| author | paulson | 
| Thu, 06 Feb 2003 11:01:05 +0100 | |
| changeset 13807 | a28a8fbc76d4 | 
| parent 13615 | 449a70d88b38 | 
| child 15481 | fc075ae929e4 | 
| permissions | -rw-r--r-- | 
| 9578 
ab26d6c8ebfe
new theory Integ/IntDiv and many more monotonicity laws, etc., for the integers
 paulson parents: diff
changeset | 1 | (* Title: ZF/IntDiv.thy | 
| 
ab26d6c8ebfe
new theory Integ/IntDiv and many more monotonicity laws, etc., for the integers
 paulson parents: diff
changeset | 2 | ID: $Id$ | 
| 
ab26d6c8ebfe
new theory Integ/IntDiv and many more monotonicity laws, etc., for the integers
 paulson parents: diff
changeset | 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 
ab26d6c8ebfe
new theory Integ/IntDiv and many more monotonicity laws, etc., for the integers
 paulson parents: diff
changeset | 4 | Copyright 1999 University of Cambridge | 
| 
ab26d6c8ebfe
new theory Integ/IntDiv and many more monotonicity laws, etc., for the integers
 paulson parents: diff
changeset | 5 | |
| 13520 | 6 | Here is the division algorithm in ML: | 
| 7 | ||
| 8 | fun posDivAlg (a,b) = | |
| 9 | if a<b then (0,a) | |
| 10 | else let val (q,r) = posDivAlg(a, 2*b) | |
| 11 | in if 0<=r-b then (2*q+1, r-b) else (2*q, r) | |
| 12 | end | |
| 13 | ||
| 14 | fun negDivAlg (a,b) = | |
| 15 | if 0<=a+b then (~1,a+b) | |
| 16 | else let val (q,r) = negDivAlg(a, 2*b) | |
| 17 | in if 0<=r-b then (2*q+1, r-b) else (2*q, r) | |
| 18 | end; | |
| 19 | ||
| 20 | fun negateSnd (q,r:int) = (q,~r); | |
| 21 | ||
| 22 | fun divAlg (a,b) = if 0<=a then | |
| 23 | if b>0 then posDivAlg (a,b) | |
| 24 | else if a=0 then (0,0) | |
| 25 | else negateSnd (negDivAlg (~a,~b)) | |
| 26 | else | |
| 27 | if 0<b then negDivAlg (a,b) | |
| 28 | else negateSnd (posDivAlg (~a,~b)); | |
| 29 | ||
| 9578 
ab26d6c8ebfe
new theory Integ/IntDiv and many more monotonicity laws, etc., for the integers
 paulson parents: diff
changeset | 30 | *) | 
| 
ab26d6c8ebfe
new theory Integ/IntDiv and many more monotonicity laws, etc., for the integers
 paulson parents: diff
changeset | 31 | |
| 13560 | 32 | header{*The Division Operators Div and Mod*}
 | 
| 33 | ||
| 13520 | 34 | theory IntDiv = IntArith + OrderArith: | 
| 9578 
ab26d6c8ebfe
new theory Integ/IntDiv and many more monotonicity laws, etc., for the integers
 paulson parents: diff
changeset | 35 | |
| 
ab26d6c8ebfe
new theory Integ/IntDiv and many more monotonicity laws, etc., for the integers
 paulson parents: diff
changeset | 36 | constdefs | 
| 
ab26d6c8ebfe
new theory Integ/IntDiv and many more monotonicity laws, etc., for the integers
 paulson parents: diff
changeset | 37 | quorem :: "[i,i] => o" | 
| 
ab26d6c8ebfe
new theory Integ/IntDiv and many more monotonicity laws, etc., for the integers
 paulson parents: diff
changeset | 38 | "quorem == %<a,b> <q,r>. | 
| 
ab26d6c8ebfe
new theory Integ/IntDiv and many more monotonicity laws, etc., for the integers
 paulson parents: diff
changeset | 39 | a = b$*q $+ r & | 
| 
ab26d6c8ebfe
new theory Integ/IntDiv and many more monotonicity laws, etc., for the integers
 paulson parents: diff
changeset | 40 | (#0$<b & #0$<=r & r$<b | ~(#0$<b) & b$<r & r $<= #0)" | 
| 
ab26d6c8ebfe
new theory Integ/IntDiv and many more monotonicity laws, etc., for the integers
 paulson parents: diff
changeset | 41 | |
| 11871 
0493188cff42
deleted the redundant first argument of adjust(a,b)
 paulson parents: 
11321diff
changeset | 42 | adjust :: "[i,i] => i" | 
| 
0493188cff42
deleted the redundant first argument of adjust(a,b)
 paulson parents: 
11321diff
changeset | 43 | "adjust(b) == %<q,r>. if #0 $<= r$-b then <#2$*q $+ #1,r$-b> | 
| 
0493188cff42
deleted the redundant first argument of adjust(a,b)
 paulson parents: 
11321diff
changeset | 44 | else <#2$*q,r>" | 
| 9578 
ab26d6c8ebfe
new theory Integ/IntDiv and many more monotonicity laws, etc., for the integers
 paulson parents: diff
changeset | 45 | |
| 
ab26d6c8ebfe
new theory Integ/IntDiv and many more monotonicity laws, etc., for the integers
 paulson parents: diff
changeset | 46 | |
| 9955 | 47 | (** the division algorithm **) | 
| 48 | ||
| 49 | constdefs posDivAlg :: "i => i" | |
| 50 | (*for the case a>=0, b>0*) | |
| 51 | (*recdef posDivAlg "inv_image less_than (%(a,b). nat_of(a $- b $+ #1))"*) | |
| 52 | "posDivAlg(ab) == | |
| 53 | wfrec(measure(int*int, %<a,b>. nat_of (a $- b $+ #1)), | |
| 54 | ab, | |
| 55 | %<a,b> f. if (a$<b | b$<=#0) then <#0,a> | |
| 11871 
0493188cff42
deleted the redundant first argument of adjust(a,b)
 paulson parents: 
11321diff
changeset | 56 | else adjust(b, f ` <a,#2$*b>))" | 
| 9955 | 57 | |
| 11321 | 58 | |
| 59 | (*for the case a<0, b>0*) | |
| 60 | constdefs negDivAlg :: "i => i" | |
| 61 | (*recdef negDivAlg "inv_image less_than (%(a,b). nat_of(- a $- b))"*) | |
| 62 | "negDivAlg(ab) == | |
| 63 | wfrec(measure(int*int, %<a,b>. nat_of ($- a $- b)), | |
| 64 | ab, | |
| 65 | %<a,b> f. if (#0 $<= a$+b | b$<=#0) then <#-1,a$+b> | |
| 11871 
0493188cff42
deleted the redundant first argument of adjust(a,b)
 paulson parents: 
11321diff
changeset | 66 | else adjust(b, f ` <a,#2$*b>))" | 
| 11321 | 67 | |
| 13520 | 68 | (*for the general case b\<noteq>0*) | 
| 11321 | 69 | |
| 70 | constdefs | |
| 71 | negateSnd :: "i => i" | |
| 72 | "negateSnd == %<q,r>. <q, $-r>" | |
| 73 | ||
| 74 | (*The full division algorithm considers all possible signs for a, b | |
| 75 | including the special case a=0, b<0, because negDivAlg requires a<0*) | |
| 76 | divAlg :: "i => i" | |
| 77 | "divAlg == | |
| 78 | %<a,b>. if #0 $<= a then | |
| 79 | if #0 $<= b then posDivAlg (<a,b>) | |
| 80 | else if a=#0 then <#0,#0> | |
| 81 | else negateSnd (negDivAlg (<$-a,$-b>)) | |
| 82 | else | |
| 83 | if #0$<b then negDivAlg (<a,b>) | |
| 84 | else negateSnd (posDivAlg (<$-a,$-b>))" | |
| 85 | ||
| 13520 | 86 | zdiv :: "[i,i]=>i" (infixl "zdiv" 70) | 
| 11321 | 87 | "a zdiv b == fst (divAlg (<intify(a), intify(b)>))" | 
| 88 | ||
| 13520 | 89 | zmod :: "[i,i]=>i" (infixl "zmod" 70) | 
| 11321 | 90 | "a zmod b == snd (divAlg (<intify(a), intify(b)>))" | 
| 9955 | 91 | |
| 13520 | 92 | |
| 93 | (** Some basic laws by Sidi Ehmety (need linear arithmetic!) **) | |
| 94 | ||
| 95 | lemma zspos_add_zspos_imp_zspos: "[| #0 $< x; #0 $< y |] ==> #0 $< x $+ y" | |
| 96 | apply (rule_tac y = "y" in zless_trans) | |
| 97 | apply (rule_tac [2] zdiff_zless_iff [THEN iffD1]) | |
| 98 | apply auto | |
| 99 | done | |
| 100 | ||
| 101 | lemma zpos_add_zpos_imp_zpos: "[| #0 $<= x; #0 $<= y |] ==> #0 $<= x $+ y" | |
| 102 | apply (rule_tac y = "y" in zle_trans) | |
| 103 | apply (rule_tac [2] zdiff_zle_iff [THEN iffD1]) | |
| 104 | apply auto | |
| 105 | done | |
| 106 | ||
| 107 | lemma zneg_add_zneg_imp_zneg: "[| x $< #0; y $< #0 |] ==> x $+ y $< #0" | |
| 108 | apply (rule_tac y = "y" in zless_trans) | |
| 109 | apply (rule zless_zdiff_iff [THEN iffD1]) | |
| 110 | apply auto | |
| 111 | done | |
| 112 | ||
| 113 | (* this theorem is used below *) | |
| 114 | lemma zneg_or_0_add_zneg_or_0_imp_zneg_or_0: | |
| 115 | "[| x $<= #0; y $<= #0 |] ==> x $+ y $<= #0" | |
| 116 | apply (rule_tac y = "y" in zle_trans) | |
| 117 | apply (rule zle_zdiff_iff [THEN iffD1]) | |
| 118 | apply auto | |
| 119 | done | |
| 120 | ||
| 121 | lemma zero_lt_zmagnitude: "[| #0 $< k; k \<in> int |] ==> 0 < zmagnitude(k)" | |
| 122 | apply (drule zero_zless_imp_znegative_zminus) | |
| 123 | apply (drule_tac [2] zneg_int_of) | |
| 124 | apply (auto simp add: zminus_equation [of k]) | |
| 125 | apply (subgoal_tac "0 < zmagnitude ($# succ (n))") | |
| 126 | apply simp | |
| 127 | apply (simp only: zmagnitude_int_of) | |
| 128 | apply simp | |
| 129 | done | |
| 130 | ||
| 131 | ||
| 132 | (*** Inequality lemmas involving $#succ(m) ***) | |
| 133 | ||
| 134 | lemma zless_add_succ_iff: | |
| 135 | "(w $< z $+ $# succ(m)) <-> (w $< z $+ $#m | intify(w) = z $+ $#m)" | |
| 136 | apply (auto simp add: zless_iff_succ_zadd zadd_assoc int_of_add [symmetric]) | |
| 137 | apply (rule_tac [3] x = "0" in bexI) | |
| 138 | apply (cut_tac m = "m" in int_succ_int_1) | |
| 139 | apply (cut_tac m = "n" in int_succ_int_1) | |
| 140 | apply simp | |
| 141 | apply (erule natE) | |
| 142 | apply auto | |
| 143 | apply (rule_tac x = "succ (n) " in bexI) | |
| 144 | apply auto | |
| 145 | done | |
| 146 | ||
| 147 | lemma zadd_succ_lemma: | |
| 148 | "z \<in> int ==> (w $+ $# succ(m) $<= z) <-> (w $+ $#m $< z)" | |
| 149 | apply (simp only: not_zless_iff_zle [THEN iff_sym] zless_add_succ_iff) | |
| 150 | apply (auto intro: zle_anti_sym elim: zless_asym | |
| 151 | simp add: zless_imp_zle not_zless_iff_zle) | |
| 152 | done | |
| 153 | ||
| 154 | lemma zadd_succ_zle_iff: "(w $+ $# succ(m) $<= z) <-> (w $+ $#m $< z)" | |
| 155 | apply (cut_tac z = "intify (z)" in zadd_succ_lemma) | |
| 156 | apply auto | |
| 157 | done | |
| 158 | ||
| 159 | (** Inequality reasoning **) | |
| 160 | ||
| 161 | lemma zless_add1_iff_zle: "(w $< z $+ #1) <-> (w$<=z)" | |
| 162 | apply (subgoal_tac "#1 = $# 1") | |
| 163 | apply (simp only: zless_add_succ_iff zle_def) | |
| 164 | apply auto | |
| 165 | done | |
| 166 | ||
| 167 | lemma add1_zle_iff: "(w $+ #1 $<= z) <-> (w $< z)" | |
| 168 | apply (subgoal_tac "#1 = $# 1") | |
| 169 | apply (simp only: zadd_succ_zle_iff) | |
| 170 | apply auto | |
| 171 | done | |
| 172 | ||
| 173 | lemma add1_left_zle_iff: "(#1 $+ w $<= z) <-> (w $< z)" | |
| 174 | apply (subst zadd_commute) | |
| 175 | apply (rule add1_zle_iff) | |
| 176 | done | |
| 177 | ||
| 178 | ||
| 179 | (*** Monotonicity of Multiplication ***) | |
| 180 | ||
| 181 | lemma zmult_mono_lemma: "k \<in> nat ==> i $<= j ==> i $* $#k $<= j $* $#k" | |
| 182 | apply (induct_tac "k") | |
| 183 | prefer 2 apply (subst int_succ_int_1) | |
