing add_commute[of a])
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15481
diff changeset
   876
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   877
lemma add_strict_increasing:
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
   878
  fixes c :: "'a::{ordered_ab_semigroup_add_imp_le, comm_monoid_add}"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   879
  shows "[|0<a; b\<le>c|] ==> b < a + c"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   880
by (insert add_less_le_mono [of 0 a b c], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   881
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   882
lemma add_strict_increasing2:
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
   883
  fixes c :: "'a::{ordered_ab_semigroup_add_imp_le, comm_monoid_add}"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   884
  shows "[|0\<le>a; b<c|] ==> b < a + c"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   885
by (insert add_le_less_mono [of 0 a b c], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   886
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
   887
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
   888
class ordered_ab_group_add_abs = ordered_ab_group_add + abs +
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   889
  assumes abs_ge_zero [simp]: "\<bar>a\<bar> \<ge> 0"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   890
    and abs_ge_self: "a \<le> \<bar>a\<bar>"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   891
    and abs_leI: "a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   892
    and abs_minus_cancel [simp]: "\<bar>-a\<bar> = \<bar>a\<bar>"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   893
    and abs_triangle_ineq: "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   894
begin
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   895
25307
389902f0a0c8 simplified specification of *_abs class
haftmann
parents: 25303
diff changeset
   896
lemma abs_minus_le_zero: "- \<bar>a\<bar> \<le> 0"
389902f0a0c8 simplified specification of *_abs class
haftmann
parents: 25303
diff changeset
   897
  unfolding neg_le_0_iff_le by simp
389902f0a0c8 simplified specification of *_abs class
haftmann
parents: 25303
diff changeset
   898
389902f0a0c8 simplified specification of *_abs class
haftmann
parents: 25303
diff changeset
   899
lemma abs_of_nonneg [simp]:
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   900
  assumes nonneg: "0 \<le> a" shows "\<bar>a\<bar> = a"
25307
389902f0a0c8 simplified specification of *_abs class
haftmann
parents: 25303
diff changeset
   901
proof (rule antisym)
389902f0a0c8 simplified specification of *_abs class
haftmann
parents: 25303
diff changeset
   902
  from nonneg le_imp_neg_le have "- a \<le> 0" by simp
389902f0a0c8 simplified specification of *_abs class
haftmann
parents: 25303
diff changeset
   903
  from this nonneg have "- a \<le> a" by (rule order_trans)
389902f0a0c8 simplified specification of *_abs class
haftmann
parents: 25303
diff changeset
   904
  then show "\<bar>a\<bar> \<le> a" by (auto intro: abs_leI)
389902f0a0c8 simplified specification of *_abs class
haftmann
parents: 25303
diff changeset
   905
qed (rule abs_ge_self)
389902f0a0c8 simplified specification of *_abs class
haftmann
parents: 25303
diff changeset
   906
389902f0a0c8 simplified specification of *_abs class
haftmann
parents: 25303
diff changeset
   907
lemma abs_idempotent [simp]: "\<bar>\<bar>a\<bar>\<bar> = \<bar>a\<bar>"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   908
by (rule antisym)
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   909
   (auto intro!: abs_ge_self abs_leI order_trans [of "uminus (abs a)" zero "abs a"])
25307
389902f0a0c8 simplified specification of *_abs class
haftmann
parents: 25303
diff changeset
   910
389902f0a0c8 simplified specification of *_abs class
haftmann
parents: 25303
diff changeset
   911
lemma abs_eq_0 [simp]: "\<bar>a\<bar> = 0 \<longleftrightarrow> a = 0"
389902f0a0c8 simplified specification of *_abs class
haftmann
parents: 25303
diff changeset
   912
proof -
389902f0a0c8 simplified specification of *_abs class
haftmann
parents: 25303
diff changeset
   913
  have "\<bar>a\<bar> = 0 \<Longrightarrow> a = 0"
389902f0a0c8 simplified specification of *_abs class
haftmann
parents: 25303
diff changeset
   914
  proof (rule antisym)
389902f0a0c8 simplified specification of *_abs class
haftmann
parents: 25303
diff changeset
   915
    assume zero: "\<bar>a\<bar> = 0"
389902f0a0c8 simplified specification of *_abs class
haftmann
parents: 25303
diff changeset
   916
    with abs_ge_self show "a \<le> 0" by auto
389902f0a0c8 simplified specification of *_abs class
haftmann
parents: 25303
diff changeset
   917
    from zero have "\<bar>-a\<bar> = 0" by simp
389902f0a0c8 simplified specification of *_abs class
haftmann
parents: 25303
diff changeset
   918
    with abs_ge_self [of "uminus a"] have "- a \<le> 0" by auto
389902f0a0c8 simplified specification of *_abs class
haftmann
parents: 25303
diff changeset
   919
    with neg_le_0_iff_le show "0 \<le> a" by auto
389902f0a0c8 simplified specification of *_abs class
haftmann
parents: 25303
diff changeset
   920
  qed
389902f0a0c8 simplified specification of *_abs class
haftmann
parents: 25303
diff changeset
   921
  then show ?thesis by auto
389902f0a0c8 simplified specification of *_abs class
haftmann
parents: 25303
diff changeset
   922
qed
389902f0a0c8 simplified specification of *_abs class
haftmann
parents: 25303
diff changeset
   923
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   924