| 184 | apply (simp_all (no_asm_simp) add: zadd_zmult_distrib2 zadd_zle_mono) | |
| 185 | done | |
| 186 | ||
| 187 | lemma zmult_zle_mono1: "[| i $<= j; #0 $<= k |] ==> i$*k $<= j$*k" | |
| 188 | apply (subgoal_tac "i $* intify (k) $<= j $* intify (k) ") | |
| 189 | apply (simp (no_asm_use)) | |
| 190 | apply (rule_tac b = "intify (k)" in not_zneg_mag [THEN subst]) | |
| 191 | apply (rule_tac [3] zmult_mono_lemma) | |
| 192 | apply auto | |
| 193 | apply (simp add: znegative_iff_zless_0 not_zless_iff_zle [THEN iff_sym]) | |
| 194 | done | |
| 195 | ||
| 196 | lemma zmult_zle_mono1_neg: "[| i $<= j; k $<= #0 |] ==> j$*k $<= i$*k" | |
| 197 | apply (rule zminus_zle_zminus [THEN iffD1]) | |
| 198 | apply (simp del: zmult_zminus_right | |
| 199 | add: zmult_zminus_right [symmetric] zmult_zle_mono1 zle_zminus) | |
| 200 | done | |
| 201 | ||
| 202 | lemma zmult_zle_mono2: "[| i $<= j; #0 $<= k |] ==> k$*i $<= k$*j" | |
| 203 | apply (drule zmult_zle_mono1) | |
| 204 | apply (simp_all add: zmult_commute) | |
| 205 | done | |
| 206 | ||
| 207 | lemma zmult_zle_mono2_neg: "[| i $<= j; k $<= #0 |] ==> k$*j $<= k$*i" | |
| 208 | apply (drule zmult_zle_mono1_neg) | |
| 209 | apply (simp_all add: zmult_commute) | |
| 210 | done | |
| 211 | ||
| 212 | (* $<= monotonicity, BOTH arguments*) | |
| 213 | lemma zmult_zle_mono: | |
| 214 | "[| i $<= j; k $<= l; #0 $<= j; #0 $<= k |] ==> i$*k $<= j$*l" | |
| 215 | apply (erule zmult_zle_mono1 [THEN zle_trans]) | |
| 216 | apply assumption | |
| 217 | apply (erule zmult_zle_mono2) | |
| 218 | apply assumption | |
| 219 | done | |
| 220 | ||
| 221 | ||
| 222 | (** strict, in 1st argument; proof is by induction on k>0 **) | |
| 223 | ||
| 224 | lemma zmult_zless_mono2_lemma [rule_format]: | |
| 225 | "[| i$<j; k \<in> nat |] ==> 0<k --> $#k $* i $< $#k $* j" | |
| 226 | apply (induct_tac "k") | |
| 227 | prefer 2 | |
| 228 | apply (subst int_succ_int_1) | |
| 229 | apply (erule natE) | |
| 230 | apply (simp_all add: zadd_zmult_distrib zadd_zless_mono zle_def) | |
| 231 | apply (frule nat_0_le) | |
| 232 | apply (subgoal_tac "i $+ (i $+ $# xa $* i) $< j $+ (j $+ $# xa $* j) ") | |
| 233 | apply (simp (no_asm_use)) | |
| 234 | apply (rule zadd_zless_mono) | |
| 235 | apply (simp_all (no_asm_simp) add: zle_def) | |
| 236 | done | |
| 237 | ||
| 238 | lemma zmult_zless_mono2: "[| i$<j; #0 $< k |] ==> k$*i $< k$*j" | |
| 239 | apply (subgoal_tac "intify (k) $* i $< intify (k) $* j") | |
| 240 | apply (simp (no_asm_use)) | |
| 241 | apply (rule_tac b = "intify (k)" in not_zneg_mag [THEN subst]) | |
| 242 | apply (rule_tac [3] zmult_zless_mono2_lemma) | |
| 243 | apply auto | |
| 244 | apply (simp add: znegative_iff_zless_0) | |
| 245 | apply (drule zless_trans, assumption) | |
| 246 | apply (auto simp add: zero_lt_zmagnitude) | |
| 247 | done | |
| 248 | ||
| 249 | lemma zmult_zless_mono1: "[| i$<j; #0 $< k |] ==> i$*k $< j$*k" | |
| 250 | apply (drule zmult_zless_mono2) | |
| 251 | apply (simp_all add: zmult_commute) | |
| 252 | done | |
| 253 | ||
| 254 | (* < monotonicity, BOTH arguments*) | |
| 255 | lemma zmult_zless_mono: | |
| 256 | "[| i $< j; k $< l; #0 $< j; #0 $< k |] ==> i$*k $< j$*l" | |
| 257 | apply (erule zmult_zless_mono1 [THEN zless_trans]) | |
| 258 | apply assumption | |
| 259 | apply (erule zmult_zless_mono2) | |
| 260 | apply assumption | |
| 261 | done | |
| 262 | ||
| 263 | lemma zmult_zless_mono1_neg: "[| i $< j; k $< #0 |] ==> j$*k $< i$*k" | |
| 264 | apply (rule zminus_zless_zminus [THEN iffD1]) | |
| 265 | apply (simp del: zmult_zminus_right | |
| 266 | add: zmult_zminus_right [symmetric] zmult_zless_mono1 zless_zminus) | |
| 267 | done | |
| 268 | ||
| 269 | lemma zmult_zless_mono2_neg: "[| i $< j; k $< #0 |] ==> k$*j $< k$*i" | |
| 270 | apply (rule zminus_zless_zminus [THEN iffD1]) | |
| 271 | apply (simp del: zmult_zminus | |
| 272 | add: zmult_zminus [symmetric] zmult_zless_mono2 zless_zminus) | |
| 273 | done | |
| 274 | ||
| 275 | ||
| 276 | (** Products of zeroes **) | |
| 277 | ||
| 278 | lemma zmult_eq_lemma: | |
| 279 | "[| m \<in> int; n \<in> int |] ==> (m = #0 | n = #0) <-> (m$*n = #0)" | |
| 280 | apply (case_tac "m $< #0") | |
| 281 | apply (auto simp add: not_zless_iff_zle zle_def neq_iff_zless) | |
| 282 | apply (force dest: zmult_zless_mono1_neg zmult_zless_mono1)+ | |
| 283 | done | |
| 284 | ||
| 285 | lemma zmult_eq_0_iff [iff]: "(m$*n = #0) <-> (intify(m) = #0 | intify(n) = #0)" | |
| 286 | apply (simp add: zmult_eq_lemma) | |
| 287 | done | |
| 288 | ||
| 289 | ||
| 290 | (** Cancellation laws for k*m < k*n and m*k < n*k, also for <= and =, | |
| 291 | but not (yet?) for k*m < n*k. **) | |
| 292 | ||
| 293 | lemma zmult_zless_lemma: | |
| 294 | "[| k \<in> int; m \<in> int; n \<in> int |] | |
| 295 | ==> (m$*k $< n$*k) <-> ((#0 $< k & m$<n) | (k $< #0 & n$<m))" | |
| 296 | apply (case_tac "k = #0") | |
| 297 | apply (auto simp add: neq_iff_zless zmult_zless_mono1 zmult_zless_mono1_neg) | |
| 298 | apply (auto simp add: not_zless_iff_zle | |
| 299 | not_zle_iff_zless [THEN iff_sym, of "m$*k"] | |
| 300 | not_zle_iff_zless [THEN iff_sym, of m]) | |
| 301 | apply (auto elim: notE | |
| 302 | simp add: zless_imp_zle zmult_zle_mono1 zmult_zle_mono1_neg) | |
| 303 | done | |
| 304 | ||
| 305 | lemma zmult_zless_cancel2: | |
| 306 | "(m$*k $< n$*k) <-> ((#0 $< k & m$<n) | (k $< #0 & n$<m))" | |
| 307 | apply (cut_tac k = "intify (k)" and m = "intify (m)" and n = "intify (n)" | |
| 308 | in zmult_zless_lemma) | |
| 309 | apply auto | |
| 310 | done | |
| 311 | ||
| 312 | lemma zmult_zless_cancel1: | |
| 313 | "(k$*m $< k$*n) <-> ((#0 $< k & m$<n) | (k $< #0 & n$<m))" | |
| 314 | by (simp add: zmult_commute [of k] zmult_zless_cancel2) | |
| 315 | ||
| 316 | lemma zmult_zle_cancel2: | |
| 317 | "(m$*k $<= n$*k) <-> ((#0 $< k --> m$<=n) & (k $< #0 --> n$<=m))" | |
| 318 | by (auto simp add: not_zless_iff_zle [THEN iff_sym] zmult_zless_cancel2) | |
| 319 | ||
| 320 | lemma zmult_zle_cancel1: | |
| 321 | "(k$*m $<= k$*n) <-> ((#0 $< k --> m$<=n) & (k $< #0 --> n$<=m))" | |
| 322 | by (auto simp add: not_zless_iff_zle [THEN iff_sym] zmult_zless_cancel1) | |
| 323 | ||
| 324 | lemma int_eq_iff_zle: "[| m \<in> int; n \<in> int |] ==> m=n <-> (m $<= n & n $<= m)" | |
| 325 | apply (blast intro: zle_refl zle_anti_sym) | |
| 326 | done | |
| 327 | ||
| 328 | lemma zmult_cancel2_lemma: | |
| 329 | "[| k \<in> int; m \<in> int; n \<in> int |] ==> (m$*k = n$*k) <-> (k=#0 | m=n)" | |
| 330 | apply (simp add: int_eq_iff_zle [of "m$*k"] int_eq_iff_zle [of m]) | |
| 331 | apply (auto simp add: zmult_zle_cancel2 neq_iff_zless) | |
| 332 | done | |
| 333 | ||
| 334 | lemma zmult_cancel2 [simp]: | |
| 335 | "(m$*k = n$*k) <-> (intify(k) = #0 | intify(m) = intify(n))" | |
| 336 | apply (rule iff_trans) | |
| 337 | apply (rule_tac [2] zmult_cancel2_lemma) | |
| 338 | apply auto | |
| 339 | done | |
| 340 | ||
| 341 | lemma zmult_cancel1 [simp]: | |
| 342 | "(k$*m = k$*n) <-> (intify(k) = #0 | intify(m) = intify(n))" | |
| 343 | by (simp add: zmult_commute [of k] zmult_cancel2) | |
| 344 | ||
| 345 | ||
| 346 | subsection{* Uniqueness and monotonicity of quotients and remainders *}
 | |
| 347 | ||
| 348 | lemma unique_quotient_lemma: | |
| 349 | "[| b$*q' $+ r' $<= b$*q $+ r; #0 $<= r'; #0 $< b; r $< b |] | |
| 350 | ==> q' $<= q" | |
| 351 | apply (subgoal_tac "r' $+ b $* (q'$-q) $<= r") | |
| 352 | prefer 2 apply (simp add: zdiff_zmult_distrib2 zadd_ac zcompare_rls) | |
| 353 | apply (subgoal_tac "#0 $< b $* (#1 $+ q $- q') ") | |
| 354 | prefer 2 | |
| 355 | apply (erule zle_zless_trans) | |
| 356 | apply (simp add: zdiff_zmult_distrib2 zadd_zmult_distrib2 zadd_ac zcompare_rls) | |
| 357 | apply (erule zle_zless_trans) | |
| 358 | apply (simp add: ); | |
| 359 | apply (subgoal_tac "b $* q' $< b $* (#1 $+ q)") | |
| 360 | prefer 2 | |
| 361 | apply (simp add: zdiff_zmult_distrib2 zadd_zmult_distrib2 zadd_ac zcompare_rls) | |
| 362 | apply (auto elim: zless_asym | |
| 363 | simp add: zmult_zless_cancel1 zless_add1_iff_zle zadd_ac zcompare_rls) | |
| 364 | done | |
| 365 | ||
| 366 | lemma unique_quotient_lemma_neg: | |
| 367 | "[| b$*q' $+ r' $<= b$*q $+ r; r $<= #0; b $< #0; b $< r' |] | |
| 368 | ==> q $<= q'" | |
| 369 | apply (rule_tac b = "$-b" and r = "$-r'" and r' = "$-r" | |
| 370 | in unique_quotient_lemma) | |
| 371 | apply (auto simp del: zminus_zadd_distrib | |
| 372 | simp add: zminus_zadd_distrib [symmetric] zle_zminus zless_zminus) | |
| 373 | done | |
| 374 | ||
| 375 | ||
| 376 | lemma unique_quotient: | |
| 377 | "[| quorem (<a,b>, <q,r>); quorem (<a,b>, <q',r'>); b \<in> int; b ~= #0; | |
| 378 | q \<in> int; q' \<in> int |] ==> q = q'" | |
| 379 | apply (simp add: split_ifs quorem_def neq_iff_zless) | |
| 380 | apply safe | |
| 381 | apply simp_all | |
| 382 | apply (blast intro: zle_anti_sym | |
| 383 | dest: zle_eq_refl [THEN unique_quotient_lemma] | |
| 384 | zle_eq_refl [THEN unique_quotient_lemma_neg] sym)+ | |
| 385 | done | |
| 386 | ||
| 387 | lemma unique_remainder: | |
| 388 | "[| quorem (<a,b>, <q,r>); quorem (<a,b>, <q',r'>); b \<in> int; b ~= #0; | |
| 389 | q \<in> int; q' \<in> int; | |
| 390 | r \<in> int; r' \<in> int |] ==> r = r'" | |
| 391 | apply (subgoal_tac "q = q'") | |
| 392 | prefer 2 apply (blast intro: unique_quotient) | |
| 393 | apply (simp add: quorem_def) | |
| 394 | done | |
| 395 | ||
| 396 | ||
| 397 | subsection{*Correctness of posDivAlg, 
 | |
| 398 |            the Division Algorithm for @{text "a\<ge>0"} and @{text "b>0"} *}
 | |
| 399 | ||
| 400 | lemma adjust_eq [simp]: | |
| 401 | "adjust(b, <q,r>) = (let diff = r$-b in | |
| 402 | if #0 $<= diff then <#2$*q $+ #1,diff> | |
| 403 | else <#2$*q,r>)" | |
| 404 | by (simp add: Let_def adjust_def) | |
| 405 | ||