lemma abs_zero [simp]: "\<bar>0\<bar> = 0"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   925
by simp
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   926
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   927
lemma abs_0_eq [simp, noatp]: "0 = \<bar>a\<bar> \<longleftrightarrow> a = 0"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   928
proof -
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   929
  have "0 = \<bar>a\<bar> \<longleftrightarrow> \<bar>a\<bar> = 0" by (simp only: eq_ac)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   930
  thus ?thesis by simp
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   931
qed
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   932
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   933
lemma abs_le_zero_iff [simp]: "\<bar>a\<bar> \<le> 0 \<longleftrightarrow> a = 0" 
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   934
proof
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   935
  assume "\<bar>a\<bar> \<le> 0"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   936
  then have "\<bar>a\<bar> = 0" by (rule antisym) simp
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   937
  thus "a = 0" by simp
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   938
next
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   939
  assume "a = 0"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   940
  thus "\<bar>a\<bar> \<le> 0" by simp
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   941
qed
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   942
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   943
lemma zero_less_abs_iff [simp]: "0 < \<bar>a\<bar> \<longleftrightarrow> a \<noteq> 0"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   944
by (simp add: less_le)
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   945
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   946
lemma abs_not_less_zero [simp]: "\<not> \<bar>a\<bar> < 0"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   947
proof -
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   948
  have a: "\<And>x y. x \<le> y \<Longrightarrow> \<not> y < x" by auto
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   949
  show ?thesis by (simp add: a)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   950
qed
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   951
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   952
lemma abs_ge_minus_self: "- a \<le> \<bar>a\<bar>"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   953
proof -
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   954
  have "- a \<le> \<bar>-a\<bar>" by (rule abs_ge_self)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   955
  then show ?thesis by simp
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   956
qed
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   957
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   958
lemma abs_minus_commute: 
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   959
  "\<bar>a - b\<bar> = \<bar>b - a\<bar>"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   960
proof -
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   961
  have "\<bar>a - b\<bar> = \<bar>- (a - b)\<bar>" by (simp only: abs_minus_cancel)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   962
  also have "... = \<bar>b - a\<bar>" by simp
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   963
  finally show ?thesis .
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   964
qed
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   965
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   966
lemma abs_of_pos: "0 < a \<Longrightarrow> \<bar>a\<bar> = a"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   967
by (rule abs_of_nonneg, rule less_imp_le)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   968
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   969
lemma abs_of_nonpos [simp]:
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   970
  assumes "a \<le> 0" shows "\<bar>a\<bar> = - a"
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   971
proof -
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   972
  let ?b = "- a"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   973
  have "- ?b \<le> 0 \<Longrightarrow> \<bar>- ?b\<bar> = - (- ?b)"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   974
  unfolding abs_minus_cancel [of "?b"]
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   975
  unfolding neg_le_0_iff_le [of "?b"]
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   976
  unfolding minus_minus by (erule abs_of_nonneg)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   977
  then show ?thesis using assms by auto
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   978
qed
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   979
  
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   980
lemma abs_of_neg: "a < 0 \<Longrightarrow> \<bar>a\<bar> = - a"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   981
by (rule abs_of_nonpos, rule less_imp_le)
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   982
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   983
lemma abs_le_D1: "\<bar>a\<bar> \<le> b \<Longrightarrow> a \<le> b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   984
by (insert abs_ge_self, blast intro: order_trans)
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   985
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   986
lemma abs_le_D2: "\<bar>a\<bar> \<le> b \<Longrightarrow> - a \<le> b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   987
by (insert abs_le_D1 [of "uminus a"], simp)