| 406 | ||
| 407 | lemma posDivAlg_termination: | |
| 408 | "[| #0 $< b; ~ a $< b |] | |
| 409 | ==> nat_of(a $- #2 $\<times> b $+ #1) < nat_of(a $- b $+ #1)" | |
| 410 | apply (simp (no_asm) add: zless_nat_conj) | |
| 411 | apply (simp add: not_zless_iff_zle zless_add1_iff_zle zcompare_rls) | |
| 412 | done | |
| 413 | ||
| 414 | lemmas posDivAlg_unfold = def_wfrec [OF posDivAlg_def wf_measure] | |
| 415 | ||
| 416 | lemma posDivAlg_eqn: | |
| 417 | "[| #0 $< b; a \<in> int; b \<in> int |] ==> | |
| 418 | posDivAlg(<a,b>) = | |
| 419 | (if a$<b then <#0,a> else adjust(b, posDivAlg (<a, #2$*b>)))" | |
| 420 | apply (rule posDivAlg_unfold [THEN trans]) | |
| 421 | apply (simp add: vimage_iff not_zless_iff_zle [THEN iff_sym]) | |
| 422 | apply (blast intro: posDivAlg_termination) | |
| 423 | done | |
| 424 | ||
| 425 | lemma posDivAlg_induct_lemma [rule_format]: | |
| 426 | assumes prem: | |
| 427 | "!!a b. [| a \<in> int; b \<in> int; | |
| 428 | ~ (a $< b | b $<= #0) --> P(<a, #2 $* b>) |] ==> P(<a,b>)" | |
| 429 | shows "<u,v> \<in> int*int --> P(<u,v>)" | |
| 430 | apply (rule_tac a = "<u,v>" in wf_induct) | |
| 431 | apply (rule_tac A = "int*int" and f = "%<a,b>.nat_of (a $- b $+ #1)" | |
| 432 | in wf_measure) | |
| 433 | apply clarify | |
| 434 | apply (rule prem) | |
| 435 | apply (drule_tac [3] x = "<xa, #2 $\<times> y>" in spec) | |
| 436 | apply auto | |
| 437 | apply (simp add: not_zle_iff_zless posDivAlg_termination) | |
| 438 | done | |
| 439 | ||
| 440 | ||
| 441 | lemma posDivAlg_induct: | |
| 442 | assumes u_int: "u \<in> int" | |
| 443 | and v_int: "v \<in> int" | |
| 444 | and ih: "!!a b. [| a \<in> int; b \<in> int; | |
| 445 | ~ (a $< b | b $<= #0) --> P(a, #2 $* b) |] ==> P(a,b)" | |
| 446 | shows "P(u,v)" | |
| 447 | apply (subgoal_tac "(%<x,y>. P (x,y)) (<u,v>)") | |
| 448 | apply simp | |
| 449 | apply (rule posDivAlg_induct_lemma) | |
| 450 | apply (simp (no_asm_use)) | |
| 451 | apply (rule ih) | |
| 452 | apply (auto simp add: u_int v_int) | |
| 453 | done | |
| 454 | ||
| 455 | (*FIXME: use intify in integ_of so that we always have integ_of w \<in> int. | |
| 456 | then this rewrite can work for ALL constants!!*) | |
| 457 | lemma intify_eq_0_iff_zle: "intify(m) = #0 <-> (m $<= #0 & #0 $<= m)" | |
| 458 | apply (simp (no_asm) add: int_eq_iff_zle) | |
| 459 | done | |
| 460 | ||
| 461 | ||
| 462 | subsection{* Some convenient biconditionals for products of signs *}
 | |
| 463 | ||
| 464 | lemma zmult_pos: "[| #0 $< i; #0 $< j |] ==> #0 $< i $* j" | |
| 465 | apply (drule zmult_zless_mono1) | |
| 466 | apply auto | |
| 467 | done | |
| 468 | ||
| 469 | lemma zmult_neg: "[| i $< #0; j $< #0 |] ==> #0 $< i $* j" | |
| 470 | apply (drule zmult_zless_mono1_neg) | |
| 471 | apply auto | |
| 472 | done | |
| 473 | ||
| 474 | lemma zmult_pos_neg: "[| #0 $< i; j $< #0 |] ==> i $* j $< #0" | |
| 475 | apply (drule zmult_zless_mono1_neg) | |
| 476 | apply auto | |
| 477 | done | |
| 478 | ||
| 479 | (** Inequality reasoning **) | |
| 480 | ||
| 481 | lemma int_0_less_lemma: | |
| 482 | "[| x \<in> int; y \<in> int |] | |
| 483 | ==> (#0 $< x $* y) <-> (#0 $< x & #0 $< y | x $< #0 & y $< #0)" | |
| 484 | apply (auto simp add: zle_def not_zless_iff_zle zmult_pos zmult_neg) | |
| 485 | apply (rule ccontr) | |
| 486 | apply (rule_tac [2] ccontr) | |
| 487 | apply (auto simp add: zle_def not_zless_iff_zle) | |
| 488 | apply (erule_tac P = "#0$< x$* y" in rev_mp) | |
| 489 | apply (erule_tac [2] P = "#0$< x$* y" in rev_mp) | |
| 490 | apply (drule zmult_pos_neg, assumption) | |
| 491 | prefer 2 | |
| 492 | apply (drule zmult_pos_neg, assumption) | |
| 493 | apply (auto dest: zless_not_sym simp add: zmult_commute) | |
| 494 | done | |
| 495 | ||
| 496 | lemma int_0_less_mult_iff: | |
| 497 | "(#0 $< x $* y) <-> (#0 $< x & #0 $< y | x $< #0 & y $< #0)" | |
| 498 | apply (cut_tac x = "intify (x)" and y = "intify (y)" in int_0_less_lemma) | |
| 499 | apply auto | |
| 500 | done | |
| 501 | ||
| 502 | lemma int_0_le_lemma: | |
| 503 | "[| x \<in> int; y \<in> int |] | |
| 504 | ==> (#0 $<= x $* y) <-> (#0 $<= x & #0 $<= y | x $<= #0 & y $<= #0)" | |
| 505 | by (auto simp add: zle_def not_zless_iff_zle int_0_less_mult_iff) | |
| 506 | ||
| 507 | lemma int_0_le_mult_iff: | |
| 508 | "(#0 $<= x $* y) <-> ((#0 $<= x & #0 $<= y) | (x $<= #0 & y $<= #0))" | |
| 509 | apply (cut_tac x = "intify (x)" and y = "intify (y)" in int_0_le_lemma) | |
| 510 | apply auto | |
| 511 | done | |
| 512 | ||
| 513 | lemma zmult_less_0_iff: | |
| 514 | "(x $* y $< #0) <-> (#0 $< x & y $< #0 | x $< #0 & #0 $< y)" | |
| 515 | apply (auto simp add: int_0_le_mult_iff not_zle_iff_zless [THEN iff_sym]) | |
| 516 | apply (auto dest: zless_not_sym simp add: not_zle_iff_zless) | |
| 517 | done | |
| 518 | ||
| 519 | lemma zmult_le_0_iff: | |
| 520 | "(x $* y $<= #0) <-> (#0 $<= x & y $<= #0 | x $<= #0 & #0 $<= y)" | |
| 521 | by (auto dest: zless_not_sym | |
| 522 | simp add: int_0_less_mult_iff not_zless_iff_zle [THEN iff_sym]) | |
| 523 | ||
| 524 | ||
| 525 | (*Typechecking for posDivAlg*) | |
| 526 | lemma posDivAlg_type [rule_format]: | |
| 527 | "[| a \<in> int; b \<in> int |] ==> posDivAlg(<a,b>) \<in> int * int" | |
| 528 | apply (rule_tac u = "a" and v = "b" in posDivAlg_induct) | |
| 529 | apply assumption+ | |
| 530 | apply (case_tac "#0 $< ba") | |
| 531 | apply (simp add: posDivAlg_eqn adjust_def integ_of_type | |
| 532 | split add: split_if_asm) | |
| 533 | apply clarify | |
| 534 | apply (simp add: int_0_less_mult_iff not_zle_iff_zless) | |
| 535 | apply (simp add: not_zless_iff_zle) | |
| 536 | apply (subst posDivAlg_unfold) | |
| 537 | apply simp | |
| 538 | done | |
| 539 | ||
| 540 | (*Correctness of posDivAlg: it computes quotients correctly*) | |
| 541 | lemma posDivAlg_correct [rule_format]: | |
| 542 | "[| a \<in> int; b \<in> int |] | |
| 543 | ==> #0 $<= a --> #0 $< b --> quorem (<a,b>, posDivAlg(<a,b>))" | |
| 544 | apply (rule_tac u = "a" and v = "b" in posDivAlg_induct) | |
| 545 | apply auto | |
| 546 | apply (simp_all add: quorem_def) | |
| 547 |    txt{*base case: a<b*}
 | |
| 548 | apply (simp add: posDivAlg_eqn) | |
| 549 | apply (simp add: not_zless_iff_zle [THEN iff_sym]) | |
| 550 | apply (simp add: int_0_less_mult_iff) | |
| 551 | txt{*main argument*}
 | |
| 552 | apply (subst posDivAlg_eqn) | |
| 553 | apply (simp_all (no_asm_simp)) | |
| 554 | apply (erule splitE) | |
| 555 | apply (rule posDivAlg_type) | |
| 556 | apply (simp_all add: int_0_less_mult_iff) | |
| 557 | apply (auto simp add: zadd_zmult_distrib2 Let_def) | |
| 558 | txt{*now just linear arithmetic*}
 | |
| 559 | apply (simp add: not_zle_iff_zless zdiff_zless_iff) | |
| 560 | done | |
| 561 | ||
| 562 | ||
| 563 | subsection{*Correctness of negDivAlg, the division algorithm for a<0 and b>0*}
 | |
| 564 | ||
| 565 | lemma negDivAlg_termination: | |
| 566 | "[| #0 $< b; a $+ b $< #0 |] | |
| 567 | ==> nat_of($- a $- #2 $* b) < nat_of($- a $- b)" | |
| 568 | apply (simp (no_asm) add: zless_nat_conj) | |
| 569 | apply (simp add: zcompare_rls not_zle_iff_zless zless_zdiff_iff [THEN iff_sym] | |
| 570 | zless_zminus) | |
| 571 | done | |
| 572 | ||
| 573 | lemmas negDivAlg_unfold = def_wfrec [OF negDivAlg_def wf_measure] | |
| 574 | ||
| 575 | lemma negDivAlg_eqn: | |
| 576 | "[| #0 $< b; a : int; b : int |] ==> | |
| 577 | negDivAlg(<a,b>) = | |
| 578 | (if #0 $<= a$+b then <#-1,a$+b> | |
| 579 | else adjust(b, negDivAlg (<a, #2$*b>)))" | |
| 580 | apply (rule negDivAlg_unfold [THEN trans]) | |
| 581 | apply (simp (no_asm_simp) add: vimage_iff not_zless_iff_zle [THEN iff_sym]) | |
| 582 | apply (blast intro: negDivAlg_termination) | |
| 583 | done | |
| 584 | ||
| 585 | lemma negDivAlg_induct_lemma [rule_format]: | |
| 586 | assumes prem: | |
| 587 | "!!a b. [| a \<in> int; b \<in> int; | |
| 588 | ~ (#0 $<= a $+ b | b $<= #0) --> P(<a, #2 $* b>) |] | |
| 589 | ==> P(<a,b>)" | |
| 590 | shows "<u,v> \<in> int*int --> P(<u,v>)" | |
| 591 | apply (rule_tac a = "<u,v>" in wf_induct) | |
| 592 | apply (rule_tac A = "int*int" and f = "%<a,b>.nat_of ($- a $- b)" | |
| 593 | in wf_measure) | |
| 594 | apply clarify | |
| 595 | apply (rule prem) | |
| 596 | apply (drule_tac [3] x = "<xa, #2 $\<times> y>" in spec) | |
| 597 | apply auto | |
| 598 | apply (simp add: not_zle_iff_zless negDivAlg_termination) | |
| 599 | done | |
| 600 | ||
| 601 | lemma negDivAlg_induct: | |
| 602 | assumes u_int: "u \<in> int" | |
| 603 | and v_int: "v \<in> int" | |
| 604 | and ih: "!!a b. [| a \<in> int; b \<in> int; | |
| 605 | ~ (#0 $<= a $+ b | b $<= #0) --> P(a, #2 $* b) |] | |
| 606 | ==> P(a,b)" | |
| 607 | shows "P(u,v)" | |
| 608 | apply (subgoal_tac " (%<x,y>. P (x,y)) (<u,v>)") | |
| 609 | apply simp | |
| 610 | apply (rule negDivAlg_induct_lemma) | |
| 611 | apply (simp (no_asm_use)) | |
| 612 | apply (rule ih) | |
| 613 | apply (auto simp add: u_int v_int) | |
| 614 | done | |
| 615 | ||
| 616 | ||
| 617 | (*Typechecking for negDivAlg*) | |
| 618 | lemma negDivAlg_type: | |
| 619 | "[| a \<in> int; b \<in> int |] ==> negDivAlg(<a,b>) \<in> int * int" | |
| 620 | apply (rule_tac u = "a" and v = "b" in negDivAlg_induct) | |
| 621 | apply assumption+ | |
| 622 | apply (case_tac "#0 $< ba") | |
| 623 | apply (simp add: negDivAlg_eqn adjust_def integ_of_type | |
| 624 | split add: split_if_asm) | |
| 625 | apply clarify | |
| 626 | apply (simp add: int_0_less_mult_iff not_zle_iff_zless) | |
| 627 | apply (simp add: not_zless_iff_zle) | |
| 628 | apply (subst negDivAlg_unfold) | |
| 629 | apply simp | |
| 630 | done | |
| 631 | ||
| 632 | ||
| 633 | (*Correctness of negDivAlg: it computes quotients correctly | |
| 634 | It doesn't work if a=0 because the 0/b=0 rather than -1*) | |
| 635 | lemma negDivAlg_correct [rule_format]: | |
| 636 | "[| a \<in> int; b \<in> int |] | |
| 637 | ==> a $< #0 --> #0 $< b --> quorem (<a,b>, negDivAlg(<a,b>))" | |
| 638 | apply (rule_tac u = "a" and v = "b" in negDivAlg_induct) | |
| 639 | apply auto | |
| 640 | apply (simp_all add: quorem_def) | |
| 641 |    txt{*base case: @{term "0$<=a$+b"}*}
 | |
| 642 | apply (simp add: negDivAlg_eqn) | |
| 643 | apply (simp add: not_zless_iff_zle [THEN iff_sym]) | |
| 644 | apply (simp add: int_0_less_mult_iff) | |
| 645 | txt{*main argument*}
 | |
| 646 | apply (subst negDivAlg_eqn) | |
| 647 | apply (simp_all (no_asm_simp)) | |
| 648 | apply (erule splitE) | |
| 649 | apply (rule negDivAlg_type) | |
| 650 | apply (simp_all add: int_0_less_mult_iff) | |
| 651 | apply (auto simp add: zadd_zmult_distrib2 Let_def) | |
| 652 | txt{*now just linear arithmetic*}
 | |
| 653 | apply (simp add: not_zle_iff_zless zdiff_zless_iff) | |
| 654 | done | |
| 655 | ||
| 656 | ||
| 657 | subsection{* Existence shown by proving the division algorithm to be correct *}
 | |
| 658 | ||
| 659 | (*the case a=0*) | |
| 660 | lemma quorem_0: "[|b \<noteq> #0; b \<in> int|] ==> quorem (<#0,b>, <#0,#0>)" | |
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13612diff
changeset | 661 | by (force simp add: quorem_def neq_iff_zless) | 
| 13520 | 662 | |
| 663 | lemma posDivAlg_zero_divisor: "posDivAlg(<a,#0>) = <#0,a>" | |
| 664 | apply (subst posDivAlg_unfold) | |
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13612diff
changeset | 665 | apply simp | 
| 13520 | 666 | done | 
| 667 | ||
| 668 | lemma posDivAlg_0 [simp]: "posDivAlg (<#0,b>) = <#0,#0>" | |
| 669 | apply (subst posDivAlg_unfold) | |
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13612diff
changeset | 670 | apply (simp add: not_zle_iff_zless) | 
| 13520 | 671 | done | 
| 672 | ||
| 673 | ||
| 674 | (*Needed below. Actually it's an equivalence.*) | |
| 675 | lemma linear_arith_lemma: "~ (#0 $<= #-1 $+ b) ==> (b $<= #0)" | |
| 676 | apply (simp add: not_zle_iff_zless) | |
| 677 | apply (drule zminus_zless_zminus [THEN iffD2]) | |
| 678 | apply (simp add: zadd_commute zless_add1_iff_zle zle_zminus) | |
| 679 | done | |
| 680 | ||
| 681 | lemma negDivAlg_minus1 [simp]: "negDivAlg (<#-1,b>) = <#-1, b$-#1>" | |
| 682 | apply (subst negDivAlg_unfold) | |
| 683 | apply (simp add: linear_arith_lemma integ_of_type vimage_iff) | |
| 684 | done | |
| 685 | ||
| 686 | lemma negateSnd_eq [simp]: "negateSnd (<q,r>) = <q, $-r>" | |
| 687 | apply (unfold negateSnd_def) | |
| 688 | apply auto | |
| 689 | done | |
| 690 | ||
| 691 | lemma negateSnd_type: "qr \<in> int * int ==> negateSnd (qr) \<in> int * int" | |
| 692 | apply (unfold negateSnd_def) | |
| 693 | apply auto | |
| 694 | done | |
| 695 | ||
| 696 | lemma quorem_neg: | |
| 697 | "[|quorem (<$-a,$-b>, qr); a \<in> int; b \<in> int; qr \<in> int * int|] | |
| 698 | ==> quorem (<a,b>, negateSnd(qr))" | |
| 699 | apply clarify | |
| 700 | apply (auto elim: zless_asym simp add: quorem_def zless_zminus) | |
| 701 | txt{*linear arithmetic from here on*}
 | |
| 702 | apply (simp_all add: zminus_equation [of a] zminus_zless) | |
| 703 | apply (cut_tac [2] z = "b" and w = "#0" in zless_linear) | |
| 704 | apply (cut_tac [1] z = "b" and w = "#0" in zless_linear) | |
| 705 | apply auto | |
| 706 | apply (blast dest: zle_zless_trans)+ | |
| 707 | done | |
| 708 | ||
| 709 | lemma divAlg_correct: | |
| 710 | "[|b \<noteq> #0; a \<in> int; b \<in> int|] ==> quorem (<a,b>, divAlg(<a,b>))" | |
| 711 | apply (auto simp add: quorem_0 divAlg_def) | |
| 712 | apply (safe intro!: quorem_neg posDivAlg_correct negDivAlg_correct | |
| 713 | posDivAlg_type negDivAlg_type) | |
| 714 | apply (auto simp add: quorem_def neq_iff_zless) | |
| 715 | txt{*linear arithmetic from here on*}
 | |
| 716 | apply (auto simp add: zle_def) | |
| 717 | done | |
| 718 | ||
| 719 | lemma divAlg_type: "[|a \<in> int; b \<in> int|] ==> divAlg(<a,b>) \<in> int * int" | |
| 720 | apply (auto simp add: divAlg_def) | |
| 721 | apply (auto simp add: posDivAlg_type negDivAlg_type negateSnd_type) | |
| 722 | done | |
| 723 | ||
| 724 | ||
| 725 | (** intify cancellation **) | |
| 726 | ||
| 727 | lemma zdiv_intify1 [simp]: "intify(x) zdiv y = x zdiv y" | |
| 728 | apply (simp (no_asm) add: zdiv_def) | |
| 729 | done | |
| 730 | ||
| 731 | lemma zdiv_intify2 [simp]: "x zdiv intify(y) = x zdiv y" | |
| 732 | apply (simp (no_asm) add: zdiv_def) | |
| 733 | done | |
| 734 | ||
| 735 | lemma zdiv_type [iff,TC]: "z zdiv w \<in> int" | |
| 736 | apply (unfold zdiv_def) | |
| 737 | apply (blast intro: fst_type divAlg_type) | |
| 738 | done | |
| 739 | ||
| 740 | lemma zmod_intify1 [simp]: "intify(x) zmod y = x zmod y" | |
| 741 | apply (simp (no_asm) add: zmod_def) | |
| 742 | done | |
| 743 | ||
| 744 | lemma zmod_intify2 [simp]: "x zmod intify(y) = x zmod y" | |
| 745 | apply (simp (no_asm) add: zmod_def) | |
| 746 | done | |
| 747 | ||
| 748 | lemma zmod_type [iff,TC]: "z zmod w \<in> int" | |
| 749 | apply (unfold zmod_def) | |
| 750 | apply (rule snd_type) | |
| 751 | apply (blast intro: divAlg_type) | |
| 752 | done | |
| 753 | ||
| 754 | ||
| 755 | (** Arbitrary definitions for division by zero. Useful to simplify | |
| 756 | certain equations **) | |
| 757 | ||
| 758 | lemma DIVISION_BY_ZERO_ZDIV: "a zdiv #0 = #0" | |
| 759 | apply (simp (no_asm) add: zdiv_def divAlg_def posDivAlg_zero_divisor) | |
| 760 | done (*NOT for adding to default simpset*) | |
| 761 | ||
| 762 | lemma DIVISION_BY_ZERO_ZMOD: "a zmod #0 = intify(a)" | |
| 763 | apply (simp (no_asm) add: zmod_def divAlg_def posDivAlg_zero_divisor) | |
| 764 | done (*NOT for adding to default simpset*) | |
| 765 | ||
| 766 | ||
| 767 | ||
| 768 | (** Basic laws about division and remainder **) | |
| 769 | ||
| 770 | lemma raw_zmod_zdiv_equality: | |
| 771 | "[| a \<in> int; b \<in> int |] ==> a = b $* (a zdiv b) $+ (a zmod b)" | |
| 772 | apply (case_tac "b = #0") | |
| 773 | apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) | |
| 774 | apply (cut_tac a = "a" and b = "b" in divAlg_correct) | |
| 775 | apply (auto simp add: quorem_def zdiv_def zmod_def split_def) | |
| 776 | done | |
| 777 | ||
| 778 | lemma zmod_zdiv_equality: "intify(a) = b $* (a zdiv b) $+ (a zmod b)" | |
| 779 | apply (rule trans) | |
| 780 | apply (rule_tac b = "intify (b)" in raw_zmod_zdiv_equality) | |
| 781 | apply auto | |
| 782 | done | |
| 783 | ||
| 784 | lemma pos_mod: "#0 $< b ==> #0 $<= a zmod b & a zmod b $< b" | |
| 785 | apply (cut_tac a = "intify (a)" and b = "intify (b)" in divAlg_correct) | |
| 786 | apply (auto simp add: intify_eq_0_iff_zle quorem_def zmod_def split_def) | |
| 787 | apply (blast dest: zle_zless_trans)+ | |
| 788 | done | |
| 789 | ||
| 790 | lemmas pos_mod_sign = pos_mod [THEN conjunct1, standard] | |
| 791 | and pos_mod_bound = pos_mod [THEN conjunct2, standard] | |
| 792 | ||
| 793 | lemma neg_mod: "b $< #0 ==> a zmod b $<= #0 & b $< a zmod b" | |
| 794 | apply (cut_tac a = "intify (a)" and b = "intify (b)" in divAlg_correct) | |
| 795 | apply (auto simp add: intify_eq_0_iff_zle quorem_def zmod_def split_def) | |
| 796 | apply (blast dest: zle_zless_trans) | |
| 797 | apply (blast dest: zless_trans)+ | |
| 798 | done | |
| 799 | ||
| 800 | lemmas neg_mod_sign = neg_mod [THEN conjunct1, standard] | |
| 801 | and neg_mod_bound = neg_mod [THEN conjunct2, standard] | |
| 802 | ||
| 803 | ||
| 804 | (** proving general properties of zdiv and zmod **) | |
| 805 | ||
| 806 | lemma quorem_div_mod: | |
| 807 | "[|b \<noteq> #0; a \<in> int; b \<in> int |] | |
| 808 | ==> quorem (<a,b>, <a zdiv b, a zmod b>)" | |
| 809 | apply (cut_tac a = "a" and b = "b" in zmod_zdiv_equality) | |
| 810 | apply (auto simp add: quorem_def neq_iff_zless pos_mod_sign pos_mod_bound | |
| 811 | neg_mod_sign neg_mod_bound) | |
| 812 | done | |
| 813 | ||
| 814 | (*Surely quorem(<a,b>,<q,r>) implies a \<in> int, but it doesn't matter*) | |
| 815 | lemma quorem_div: | |
| 816 | "[| quorem(<a,b>,<q,r>); b \<noteq> #0; a \<in> int; b \<in> int; q \<in> int |] | |
| 817 | ==> a zdiv b = q" | |
| 818 | by (blast intro: quorem_div_mod [THEN unique_quotient]) | |
| 819 | ||
| 820 | lemma quorem_mod: | |
| 821 | "[| quorem(<a,b>,<q,r>); b \<noteq> #0; a \<in> int; b \<in> int; q \<in> int; r \<in> int |] | |
| 822 | ==> a zmod b = r" | |
| 823 | by (blast intro: quorem_div_mod [THEN unique_remainder]) | |
| 824 | ||
| 825 | lemma zdiv_pos_pos_trivial_raw: | |
| 826 | "[| a \<in> int; b \<in> int; #0 $<= a; a $< b |] ==> a zdiv b = #0" | |
| 827 | apply (rule quorem_div) | |
| 828 | apply (auto simp add: quorem_def) | |
| 829 | (*linear arithmetic*) | |
| 830 | apply (blast dest: zle_zless_trans)+ | |
| 831 | done | |
| 832 | ||
| 833 | lemma zdiv_pos_pos_trivial: "[| #0 $<= a; a $< b |] ==> a zdiv b = #0" | |
| 834 | apply (cut_tac a = "intify (a)" and b = "intify (b)" | |
| 835 | in zdiv_pos_pos_trivial_raw) | |
| 836 | apply auto | |
| 837 | done | |
| 838 | ||
| 839 | lemma zdiv_neg_neg_trivial_raw: | |
| 840 | "[| a \<in> int; b \<in> int; a $<= #0; b $< a |] ==> a zdiv b = #0" | |
| 841 | apply (rule_tac r = "a" in quorem_div) | |
| 842 | apply (auto simp add: quorem_def) | |
| 843 | (*linear arithmetic*) | |
| 844 | apply (blast dest: zle_zless_trans zless_trans)+ | |
| 845 | done | |
| 846 | ||
| 847 | lemma zdiv_neg_neg_trivial: "[| a $<= #0; b $< a |] ==> a zdiv b = #0" | |
| 848 | apply (cut_tac a = "intify (a)" and b = "intify (b)" | |
| 849 | in zdiv_neg_neg_trivial_raw) | |
| 850 | apply auto | |
| 851 | done | |
| 852 | ||
| 853 | lemma zadd_le_0_lemma: "[| a$+b $<= #0; #0 $< a; #0 $< b |] ==> False" | |
| 854 | apply (drule_tac z' = "#0" and z = "b" in zadd_zless_mono) | |
| 855 | apply (auto simp add: zle_def) | |