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   988
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   989
lemma abs_le_iff: "\<bar>a\<bar> \<le> b \<longleftrightarrow> a \<le> b \<and> - a \<le> b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   990
by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2)
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   991
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   992
lemma abs_triangle_ineq2: "\<bar>a\<bar> - \<bar>b\<bar> \<le> \<bar>a - b\<bar>"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   993
  apply (simp add: algebra_simps)
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   994
  apply (subgoal_tac "abs a = abs (plus b (minus a b))")
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   995
  apply (erule ssubst)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
   996
  apply (rule abs_triangle_ineq)
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   997
  apply (rule arg_cong[of _ _ abs])
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
   998
  apply (simp add: algebra_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
   999
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1000
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1001
lemma abs_triangle_ineq3: "\<bar>\<bar>a\<bar> - \<bar>b\<bar>\<bar> \<le> \<bar>a - b\<bar>"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1002
  apply (subst abs_le_iff)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1003
  apply auto
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1004
  apply (rule abs_triangle_ineq2)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1005
  apply (subst abs_minus_commute)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1006
  apply (rule abs_triangle_ineq2)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1007
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1008
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1009
lemma abs_triangle_ineq4: "\<bar>a - b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1010
proof -
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
  1011
  have "abs(a - b) = abs(a + - b)" by (subst diff_minus, rule refl)
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
  1012
  also have "... <= abs a + abs (- b)" by (rule abs_triangle_ineq)
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29269
diff changeset
  1013
  finally show ?thesis by simp
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1014
qed
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1015
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1016
lemma abs_diff_triangle_ineq: "\<bar>a + b - (c + d)\<bar> \<le> \<bar>a - c\<bar> + \<bar>b - d\<bar>"
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1017
proof -
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1018
  have "\<bar>a + b - (c+d)\<bar> = \<bar>(a-c) + (b-d)\<bar>" by (simp add: diff_minus add_ac)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1019
  also have "... \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" by (rule abs_triangle_ineq)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1020
  finally show ?thesis .
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1021
qed
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16417
diff changeset
  1022
25303
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1023
lemma abs_add_abs [simp]:
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1024
  "\<bar>\<bar>a\<bar> + \<bar>b\<bar>\<bar> = \<bar>a\<bar> + \<bar>b\<bar>" (is "?L = ?R")
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1025
proof (rule antisym)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1026
  show "?L \<ge> ?R" by(rule abs_ge_self)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1027
next
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1028
  have "?L \<le> \<bar>\<bar>a\<bar>\<bar> + \<bar>\<bar>b\<bar>\<bar>" by(rule abs_triangle_ineq)
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1029
  also have "\<dots> = ?R" by simp
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1030
  finally show "?L \<le> ?R" .
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1031
qed
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1032
0699e20feabd renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents: 25267
diff changeset
  1033
end
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1034
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1035
text {* Needed for abelian cancellation simprocs: *}
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1036
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1037
lemma add_cancel_21: "((x::'a::ab_group_add) + (y + z) = y + u) = (x + z = u)"
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1038
apply (subst add_left_commute)
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1039
apply (subst add_left_cancel)
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1040
apply simp
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1041
done
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1042
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1043
lemma add_cancel_end: "(x + (y + z) = y) = (x = - (z::'a::ab_group_add))"
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1044
apply (subst add_cancel_21[of _ _ _ 0, simplified])
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1045
apply (simp add: add_right_cancel[symmetric, of "x" "-z" "z", simplified])
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1046
done
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1047
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