| 856 | apply (blast dest: zless_trans) | |
| 857 | done | |
| 858 | ||
| 859 | lemma zdiv_pos_neg_trivial_raw: | |
| 860 | "[| a \<in> int; b \<in> int; #0 $< a; a$+b $<= #0 |] ==> a zdiv b = #-1" | |
| 861 | apply (rule_tac r = "a $+ b" in quorem_div) | |
| 862 | apply (auto simp add: quorem_def) | |
| 863 | (*linear arithmetic*) | |
| 864 | apply (blast dest: zadd_le_0_lemma zle_zless_trans)+ | |
| 865 | done | |
| 866 | ||
| 867 | lemma zdiv_pos_neg_trivial: "[| #0 $< a; a$+b $<= #0 |] ==> a zdiv b = #-1" | |
| 868 | apply (cut_tac a = "intify (a)" and b = "intify (b)" | |
| 869 | in zdiv_pos_neg_trivial_raw) | |
| 870 | apply auto | |
| 871 | done | |
| 872 | ||
| 873 | (*There is no zdiv_neg_pos_trivial because #0 zdiv b = #0 would supersede it*) | |
| 874 | ||
| 875 | ||
| 876 | lemma zmod_pos_pos_trivial_raw: | |
| 877 | "[| a \<in> int; b \<in> int; #0 $<= a; a $< b |] ==> a zmod b = a" | |
| 878 | apply (rule_tac q = "#0" in quorem_mod) | |
| 879 | apply (auto simp add: quorem_def) | |
| 880 | (*linear arithmetic*) | |
| 881 | apply (blast dest: zle_zless_trans)+ | |
| 882 | done | |
| 883 | ||
| 884 | lemma zmod_pos_pos_trivial: "[| #0 $<= a; a $< b |] ==> a zmod b = intify(a)" | |
| 885 | apply (cut_tac a = "intify (a)" and b = "intify (b)" | |
| 886 | in zmod_pos_pos_trivial_raw) | |
| 887 | apply auto | |
| 888 | done | |
| 889 | ||
| 890 | lemma zmod_neg_neg_trivial_raw: | |
| 891 | "[| a \<in> int; b \<in> int; a $<= #0; b $< a |] ==> a zmod b = a" | |
| 892 | apply (rule_tac q = "#0" in quorem_mod) | |
| 893 | apply (auto simp add: quorem_def) | |
| 894 | (*linear arithmetic*) | |
| 895 | apply (blast dest: zle_zless_trans zless_trans)+ | |
| 896 | done | |
| 897 | ||
| 898 | lemma zmod_neg_neg_trivial: "[| a $<= #0; b $< a |] ==> a zmod b = intify(a)" | |
| 899 | apply (cut_tac a = "intify (a)" and b = "intify (b)" | |
| 900 | in zmod_neg_neg_trivial_raw) | |
| 901 | apply auto | |
| 902 | done | |
| 903 | ||
| 904 | lemma zmod_pos_neg_trivial_raw: | |
| 905 | "[| a \<in> int; b \<in> int; #0 $< a; a$+b $<= #0 |] ==> a zmod b = a$+b" | |
| 906 | apply (rule_tac q = "#-1" in quorem_mod) | |
| 907 | apply (auto simp add: quorem_def) | |
| 908 | (*linear arithmetic*) | |
| 909 | apply (blast dest: zadd_le_0_lemma zle_zless_trans)+ | |
| 910 | done | |
| 911 | ||
| 912 | lemma zmod_pos_neg_trivial: "[| #0 $< a; a$+b $<= #0 |] ==> a zmod b = a$+b" | |
| 913 | apply (cut_tac a = "intify (a)" and b = "intify (b)" | |
| 914 | in zmod_pos_neg_trivial_raw) | |
| 915 | apply auto | |
| 916 | done | |
| 917 | ||
| 918 | (*There is no zmod_neg_pos_trivial...*) | |
| 919 | ||
| 920 | ||
| 921 | (*Simpler laws such as -a zdiv b = -(a zdiv b) FAIL*) | |
| 922 | ||
| 923 | lemma zdiv_zminus_zminus_raw: | |
| 924 | "[|a \<in> int; b \<in> int|] ==> ($-a) zdiv ($-b) = a zdiv b" | |
| 925 | apply (case_tac "b = #0") | |
| 926 | apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) | |
| 927 | apply (subst quorem_div_mod [THEN quorem_neg, simplified, THEN quorem_div]) | |
| 928 | apply auto | |
| 929 | done | |
| 930 | ||
| 931 | lemma zdiv_zminus_zminus [simp]: "($-a) zdiv ($-b) = a zdiv b" | |
| 932 | apply (cut_tac a = "intify (a)" and b = "intify (b)" in zdiv_zminus_zminus_raw) | |
| 933 | apply auto | |
| 934 | done | |
| 935 | ||
| 936 | (*Simpler laws such as -a zmod b = -(a zmod b) FAIL*) | |
| 937 | lemma zmod_zminus_zminus_raw: | |
| 938 | "[|a \<in> int; b \<in> int|] ==> ($-a) zmod ($-b) = $- (a zmod b)" | |
| 939 | apply (case_tac "b = #0") | |
| 940 | apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) | |
| 941 | apply (subst quorem_div_mod [THEN quorem_neg, simplified, THEN quorem_mod]) | |
| 942 | apply auto | |
| 943 | done | |
| 944 | ||
| 945 | lemma zmod_zminus_zminus [simp]: "($-a) zmod ($-b) = $- (a zmod b)" | |
| 946 | apply (cut_tac a = "intify (a)" and b = "intify (b)" in zmod_zminus_zminus_raw) | |
| 947 | apply auto | |
| 948 | done | |
| 949 | ||
| 950 | ||
| 951 | subsection{* division of a number by itself *}
 | |
| 952 | ||
| 13537 | 953 | lemma self_quotient_aux1: "[| #0 $< a; a = r $+ a$*q; r $< a |] ==> #1 $<= q" | 
| 13520 | 954 | apply (subgoal_tac "#0 $< a$*q") | 
| 955 | apply (cut_tac w = "#0" and z = "q" in add1_zle_iff) | |
| 956 | apply (simp add: int_0_less_mult_iff) | |
| 957 | apply (blast dest: zless_trans) | |
| 958 | (*linear arithmetic...*) | |
| 959 | apply (drule_tac t = "%x. x $- r" in subst_context) | |
| 960 | apply (drule sym) | |
| 961 | apply (simp add: zcompare_rls) | |
| 962 | done | |
| 963 | ||
| 13537 | 964 | lemma self_quotient_aux2: "[| #0 $< a; a = r $+ a$*q; #0 $<= r |] ==> q $<= #1" | 
| 13520 | 965 | apply (subgoal_tac "#0 $<= a$* (#1$-q)") | 
| 966 | apply (simp add: int_0_le_mult_iff zcompare_rls) | |
| 967 | apply (blast dest: zle_zless_trans) | |
| 968 | apply (simp add: zdiff_zmult_distrib2) | |
| 969 | apply (drule_tac t = "%x. x $- a $* q" in subst_context) | |
| 970 | apply (simp add: zcompare_rls) | |
| 971 | done | |
| 972 | ||
| 973 | lemma self_quotient: | |
| 974 | "[| quorem(<a,a>,<q,r>); a \<in> int; q \<in> int; a \<noteq> #0|] ==> q = #1" | |
| 975 | apply (simp add: split_ifs quorem_def neq_iff_zless) | |
| 976 | apply (rule zle_anti_sym) | |
| 977 | apply safe | |
| 978 | apply auto | |
| 979 | prefer 4 apply (blast dest: zless_trans) | |
| 980 | apply (blast dest: zless_trans) | |
| 13537 | 981 | apply (rule_tac [3] a = "$-a" and r = "$-r" in self_quotient_aux1) | 
| 982 | apply (rule_tac a = "$-a" and r = "$-r" in self_quotient_aux2) | |
| 13520 | 983 | apply (rule_tac [6] zminus_equation [THEN iffD1]) | 
| 984 | apply (rule_tac [2] zminus_equation [THEN iffD1]) | |
| 13537 | 985 | apply (force intro: self_quotient_aux1 self_quotient_aux2 | 
| 986 | simp add: zadd_commute zmult_zminus)+ | |
| 13520 | 987 | done | 
| 988 | ||
| 989 | lemma self_remainder: | |
| 990 | "[|quorem(<a,a>,<q,r>); a \<in> int; q \<in> int; r \<in> int; a \<noteq> #0|] ==> r = #0" | |
| 991 | apply (frule self_quotient) | |
| 992 | apply (auto simp add: quorem_def) | |
| 993 | done | |
| 994 | ||
| 995 | lemma zdiv_self_raw: "[|a \<noteq> #0; a \<in> int|] ==> a zdiv a = #1" | |
| 996 | apply (blast intro: quorem_div_mod [THEN self_quotient]) | |
| 997 | done | |
| 998 | ||
| 999 | lemma zdiv_self [simp]: "intify(a) \<noteq> #0 ==> a zdiv a = #1" | |
| 1000 | apply (drule zdiv_self_raw) | |
| 1001 | apply auto | |
| 1002 | done | |
| 1003 | ||
| 1004 | (*Here we have 0 zmod 0 = 0, also assumed by Knuth (who puts m zmod 0 = 0) *) | |
| 1005 | lemma zmod_self_raw: "a \<in> int ==> a zmod a = #0" | |
| 1006 | apply (case_tac "a = #0") | |
| 1007 | apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) | |
| 1008 | apply (blast intro: quorem_div_mod [THEN self_remainder]) | |
| 1009 | done | |
| 1010 | ||
| 1011 | lemma zmod_self [simp]: "a zmod a = #0" | |
| 1012 | apply (cut_tac a = "intify (a)" in zmod_self_raw) | |
| 1013 | apply auto | |
| 1014 | done | |
| 1015 | ||
| 1016 | ||
| 1017 | subsection{* Computation of division and remainder *}
 | |
| 1018 | ||
| 1019 | lemma zdiv_zero [simp]: "#0 zdiv b = #0" | |
| 1020 | apply (simp (no_asm) add: zdiv_def divAlg_def) | |
| 1021 | done | |
| 1022 | ||
| 1023 | lemma zdiv_eq_minus1: "#0 $< b ==> #-1 zdiv b = #-1" | |
| 1024 | apply (simp (no_asm_simp) add: zdiv_def divAlg_def) | |
| 1025 | done | |
| 1026 | ||
| 1027 | lemma zmod_zero [simp]: "#0 zmod b = #0" | |
| 1028 | apply (simp (no_asm) add: zmod_def divAlg_def) | |
| 1029 | done | |
| 1030 | ||
| 1031 | lemma zdiv_minus1: "#0 $< b ==> #-1 zdiv b = #-1" | |
| 1032 | apply (simp (no_asm_simp) add: zdiv_def divAlg_def) | |
| 1033 | done | |
| 1034 | ||
| 1035 | lemma zmod_minus1: "#0 $< b ==> #-1 zmod b = b $- #1" | |
| 1036 | apply (simp (no_asm_simp) add: zmod_def divAlg_def) | |
| 1037 | done | |
| 1038 | ||
| 1039 | (** a positive, b positive **) | |
| 1040 | ||
| 1041 | lemma zdiv_pos_pos: "[| #0 $< a; #0 $<= b |] | |
| 1042 | ==> a zdiv b = fst (posDivAlg(<intify(a), intify(b)>))" | |
| 1043 | apply (simp (no_asm_simp) add: zdiv_def divAlg_def) | |
| 1044 | apply (auto simp add: zle_def) | |
| 1045 | done | |
| 1046 | ||
| 1047 | lemma zmod_pos_pos: | |
| 1048 | "[| #0 $< a; #0 $<= b |] | |
| 1049 | ==> a zmod b = snd (posDivAlg(<intify(a), intify(b)>))" | |
| 1050 | apply (simp (no_asm_simp) add: zmod_def divAlg_def) | |
| 1051 | apply (auto simp add: zle_def) | |
| 1052 | done | |
| 1053 | ||
| 1054 | (** a negative, b positive **) | |
| 1055 | ||
| 1056 | lemma zdiv_neg_pos: | |
| 1057 | "[| a $< #0; #0 $< b |] | |
| 1058 | ==> a zdiv b = fst (negDivAlg(<intify(a), intify(b)>))" | |
| 1059 | apply (simp (no_asm_simp) add: zdiv_def divAlg_def) | |
| 1060 | apply (blast dest: zle_zless_trans) | |
| 1061 | done | |
| 1062 | ||
| 1063 | lemma zmod_neg_pos: | |
| 1064 | "[| a $< #0; #0 $< b |] | |
| 1065 | ==> a zmod b = snd (negDivAlg(<intify(a), intify(b)>))" | |
| 1066 | apply (simp (no_asm_simp) add: zmod_def divAlg_def) | |
| 1067 | apply (blast dest: zle_zless_trans) | |
| 1068 | done | |
| 1069 | ||
| 1070 | (** a positive, b negative **) | |
| 1071 | ||
| 1072 | lemma zdiv_pos_neg: | |
| 1073 | "[| #0 $< a; b $< #0 |] | |
| 1074 | ==> a zdiv b = fst (negateSnd(negDivAlg (<$-a, $-b>)))" | |
| 1075 | apply (simp (no_asm_simp) add: zdiv_def divAlg_def intify_eq_0_iff_zle) | |
| 1076 | apply auto | |
| 1077 | apply (blast dest: zle_zless_trans)+ | |
| 1078 | apply (blast dest: zless_trans) | |
| 1079 | apply (blast intro: zless_imp_zle) | |
| 1080 | done | |
| 1081 | ||
| 1082 | lemma zmod_pos_neg: | |
| 1083 | "[| #0 $< a; b $< #0 |] | |
| 1084 | ==> a zmod b = snd (negateSnd(negDivAlg (<$-a, $-b>)))" | |
| 1085 | apply (simp (no_asm_simp) add: zmod_def divAlg_def intify_eq_0_iff_zle) | |