  1048
lemma less_eqI: "(x::'a::ordered_ab_group_add) - y = x' - y' \<Longrightarrow> (x < y) = (x' < y')"
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1049
by (simp add: less_iff_diff_less_0[of x y] less_iff_diff_less_0[of x' y'])
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1050
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
  1051
lemma le_eqI: "(x::'a::ordered_ab_group_add) - y = x' - y' \<Longrightarrow> (y <= x) = (y' <= x')"
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1052
apply (simp add: le_iff_diff_le_0[of y x] le_iff_diff_le_0[of  y' x'])
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1053
apply (simp add: neg_le_iff_le[symmetric, of "y-x" 0] neg_le_iff_le[symmetric, of "y'-x'" 0])
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1054
done
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1055
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1056
lemma eq_eqI: "(x::'a::ab_group_add) - y = x' - y' \<Longrightarrow> (x = y) = (x' = y')"
30629
5cd9b19edef3 move diff_eq_0_iff_eq into class locale context
huffman
parents: 29914
diff changeset
  1057
by (simp only: eq_iff_diff_eq_0[of x y] eq_iff_diff_eq_0[of x' y'])
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1058
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1059
lemma diff_def: "(x::'a::ab_group_add) - y == x + (-y)"
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1060
by (simp add: diff_minus)
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1061
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1062
lemma le_add_right_mono: 
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1063
  assumes 
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
  1064
  "a <= b + (c::'a::ordered_ab_group_add)"
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1065
  "c <= d"    
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1066
  shows "a <= b + d"
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1067
  apply (rule_tac order_trans[where y = "b+c"])
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1068
  apply (simp_all add: prems)
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1069
  done
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1070
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  1071
25090
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1072
subsection {* Tools setup *}
4a50b958391a 98% localized
haftmann
parents: 25077
diff changeset
  1073
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
  1074
lemma add_mono_thms_linordered_semiring [noatp]:
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
  1075
  fixes i j k :: "'a\<Colon>ordered_ab_semigroup_add"
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1076
  shows "i \<le> j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1077
    and "i = j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1078
    and "i \<le> j \<and> k = l \<Longrightarrow> i + k \<le> j + l"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1079
    and "i = j \<and> k = l \<Longrightarrow> i + k = j + l"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1080
by (rule add_mono, clarify+)+
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1081
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
  1082
lemma add_mono_thms_linordered_field [noatp]:
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34973
diff changeset
  1083
  fixes i j k :: "'a\<Colon>ordered_cancel_ab_semigroup_add"
25077
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1084
  shows "i < j \<and> k = l \<Longrightarrow> i + k < j + l"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1085
    and "i = j \<and> k < l \<Longrightarrow> i + k < j + l"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1086
    and "i < j \<and> k \<le> l \<Longrightarrow> i + k < j + l"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1087
    and "i \<le> j \<and> k < l \<Longrightarrow> i + k < j + l"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1088
    and "i < j \<and> k < l \<Longrightarrow> i + k < j + l"
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1089
by (auto intro: add_strict_right_mono add_strict_left_mono
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1090
  add_less_le_mono add_le_less_mono add_strict_mono)
c2ec5e589d78 continued localization
haftmann
parents: 25062
diff changeset
  1091
17085
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1092
text{*Simplification of @{term "x-y < 0"}, etc.*}
29833
409138c4de12 added noatps
nipkow
parents: 29670
diff changeset
  1093
lemmas diff_less_0_iff_less [simp, noatp] = less_iff_diff_less_0 [symmetric]
409138c4de12 added noatps
nipkow
parents: 29670
diff changeset
  1094
lemmas diff_le_0_iff_le [simp, noatp] = le_iff_diff_le_0 [symmetric]
17085
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1095
22482
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1096
ML {*
27250
7eef2b183032 simplified Abel_Cancel setup;
wenzelm
parents: 26480
diff changeset
  1097
structure ab_group_add_cancel = Abel_Cancel
7eef2b183032 simplified Abel_Cancel setup;
wenzelm
parents: 26480
diff changeset
  1098
(
22482
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1099
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1100
(* term order for abelian groups *)
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1101
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1102
fun agrp_ord (Const (a, _)) = find_index (fn a' => a = a')
34973
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
  1103
      [@{const_name Algebras.zero}, @{const_name Algebras.plus},
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