| 1086 | apply auto | |
| 1087 | apply (blast dest: zle_zless_trans)+ | |
| 1088 | apply (blast dest: zless_trans) | |
| 1089 | apply (blast intro: zless_imp_zle) | |
| 1090 | done | |
| 1091 | ||
| 1092 | (** a negative, b negative **) | |
| 1093 | ||
| 1094 | lemma zdiv_neg_neg: | |
| 1095 | "[| a $< #0; b $<= #0 |] | |
| 1096 | ==> a zdiv b = fst (negateSnd(posDivAlg(<$-a, $-b>)))" | |
| 1097 | apply (simp (no_asm_simp) add: zdiv_def divAlg_def) | |
| 1098 | apply auto | |
| 1099 | apply (blast dest!: zle_zless_trans)+ | |
| 1100 | done | |
| 1101 | ||
| 1102 | lemma zmod_neg_neg: | |
| 1103 | "[| a $< #0; b $<= #0 |] | |
| 1104 | ==> a zmod b = snd (negateSnd(posDivAlg(<$-a, $-b>)))" | |
| 1105 | apply (simp (no_asm_simp) add: zmod_def divAlg_def) | |
| 1106 | apply auto | |
| 1107 | apply (blast dest!: zle_zless_trans)+ | |
| 1108 | done | |
| 1109 | ||
| 1110 | declare zdiv_pos_pos [of "integ_of (v)" "integ_of (w)", standard, simp] | |
| 1111 | declare zdiv_neg_pos [of "integ_of (v)" "integ_of (w)", standard, simp] | |
| 1112 | declare zdiv_pos_neg [of "integ_of (v)" "integ_of (w)", standard, simp] | |
| 1113 | declare zdiv_neg_neg [of "integ_of (v)" "integ_of (w)", standard, simp] | |
| 1114 | declare zmod_pos_pos [of "integ_of (v)" "integ_of (w)", standard, simp] | |
| 1115 | declare zmod_neg_pos [of "integ_of (v)" "integ_of (w)", standard, simp] | |
| 1116 | declare zmod_pos_neg [of "integ_of (v)" "integ_of (w)", standard, simp] | |
| 1117 | declare zmod_neg_neg [of "integ_of (v)" "integ_of (w)", standard, simp] | |
| 1118 | declare posDivAlg_eqn [of concl: "integ_of (v)" "integ_of (w)", standard, simp] | |
| 1119 | declare negDivAlg_eqn [of concl: "integ_of (v)" "integ_of (w)", standard, simp] | |
| 1120 | ||
| 1121 | ||
| 1122 | (** Special-case simplification **) | |
| 1123 | ||
| 1124 | lemma zmod_1 [simp]: "a zmod #1 = #0" | |
| 1125 | apply (cut_tac a = "a" and b = "#1" in pos_mod_sign) | |
| 1126 | apply (cut_tac [2] a = "a" and b = "#1" in pos_mod_bound) | |
| 1127 | apply auto | |
| 1128 | (*arithmetic*) | |
| 1129 | apply (drule add1_zle_iff [THEN iffD2]) | |
| 1130 | apply (rule zle_anti_sym) | |
| 1131 | apply auto | |
| 1132 | done | |
| 1133 | ||
| 1134 | lemma zdiv_1 [simp]: "a zdiv #1 = intify(a)" | |
| 1135 | apply (cut_tac a = "a" and b = "#1" in zmod_zdiv_equality) | |
| 1136 | apply auto | |
| 1137 | done | |
| 1138 | ||
| 1139 | lemma zmod_minus1_right [simp]: "a zmod #-1 = #0" | |
| 1140 | apply (cut_tac a = "a" and b = "#-1" in neg_mod_sign) | |
| 1141 | apply (cut_tac [2] a = "a" and b = "#-1" in neg_mod_bound) | |
| 1142 | apply auto | |
| 1143 | (*arithmetic*) | |
| 1144 | apply (drule add1_zle_iff [THEN iffD2]) | |
| 1145 | apply (rule zle_anti_sym) | |
| 1146 | apply auto | |
| 1147 | done | |
| 1148 | ||
| 1149 | lemma zdiv_minus1_right_raw: "a \<in> int ==> a zdiv #-1 = $-a" | |
| 1150 | apply (cut_tac a = "a" and b = "#-1" in zmod_zdiv_equality) | |
| 1151 | apply auto | |
| 1152 | apply (rule equation_zminus [THEN iffD2]) | |
| 1153 | apply auto | |
| 1154 | done | |
| 1155 | ||
| 1156 | lemma zdiv_minus1_right: "a zdiv #-1 = $-a" | |
| 1157 | apply (cut_tac a = "intify (a)" in zdiv_minus1_right_raw) | |
| 1158 | apply auto | |
| 1159 | done | |
| 1160 | declare zdiv_minus1_right [simp] | |
| 1161 | ||
| 1162 | ||
| 1163 | subsection{* Monotonicity in the first argument (divisor) *}
 | |
| 1164 | ||
| 1165 | lemma zdiv_mono1: "[| a $<= a'; #0 $< b |] ==> a zdiv b $<= a' zdiv b" | |
| 1166 | apply (cut_tac a = "a" and b = "b" in zmod_zdiv_equality) | |
| 1167 | apply (cut_tac a = "a'" and b = "b" in zmod_zdiv_equality) | |
| 1168 | apply (rule unique_quotient_lemma) | |
| 1169 | apply (erule subst) | |
| 1170 | apply (erule subst) | |
| 1171 | apply (simp_all (no_asm_simp) add: pos_mod_sign pos_mod_bound) | |
| 1172 | done | |
| 1173 | ||
| 1174 | lemma zdiv_mono1_neg: "[| a $<= a'; b $< #0 |] ==> a' zdiv b $<= a zdiv b" | |
| 1175 | apply (cut_tac a = "a" and b = "b" in zmod_zdiv_equality) | |
| 1176 | apply (cut_tac a = "a'" and b = "b" in zmod_zdiv_equality) | |
| 1177 | apply (rule unique_quotient_lemma_neg) | |
| 1178 | apply (erule subst) | |
| 1179 | apply (erule subst) | |
| 1180 | apply (simp_all (no_asm_simp) add: neg_mod_sign neg_mod_bound) | |
| 1181 | done | |
| 1182 | ||
| 1183 | ||
| 1184 | subsection{* Monotonicity in the second argument (dividend) *}
 | |
| 1185 | ||
| 1186 | lemma q_pos_lemma: | |
| 1187 | "[| #0 $<= b'$*q' $+ r'; r' $< b'; #0 $< b' |] ==> #0 $<= q'" | |
| 1188 | apply (subgoal_tac "#0 $< b'$* (q' $+ #1)") | |
| 1189 | apply (simp add: int_0_less_mult_iff) | |
| 1190 | apply (blast dest: zless_trans intro: zless_add1_iff_zle [THEN iffD1]) | |
| 1191 | apply (simp add: zadd_zmult_distrib2) | |
| 1192 | apply (erule zle_zless_trans) | |
| 1193 | apply (erule zadd_zless_mono2) | |
| 1194 | done | |
| 1195 | ||
| 1196 | lemma zdiv_mono2_lemma: | |
| 1197 | "[| b$*q $+ r = b'$*q' $+ r'; #0 $<= b'$*q' $+ r'; | |
| 1198 | r' $< b'; #0 $<= r; #0 $< b'; b' $<= b |] | |
| 1199 | ==> q $<= q'" | |
| 1200 | apply (frule q_pos_lemma, assumption+) | |
| 1201 | apply (subgoal_tac "b$*q $< b$* (q' $+ #1)") | |
| 1202 | apply (simp add: zmult_zless_cancel1) | |
| 1203 | apply (force dest: zless_add1_iff_zle [THEN iffD1] zless_trans zless_zle_trans) | |
| 1204 | apply (subgoal_tac "b$*q = r' $- r $+ b'$*q'") | |
| 1205 | prefer 2 apply (simp add: zcompare_rls) | |
| 1206 | apply (simp (no_asm_simp) add: zadd_zmult_distrib2) | |
| 1207 | apply (subst zadd_commute, rule zadd_zless_mono) | |
| 1208 | prefer 2 apply (blast intro: zmult_zle_mono1) | |
| 1209 | apply (subgoal_tac "r' $+ #0 $< b $+ r") | |
| 1210 | apply (simp add: zcompare_rls) | |
| 1211 | apply (rule zadd_zless_mono) | |
| 1212 | apply auto | |
| 1213 | apply (blast dest: zless_zle_trans) | |
| 1214 | done | |
| 1215 | ||
| 1216 | ||
| 1217 | lemma zdiv_mono2_raw: | |
| 1218 | "[| #0 $<= a; #0 $< b'; b' $<= b; a \<in> int |] | |
| 1219 | ==> a zdiv b $<= a zdiv b'" | |
| 1220 | apply (subgoal_tac "#0 $< b") | |
| 1221 | prefer 2 apply (blast dest: zless_zle_trans) | |
| 1222 | apply (cut_tac a = "a" and b = "b" in zmod_zdiv_equality) | |
| 1223 | apply (cut_tac a = "a" and b = "b'" in zmod_zdiv_equality) | |
| 1224 | apply (rule zdiv_mono2_lemma) | |
| 1225 | apply (erule subst) | |
| 1226 | apply (erule subst) | |
| 1227 | apply (simp_all add: pos_mod_sign pos_mod_bound) | |
| 1228 | done | |
| 1229 | ||
| 1230 | lemma zdiv_mono2: | |
| 1231 | "[| #0 $<= a; #0 $< b'; b' $<= b |] | |
| 1232 | ==> a zdiv b $<= a zdiv b'" | |
| 1233 | apply (cut_tac a = "intify (a)" in zdiv_mono2_raw) | |
| 1234 | apply auto | |
| 1235 | done | |
| 1236 | ||
| 1237 | lemma q_neg_lemma: | |
| 1238 | "[| b'$*q' $+ r' $< #0; #0 $<= r'; #0 $< b' |] ==> q' $< #0" | |
| 1239 | apply (subgoal_tac "b'$*q' $< #0") | |
| 1240 | prefer 2 apply (force intro: zle_zless_trans) | |
| 1241 | apply (simp add: zmult_less_0_iff) | |
| 1242 | apply (blast dest: zless_trans) | |
| 1243 | done | |
| 1244 | ||
| 1245 | ||
| 1246 | ||
| 1247 | lemma zdiv_mono2_neg_lemma: | |
| 1248 | "[| b$*q $+ r = b'$*q' $+ r'; b'$*q' $+ r' $< #0; | |
| 1249 | r $< b; #0 $<= r'; #0 $< b'; b' $<= b |] | |
| 1250 | ==> q' $<= q" | |
| 1251 | apply (subgoal_tac "#0 $< b") | |
| 1252 | prefer 2 apply (blast dest: zless_zle_trans) | |
| 1253 | apply (frule q_neg_lemma, assumption+) | |
| 1254 | apply (subgoal_tac "b$*q' $< b$* (q $+ #1)") | |
| 1255 | apply (simp add: zmult_zless_cancel1) | |
| 1256 | apply (blast dest: zless_trans zless_add1_iff_zle [THEN iffD1]) | |
| 1257 | apply (simp (no_asm_simp) add: zadd_zmult_distrib2) | |
| 1258 | apply (subgoal_tac "b$*q' $<= b'$*q'") | |
| 1259 | prefer 2 | |
| 1260 | apply (simp add: zmult_zle_cancel2) | |
| 1261 | apply (blast dest: zless_trans) | |
| 1262 | apply (subgoal_tac "b'$*q' $+ r $< b $+ (b$*q $+ r)") | |
| 1263 | prefer 2 | |
| 1264 | apply (erule ssubst) | |
| 1265 | apply simp | |
| 1266 | apply (drule_tac w' = "r" and z' = "#0" in zadd_zless_mono) | |
| 1267 | apply (assumption) | |
| 1268 | apply simp | |
| 1269 | apply (simp (no_asm_use) add: zadd_commute) | |
| 1270 | apply (rule zle_zless_trans) | |
| 1271 | prefer 2 apply (assumption) | |
| 1272 | apply (simp (no_asm_simp) add: zmult_zle_cancel2) | |
| 1273 | apply (blast dest: zless_trans) | |
| 1274 | done | |
| 1275 | ||
| 1276 | lemma zdiv_mono2_neg_raw: | |
| 1277 | "[| a $< #0; #0 $< b'; b' $<= b; a \<in> int |] | |
| 1278 | ==> a zdiv b' $<= a zdiv b" | |
| 1279 | apply (subgoal_tac "#0 $< b") | |
| 1280 | prefer 2 apply (blast dest: zless_zle_trans) | |
| 1281 | apply (cut_tac a = "a" and b = "b" in zmod_zdiv_equality) | |
| 1282 | apply (cut_tac a = "a" and b = "b'" in zmod_zdiv_equality) | |
| 1283 | apply (rule zdiv_mono2_neg_lemma) | |
| 1284 | apply (erule subst) | |
| 1285 | apply (erule subst) | |
| 1286 | apply (simp_all add: pos_mod_sign pos_mod_bound) | |
| 1287 | done | |
| 1288 | ||
| 1289 | lemma zdiv_mono2_neg: "[| a $< #0; #0 $< b'; b' $<= b |] | |
| 1290 | ==> a zdiv b' $<= a zdiv b" | |
| 1291 | apply (cut_tac a = "intify (a)" in zdiv_mono2_neg_raw) | |
| 1292 | apply auto | |
| 1293 | done | |
| 1294 | ||
| 1295 | ||
| 1296 | ||
| 1297 | subsection{* More algebraic laws for zdiv and zmod *}
 | |
| 1298 | ||
| 1299 | (** proving (a*b) zdiv c = a $* (b zdiv c) $+ a * (b zmod c) **) | |
| 1300 | ||
| 1301 | lemma zmult1_lemma: | |
| 1302 | "[| quorem(<b,c>, <q,r>); c \<in> int; c \<noteq> #0 |] | |
| 1303 | ==> quorem (<a$*b, c>, <a$*q $+ (a$*r) zdiv c, (a$*r) zmod c>)" | |
| 1304 | apply (auto simp add: split_ifs quorem_def neq_iff_zless zadd_zmult_distrib2 | |
| 1305 | pos_mod_sign pos_mod_bound neg_mod_sign neg_mod_bound) | |
| 1306 | apply (auto intro: raw_zmod_zdiv_equality) | |
| 1307 | done | |
| 1308 | ||
| 1309 | lemma zdiv_zmult1_eq_raw: | |
| 1310 | "[|b \<in> int; c \<in> int|] | |
| 1311 | ==> (a$*b) zdiv c = a$*(b zdiv c) $+ a$*(b zmod c) zdiv c" | |
| 1312 | apply (case_tac "c = #0") | |
| 1313 | apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) | |
| 1314 | apply (rule quorem_div_mod [THEN zmult1_lemma, THEN quorem_div]) | |
| 1315 | apply auto | |
| 1316 | done | |
| 1317 | ||
| 1318 | lemma zdiv_zmult1_eq: "(a$*b) zdiv c = a$*(b zdiv c) $+ a$*(b zmod c) zdiv c" | |
| 1319 | apply (cut_tac b = "intify (b)" and c = "intify (c)" in zdiv_zmult1_eq_raw) | |
| 1320 | apply auto | |
| 1321 | done | |
| 1322 | ||
| 1323 | lemma zmod_zmult1_eq_raw: | |
| 1324 | "[|b \<in> int; c \<in> int|] ==> (a$*b) zmod c = a$*(b zmod c) zmod c" | |
| 1325 | apply (case_tac "c = #0") | |
| 1326 | apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) | |
| 1327 | apply (rule quorem_div_mod [THEN zmult1_lemma, THEN quorem_mod]) | |
| 1328 | apply auto | |
| 1329 | done | |
| 1330 | ||
| 1331 | lemma zmod_zmult1_eq: "(a$*b) zmod c = a$*(b zmod c) zmod c" | |
| 1332 | apply (cut_tac b = "intify (b)" and c = "intify (c)" in zmod_zmult1_eq_raw) | |
| 1333 | apply auto | |
| 1334 | done | |
| 1335 | ||
| 1336 | lemma zmod_zmult1_eq': "(a$*b) zmod c = ((a zmod c) $* b) zmod c" | |
| 1337 | apply (rule trans) | |
| 1338 | apply (rule_tac b = " (b $* a) zmod c" in trans) | |
| 1339 | apply (rule_tac [2] zmod_zmult1_eq) | |
| 1340 | apply (simp_all (no_asm) add: zmult_commute) | |
| 1341 | done | |
| 1342 | ||
| 1343 | lemma zmod_zmult_distrib: "(a$*b) zmod c = ((a zmod c) $* (b zmod c)) zmod c" | |
| 1344 | apply (rule zmod_zmult1_eq' [THEN trans]) | |
| 1345 | apply (rule zmod_zmult1_eq) | |
| 1346 | done | |
| 1347 | ||
| 1348 | lemma zdiv_zmult_self1 [simp]: "intify(b) \<noteq> #0 ==> (a$*b) zdiv b = intify(a)" | |
| 1349 | apply (simp (no_asm_simp) add: zdiv_zmult1_eq) | |
| 1350 | done | |
| 1351 | ||
| 1352 | lemma zdiv_zmult_self2 [simp]: "intify(b) \<noteq> #0 ==> (b$*a) zdiv b = intify(a)" | |
| 1353 | apply (subst zmult_commute , erule zdiv_zmult_self1) | |
| 1354 | done | |
| 1355 | ||
| 1356 | lemma zmod_zmult_self1 [simp]: "(a$*b) zmod b = #0" | |
| 1357 | apply (simp (no_asm) add: zmod_zmult1_eq) | |
| 1358 | done | |
| 1359 | ||
| 1360 | lemma zmod_zmult_self2 [simp]: "(b$*a) zmod b = #0" | |
| 1361 | apply (simp (no_asm) add: zmult_commute zmod_zmult1_eq) | |
| 1362 | done | |
| 1363 | ||
| 1364 | ||
| 1365 | (** proving (a$+b) zdiv c = | |
| 1366 | a zdiv c $+ b zdiv c $+ ((a zmod c $+ b zmod c) zdiv c) **) | |
| 1367 | ||
| 1368 | lemma zadd1_lemma: | |
| 1369 | "[| quorem(<a,c>, <aq,ar>); quorem(<b,c>, <bq,br>); | |
| 1370 | c \<in> int; c \<noteq> #0 |] | |
| 1371 | ==> quorem (<a$+b, c>, <aq $+ bq $+ (ar$+br) zdiv c, (ar$+br) zmod c>)" | |
| 1372 | apply (auto simp add: split_ifs quorem_def neq_iff_zless zadd_zmult_distrib2 | |
| 1373 | pos_mod_sign pos_mod_bound neg_mod_sign neg_mod_bound) | |
| 1374 | apply (auto intro: raw_zmod_zdiv_equality) | |
| 1375 | done | |
| 1376 | ||
| 1377 | (*NOT suitable for rewriting: the RHS has an instance of the LHS*) | |
| 1378 | lemma zdiv_zadd1_eq_raw: | |
| 1379 | "[|a \<in> int; b \<in> int; c \<in> int|] ==> | |
| 1380 | (a$+b) zdiv c = a zdiv c $+ b zdiv c $+ ((a zmod c $+ b zmod c) zdiv c)" | |
| 1381 | apply (case_tac "c = #0") | |
| 1382 | apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) | |
| 1383 | apply (blast intro: zadd1_lemma [OF quorem_div_mod quorem_div_mod, | |
| 1384 | THEN quorem_div]) | |
| 1385 | done | |
| 1386 | ||
| 1387 | lemma zdiv_zadd1_eq: | |
| 1388 | "(a$+b) zdiv c = a zdiv c $+ b zdiv c $+ ((a zmod c $+ b zmod c) zdiv c)" | |
| 1389 | apply (cut_tac a = "intify (a)" and b = "intify (b)" and c = "intify (c)" | |
| 1390 | in zdiv_zadd1_eq_raw) | |
| 1391 | apply auto | |
| 1392 | done | |
| 1393 | ||
| 1394 | lemma zmod_zadd1_eq_raw: | |
| 1395 | "[|a \<in> int; b \<in> int; c \<in> int|] | |
| 1396 | ==> (a$+b) zmod c = (a zmod c $+ b zmod c) zmod c" | |
| 1397 | apply (case_tac "c = #0") | |
| 1398 | apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) | |
| 1399 | apply (blast intro: zadd1_lemma [OF quorem_div_mod quorem_div_mod, | |
| 1400 | THEN quorem_mod]) | |
| 1401 | done | |
| 1402 | ||
| 1403 | lemma zmod_zadd1_eq: "(a$+b) zmod c = (a zmod c $+ b zmod c) zmod c" | |
| 1404 | apply (cut_tac a = "intify (a)" and b = "intify (b)" and c = "intify (c)" | |
| 1405 | in zmod_zadd1_eq_raw) | |
| 1406 | apply auto | |
| 1407 | done | |
| 1408 | ||
| 1409 | lemma zmod_div_trivial_raw: | |
| 1410 | "[|a \<in> int; b \<in> int|] ==> (a zmod b) zdiv b = #0" | |
| 1411 | apply (case_tac "b = #0") | |
| 1412 | apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) | |
| 1413 | apply (auto simp add: neq_iff_zless pos_mod_sign pos_mod_bound | |
| 1414 | zdiv_pos_pos_trivial neg_mod_sign neg_mod_bound zdiv_neg_neg_trivial) | |
| 1415 | done | |
| 1416 | ||
| 1417 | lemma zmod_div_trivial [simp]: "(a zmod b) zdiv b = #0" | |
| 1418 | apply (cut_tac a = "intify (a)" and b = "intify (b)" in zmod_div_trivial_raw) | |
| 1419 | apply auto | |
| 1420 | done | |
| 1421 | ||
| 1422 | lemma zmod_mod_trivial_raw: | |
| 1423 | "[|a \<in> int; b \<in> int|] ==> (a zmod b) zmod b = a zmod b" | |
| 1424 | apply (case_tac "b = #0") | |
| 1425 | apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) | |
| 1426 | apply (auto simp add: neq_iff_zless pos_mod_sign pos_mod_bound | |
| 1427 | zmod_pos_pos_trivial neg_mod_sign neg_mod_bound zmod_neg_neg_trivial) | |
| 1428 | done | |
| 1429 | ||
| 1430 | lemma zmod_mod_trivial [simp]: "(a zmod b) zmod b = a zmod b" | |
| 1431 | apply (cut_tac a = "intify (a)" and b = "intify (b)" in zmod_mod_trivial_raw) | |
| 1432 | apply auto | |
| 1433 | done | |
| 1434 | ||
| 1435 | lemma zmod_zadd_left_eq: "(a$+b) zmod c = ((a zmod c) $+ b) zmod c" | |
| 1436 | apply (rule trans [symmetric]) | |
| 1437 | apply (rule zmod_zadd1_eq) | |
| 1438 | apply (simp (no_asm)) | |
| 1439 | apply (rule zmod_zadd1_eq [symmetric]) | |
| 1440 | done | |
| 1441 | ||
| 1442 | lemma zmod_zadd_right_eq: "(a$+b) zmod c = (a $+ (b zmod c)) zmod c" | |
| 1443 | apply (rule trans [symmetric]) | |
| 1444 | apply (rule zmod_zadd1_eq) | |
| 1445 | apply (simp (no_asm)) | |
| 1446 | apply (rule zmod_zadd1_eq [symmetric]) | |
| 1447 | done | |
| 1448 | ||
| 1449 | ||
| 1450 | lemma zdiv_zadd_self1 [simp]: | |
| 1451 | "intify(a) \<noteq> #0 ==> (a$+b) zdiv a = b zdiv a $+ #1" | |
| 1452 | by (simp (no_asm_simp) add: zdiv_zadd1_eq) | |
| 1453 | ||
| 1454 | lemma zdiv_zadd_self2 [simp]: | |
| 1455 | "intify(a) \<noteq> #0 ==> (b$+a) zdiv a = b zdiv a $+ #1" | |
| 1456 | by (simp (no_asm_simp) add: zdiv_zadd1_eq) | |
| 1457 | ||
| 1458 | lemma zmod_zadd_self1 [simp]: "(a$+b) zmod a = b zmod a" | |
| 1459 | apply (case_tac "a = #0") | |
| 1460 | apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) | |
| 1461 | apply (simp (no_asm_simp) add: zmod_zadd1_eq) | |
| 1462 | done | |
| 1463 | ||
| 1464 | lemma zmod_zadd_self2 [simp]: "(b$+a) zmod a = b zmod a" | |
| 1465 | apply (case_tac "a = #0") | |
| 1466 | apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) | |
| 1467 | apply (simp (no_asm_simp) add: zmod_zadd1_eq) | |
| 1468 | done | |
| 1469 | ||
| 1470 | ||
| 1471 | subsection{* proving  a zdiv (b*c) = (a zdiv b) zdiv c *}
 | |
| 1472 | ||
| 1473 | (*The condition c>0 seems necessary. Consider that 7 zdiv ~6 = ~2 but | |
| 1474 | 7 zdiv 2 zdiv ~3 = 3 zdiv ~3 = ~1. The subcase (a zdiv b) zmod c = 0 seems | |
| 1475 | to cause particular problems.*) | |
| 1476 | ||
| 1477 | (** first, four lemmas to bound the remainder for the cases b<0 and b>0 **) | |
| 1478 | ||
| 13537 | 1479 | lemma zdiv_zmult2_aux1: | 
| 13520 | 1480 | "[| #0 $< c; b $< r; r $<= #0 |] ==> b$*c $< b$*(q zmod c) $+ r" | 
| 1481 | apply (subgoal_tac "b $* (c $- q zmod c) $< r $* #1") | |
| 1482 | apply (simp add: zdiff_zmult_distrib2 zadd_commute zcompare_rls) | |
| 1483 | apply (rule zle_zless_trans) | |
| 1484 | apply (erule_tac [2] zmult_zless_mono1) | |
| 1485 | apply (rule zmult_zle_mono2_neg) | |
| 1486 | apply (auto simp add: zcompare_rls zadd_commute add1_zle_iff pos_mod_bound) | |
| 1487 | apply (blast intro: zless_imp_zle dest: zless_zle_trans) | |
| 1488 | done | |
| 1489 | ||
| 13537 | 1490 | lemma zdiv_zmult2_aux2: | 
| 13520 | 1491 | "[| #0 $< c; b $< r; r $<= #0 |] ==> b $* (q zmod c) $+ r $<= #0" | 
| 1492 | apply (subgoal_tac "b $* (q zmod c) $<= #0") | |
| 1493 | prefer 2 | |
| 1494 | apply (simp add: zmult_le_0_iff pos_mod_sign) | |
| 1495 | apply (blast intro: zless_imp_zle dest: zless_zle_trans) | |
| 1496 | (*arithmetic*) | |
| 1497 | apply (drule zadd_zle_mono) | |
| 1498 | apply assumption | |
| 1499 | apply (simp add: zadd_commute) | |
| 1500 | done | |
| 1501 | ||
| 13537 | 1502 | lemma zdiv_zmult2_aux3: | 
| 13520 | 1503 | "[| #0 $< c; #0 $<= r; r $< b |] ==> #0 $<= b $* (q zmod c) $+ r" | 
| 1504 | apply (subgoal_tac "#0 $<= b $* (q zmod c)") | |
| 1505 | prefer 2 | |
| 1506 | apply (simp add: int_0_le_mult_iff pos_mod_sign) | |
| 1507 | apply (blast intro: zless_imp_zle dest: zle_zless_trans) | |
| 1508 | (*arithmetic*) | |
| 1509 | apply (drule zadd_zle_mono) | |
| 1510 | apply assumption | |
| 1511 | apply (simp add: zadd_commute) | |
| 1512 | done | |
| 1513 | ||
| 13537 | 1514 | lemma zdiv_zmult2_aux4: | 
| 13520 | 1515 | "[| #0 $< c; #0 $<= r; r $< b |] ==> b $* (q zmod c) $+ r $< b $* c" | 
| 1516 | apply (subgoal_tac "r $* #1 $< b $* (c $- q zmod c)") | |
| 1517 | apply (simp add: zdiff_zmult_distrib2 zadd_commute zcompare_rls) | |
| 1518 | apply (rule zless_zle_trans) | |
| 1519 | apply (erule zmult_zless_mono1) | |