  1104
        @{const_name Algebras.uminus}, @{const_name Algebras.minus}]
22482
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1105
  | agrp_ord _ = ~1;
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1106
29269
5c25a2012975 moved term order operations to structure TermOrd (cf. Pure/term_ord.ML);
wenzelm
parents: 28823
diff changeset
  1107
fun termless_agrp (a, b) = (TermOrd.term_lpo agrp_ord (a, b) = LESS);
22482
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1108
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1109
local
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1110
  val ac1 = mk_meta_eq @{thm add_assoc};
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1111
  val ac2 = mk_meta_eq @{thm add_commute};
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1112
  val ac3 = mk_meta_eq @{thm add_left_commute};
34973
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
  1113
  fun solve_add_ac thy _ (_ $ (Const (@{const_name Algebras.plus},_) $ _ $ _) $ _) =
22482
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1114
        SOME ac1
34973
ae634fad947e dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents: 34147
diff changeset
  1115
    | solve_add_ac thy _ (_ $ x $ (Const (@{const_name Algebras.plus},_) $ y $ z)) =
22482
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1116
        if termless_agrp (y, x) then SOME ac3 else NONE
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1117
    | solve_add_ac thy _ (_ $ x $ y) =
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1118
        if termless_agrp (y, x) then SOME ac2 else NONE
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1119
    | solve_add_ac thy _ _ = NONE
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1120
in
32010
cb1a1c94b4cd more antiquotations;
wenzelm
parents: 31902
diff changeset
  1121
  val add_ac_proc = Simplifier.simproc @{theory}
22482
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1122
    "add_ac_proc" ["x + y::'a::ab_semigroup_add"] solve_add_ac;
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1123
end;
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1124
27250
7eef2b183032 simplified Abel_Cancel setup;
wenzelm
parents: 26480
diff changeset
  1125
val eq_reflection = @{thm eq_reflection};
7eef2b183032 simplified Abel_Cancel setup;
wenzelm
parents: 26480
diff changeset
  1126
  
7eef2b183032 simplified Abel_Cancel setup;
wenzelm
parents: 26480
diff changeset
  1127
val T = @{typ "'a::ab_group_add"};
7eef2b183032 simplified Abel_Cancel setup;
wenzelm
parents: 26480
diff changeset
  1128
22482
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1129
val cancel_ss = HOL_basic_ss settermless termless_agrp
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1130
  addsimprocs [add_ac_proc] addsimps
23085
fd30d75a6614 Introduced new classes monoid_add and group_add
nipkow
parents: 22997
diff changeset
  1131
  [@{thm add_0_left}, @{thm add_0_right}, @{thm diff_def},
22482
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1132
   @{thm minus_add_distrib}, @{thm minus_minus}, @{thm minus_zero},
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1133
   @{thm right_minus}, @{thm left_minus}, @{thm add_minus_cancel},
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1134
   @{thm minus_add_cancel}];
27250
7eef2b183032 simplified Abel_Cancel setup;
wenzelm
parents: 26480
diff changeset
  1135
7eef2b183032 simplified Abel_Cancel setup;
wenzelm
parents: 26480
diff changeset
  1136
val sum_pats = [@{cterm "x + y::'a::ab_group_add"}, @{cterm "x - y::'a::ab_group_add"}];
22482
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1137
  
22548
6ce4bddf3bcb dropped legacy ML bindings
haftmann
parents: 22482
diff changeset
  1138
val eqI_rules = [@{thm less_eqI}, @{thm le_eqI}, @{thm eq_eqI}];
22482
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1139
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1140
val dest_eqI = 
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1141
  fst o HOLogic.dest_bin "op =" HOLogic.boolT o HOLogic.dest_Trueprop o concl_of;
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1142
27250
7eef2b183032 simplified Abel_Cancel setup;
wenzelm
parents: 26480
diff changeset
  1143
);
22482
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1144
*}
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1145
26480
544cef16045b replaced 'ML_setup' by 'ML';
wenzelm
parents: 26071
diff changeset
  1146
ML {*
22482
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1147
  Addsimprocs [ab_group_add_cancel.sum_conv, ab_group_add_cancel.rel_conv];
8fc3d7237e03 dropped OrderedGroup.ML
haftmann
parents: 22452
diff changeset
  1148
*}
17085
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1149
33364
2bd12592c5e8 tuned code setup
haftmann
parents: 32642
diff changeset
  1150
code_modulename SML
2bd12592c5e8 tuned code setup
haftmann
parents: 32642
diff changeset
  1151
  OrderedGroup Arith
2bd12592c5e8 tuned code setup
haftmann
parents: 32642
diff changeset
  1152
2bd12592c5e8 tuned code setup
haftmann
parents: 32642
diff changeset
  1153
code_modulename OCaml
2bd12592c5e8 tuned code setup
haftmann
parents: 32642
diff changeset
  1154
  OrderedGroup Arith
2bd12592c5e8 tuned code setup
haftmann
parents: 32642
diff changeset
  1155
2bd12592c5e8 tuned code setup
haftmann
parents: 32642
diff changeset
  1156
code_modulename Haskell
2bd12592c5e8 tuned code setup
haftmann
parents: 32642
diff changeset
  1157
  OrderedGroup Arith
2bd12592c5e8 tuned code setup
haftmann
parents: 32642
diff changeset
  1158
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents:
diff changeset
  1159
end