| 1520 | apply (rule_tac [2] zmult_zle_mono2) | |
| 1521 | apply (auto simp add: zcompare_rls zadd_commute add1_zle_iff pos_mod_bound) | |
| 1522 | apply (blast intro: zless_imp_zle dest: zle_zless_trans) | |
| 1523 | done | |
| 1524 | ||
| 1525 | lemma zdiv_zmult2_lemma: | |
| 1526 | "[| quorem (<a,b>, <q,r>); a \<in> int; b \<in> int; b \<noteq> #0; #0 $< c |] | |
| 1527 | ==> quorem (<a,b$*c>, <q zdiv c, b$*(q zmod c) $+ r>)" | |
| 1528 | apply (auto simp add: zmult_ac zmod_zdiv_equality [symmetric] quorem_def | |
| 1529 | neq_iff_zless int_0_less_mult_iff | |
| 13537 | 1530 | zadd_zmult_distrib2 [symmetric] zdiv_zmult2_aux1 zdiv_zmult2_aux2 | 
| 1531 | zdiv_zmult2_aux3 zdiv_zmult2_aux4) | |
| 13520 | 1532 | apply (blast dest: zless_trans)+ | 
| 1533 | done | |
| 1534 | ||
| 1535 | lemma zdiv_zmult2_eq_raw: | |
| 1536 | "[|#0 $< c; a \<in> int; b \<in> int|] ==> a zdiv (b$*c) = (a zdiv b) zdiv c" | |
| 1537 | apply (case_tac "b = #0") | |
| 1538 | apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) | |
| 1539 | apply (rule quorem_div_mod [THEN zdiv_zmult2_lemma, THEN quorem_div]) | |
| 1540 | apply (auto simp add: intify_eq_0_iff_zle) | |
| 1541 | apply (blast dest: zle_zless_trans) | |
| 1542 | done | |
| 1543 | ||
| 1544 | lemma zdiv_zmult2_eq: "#0 $< c ==> a zdiv (b$*c) = (a zdiv b) zdiv c" | |
| 1545 | apply (cut_tac a = "intify (a)" and b = "intify (b)" in zdiv_zmult2_eq_raw) | |
| 1546 | apply auto | |
| 1547 | done | |
| 1548 | ||
| 1549 | lemma zmod_zmult2_eq_raw: | |
| 1550 | "[|#0 $< c; a \<in> int; b \<in> int|] | |
| 1551 | ==> a zmod (b$*c) = b$*(a zdiv b zmod c) $+ a zmod b" | |
| 1552 | apply (case_tac "b = #0") | |
| 1553 | apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) | |
| 1554 | apply (rule quorem_div_mod [THEN zdiv_zmult2_lemma, THEN quorem_mod]) | |
| 1555 | apply (auto simp add: intify_eq_0_iff_zle) | |
| 1556 | apply (blast dest: zle_zless_trans) | |
| 1557 | done | |
| 1558 | ||
| 1559 | lemma zmod_zmult2_eq: | |
| 1560 | "#0 $< c ==> a zmod (b$*c) = b$*(a zdiv b zmod c) $+ a zmod b" | |
| 1561 | apply (cut_tac a = "intify (a)" and b = "intify (b)" in zmod_zmult2_eq_raw) | |
| 1562 | apply auto | |
| 1563 | done | |
| 1564 | ||
| 1565 | subsection{* Cancellation of common factors in "zdiv" *}
 | |
| 1566 | ||
| 13537 | 1567 | lemma zdiv_zmult_zmult1_aux1: | 
| 13520 | 1568 | "[| #0 $< b; intify(c) \<noteq> #0 |] ==> (c$*a) zdiv (c$*b) = a zdiv b" | 
| 1569 | apply (subst zdiv_zmult2_eq) | |
| 1570 | apply auto | |
| 1571 | done | |
| 1572 | ||
| 13537 | 1573 | lemma zdiv_zmult_zmult1_aux2: | 
| 13520 | 1574 | "[| b $< #0; intify(c) \<noteq> #0 |] ==> (c$*a) zdiv (c$*b) = a zdiv b" | 
| 1575 | apply (subgoal_tac " (c $* ($-a)) zdiv (c $* ($-b)) = ($-a) zdiv ($-b)") | |
| 13537 | 1576 | apply (rule_tac [2] zdiv_zmult_zmult1_aux1) | 
| 13520 | 1577 | apply auto | 
| 1578 | done | |
| 1579 | ||
| 1580 | lemma zdiv_zmult_zmult1_raw: | |
| 1581 | "[|intify(c) \<noteq> #0; b \<in> int|] ==> (c$*a) zdiv (c$*b) = a zdiv b" | |
| 1582 | apply (case_tac "b = #0") | |
| 1583 | apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) | |
| 13537 | 1584 | apply (auto simp add: neq_iff_zless [of b] | 
| 1585 | zdiv_zmult_zmult1_aux1 zdiv_zmult_zmult1_aux2) | |
| 13520 | 1586 | done | 
| 1587 | ||
| 1588 | lemma zdiv_zmult_zmult1: "intify(c) \<noteq> #0 ==> (c$*a) zdiv (c$*b) = a zdiv b" | |
| 1589 | apply (cut_tac b = "intify (b)" in zdiv_zmult_zmult1_raw) | |
| 1590 | apply auto | |
| 1591 | done | |
| 1592 | ||
| 1593 | lemma zdiv_zmult_zmult2: "intify(c) \<noteq> #0 ==> (a$*c) zdiv (b$*c) = a zdiv b" | |
| 1594 | apply (drule zdiv_zmult_zmult1) | |
| 1595 | apply (auto simp add: zmult_commute) | |
| 1596 | done | |
| 1597 | ||
| 1598 | ||
| 1599 | subsection{* Distribution of factors over "zmod" *}
 | |
| 1600 | ||
| 13537 | 1601 | lemma zmod_zmult_zmult1_aux1: | 
| 13520 | 1602 | "[| #0 $< b; intify(c) \<noteq> #0 |] | 
| 1603 | ==> (c$*a) zmod (c$*b) = c $* (a zmod b)" | |
| 1604 | apply (subst zmod_zmult2_eq) | |
| 1605 | apply auto | |
| 1606 | done | |
| 1607 | ||
| 13537 | 1608 | lemma zmod_zmult_zmult1_aux2: | 
| 13520 | 1609 | "[| b $< #0; intify(c) \<noteq> #0 |] | 
| 1610 | ==> (c$*a) zmod (c$*b) = c $* (a zmod b)" | |
| 1611 | apply (subgoal_tac " (c $* ($-a)) zmod (c $* ($-b)) = c $* (($-a) zmod ($-b))") | |
| 13537 | 1612 | apply (rule_tac [2] zmod_zmult_zmult1_aux1) | 
| 13520 | 1613 | apply auto | 
| 1614 | done | |
| 1615 | ||
| 1616 | lemma zmod_zmult_zmult1_raw: | |
| 1617 | "[|b \<in> int; c \<in> int|] ==> (c$*a) zmod (c$*b) = c $* (a zmod b)" | |
| 1618 | apply (case_tac "b = #0") | |
| 1619 | apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) | |
| 1620 | apply (case_tac "c = #0") | |
| 1621 | apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) | |
| 13537 | 1622 | apply (auto simp add: neq_iff_zless [of b] | 
| 1623 | zmod_zmult_zmult1_aux1 zmod_zmult_zmult1_aux2) | |
| 13520 | 1624 | done | 
| 1625 | ||
| 1626 | lemma zmod_zmult_zmult1: "(c$*a) zmod (c$*b) = c $* (a zmod b)" | |
| 1627 | apply (cut_tac b = "intify (b)" and c = "intify (c)" in zmod_zmult_zmult1_raw) | |
| 1628 | apply auto | |
| 1629 | done | |
| 1630 | ||
| 1631 | lemma zmod_zmult_zmult2: "(a$*c) zmod (b$*c) = (a zmod b) $* c" | |
| 1632 | apply (cut_tac c = "c" in zmod_zmult_zmult1) | |
| 1633 | apply (auto simp add: zmult_commute) | |
| 1634 | done | |
| 1635 | ||
| 1636 | ||
| 1637 | (** Quotients of signs **) | |
| 1638 | ||
| 1639 | lemma zdiv_neg_pos_less0: "[| a $< #0; #0 $< b |] ==> a zdiv b $< #0" | |
| 1640 | apply (subgoal_tac "a zdiv b $<= #-1") | |
| 1641 | apply (erule zle_zless_trans) | |
| 1642 | apply (simp (no_asm)) | |
| 1643 | apply (rule zle_trans) | |
| 1644 | apply (rule_tac a' = "#-1" in zdiv_mono1) | |
| 1645 | apply (rule zless_add1_iff_zle [THEN iffD1]) | |
| 1646 | apply (simp (no_asm)) | |
| 1647 | apply (auto simp add: zdiv_minus1) | |
| 1648 | done | |
| 1649 | ||
| 1650 | lemma zdiv_nonneg_neg_le0: "[| #0 $<= a; b $< #0 |] ==> a zdiv b $<= #0" | |
| 1651 | apply (drule zdiv_mono1_neg) | |
| 1652 | apply auto | |
| 1653 | done | |
| 1654 | ||
| 1655 | lemma pos_imp_zdiv_nonneg_iff: "#0 $< b ==> (#0 $<= a zdiv b) <-> (#0 $<= a)" | |
| 1656 | apply auto | |
| 1657 | apply (drule_tac [2] zdiv_mono1) | |
| 1658 | apply (auto simp add: neq_iff_zless) | |
| 1659 | apply (simp (no_asm_use) add: not_zless_iff_zle [THEN iff_sym]) | |
| 1660 | apply (blast intro: zdiv_neg_pos_less0) | |
| 1661 | done | |
| 1662 | ||
| 1663 | lemma neg_imp_zdiv_nonneg_iff: "b $< #0 ==> (#0 $<= a zdiv b) <-> (a $<= #0)" | |
| 1664 | apply (subst zdiv_zminus_zminus [symmetric]) | |
| 1665 | apply (rule iff_trans) | |
| 1666 | apply (rule pos_imp_zdiv_nonneg_iff) | |
| 1667 | apply auto | |
| 1668 | done | |
| 1669 | ||
| 1670 | (*But not (a zdiv b $<= 0 iff a$<=0); consider a=1, b=2 when a zdiv b = 0.*) | |
| 1671 | lemma pos_imp_zdiv_neg_iff: "#0 $< b ==> (a zdiv b $< #0) <-> (a $< #0)" | |
| 1672 | apply (simp (no_asm_simp) add: not_zle_iff_zless [THEN iff_sym]) | |
| 1673 | apply (erule pos_imp_zdiv_nonneg_iff) | |
| 1674 | done | |
| 1675 | ||
| 1676 | (*Again the law fails for $<=: consider a = -1, b = -2 when a zdiv b = 0*) | |
| 1677 | lemma neg_imp_zdiv_neg_iff: "b $< #0 ==> (a zdiv b $< #0) <-> (#0 $< a)" | |
| 1678 | apply (simp (no_asm_simp) add: not_zle_iff_zless [THEN iff_sym]) | |
| 1679 | apply (erule neg_imp_zdiv_nonneg_iff) | |
| 1680 | done | |
| 1681 | ||
| 1682 | (* | |
| 1683 | THESE REMAIN TO BE CONVERTED -- but aren't that useful! | |
| 1684 | ||
| 1685 |  subsection{* Speeding up the division algorithm with shifting *}
 | |
| 1686 | ||
| 1687 | (** computing "zdiv" by shifting **) | |
| 1688 | ||
| 1689 | lemma pos_zdiv_mult_2: "#0 $<= a ==> (#1 $+ #2$*b) zdiv (#2$*a) = b zdiv a" | |
| 1690 | apply (case_tac "a = #0") | |
| 1691 | apply (subgoal_tac "#1 $<= a") | |
| 1692 | apply (arith_tac 2) | |
| 1693 | apply (subgoal_tac "#1 $< a $* #2") | |
| 1694 | apply (arith_tac 2) | |
| 1695 | apply (subgoal_tac "#2$* (#1 $+ b zmod a) $<= #2$*a") | |
| 1696 | apply (rule_tac [2] zmult_zle_mono2) | |
| 1697 | apply (auto simp add: zadd_commute zmult_commute add1_zle_iff pos_mod_bound) | |
| 1698 | apply (subst zdiv_zadd1_eq) | |
| 1699 | apply (simp (no_asm_simp) add: zdiv_zmult_zmult2 zmod_zmult_zmult2 zdiv_pos_pos_trivial) | |
| 1700 | apply (subst zdiv_pos_pos_trivial) | |
| 1701 | apply (simp (no_asm_simp) add: [zmod_pos_pos_trivial pos_mod_sign [THEN zadd_zle_mono1] RSN (2,zle_trans) ]) | |
| 1702 | apply (auto simp add: zmod_pos_pos_trivial) | |
| 1703 | apply (subgoal_tac "#0 $<= b zmod a") | |
| 1704 | apply (asm_simp_tac (simpset () add: pos_mod_sign) 2) | |
| 1705 | apply arith | |
| 1706 | done | |
| 1707 | ||
| 1708 | ||
| 1709 | lemma neg_zdiv_mult_2: "a $<= #0 ==> (#1 $+ #2$*b) zdiv (#2$*a) <-> (b$+#1) zdiv a" | |
| 1710 | apply (subgoal_tac " (#1 $+ #2$* ($-b-#1)) zdiv (#2 $* ($-a)) <-> ($-b-#1) zdiv ($-a)") | |
| 1711 | apply (rule_tac [2] pos_zdiv_mult_2) | |
| 1712 | apply (auto simp add: zmult_zminus_right) | |
| 1713 | apply (subgoal_tac " (#-1 - (#2 $* b)) = - (#1 $+ (#2 $* b))") | |
| 1714 | apply (Simp_tac 2) | |
| 1715 | apply (asm_full_simp_tac (HOL_ss add: zdiv_zminus_zminus zdiff_def zminus_zadd_distrib [symmetric]) | |
| 1716 | done | |
| 1717 | ||
| 1718 | ||
| 1719 | (*Not clear why this must be proved separately; probably integ_of causes | |
| 1720 | simplification problems*) | |
| 1721 | lemma lemma: "~ #0 $<= x ==> x $<= #0" | |
| 1722 | apply auto | |
| 1723 | done | |
| 1724 | ||
| 1725 | lemma zdiv_integ_of_BIT: "integ_of (v BIT b) zdiv integ_of (w BIT False) = | |
| 1726 | (if ~b | #0 $<= integ_of w | |
| 1727 | then integ_of v zdiv (integ_of w) | |
| 1728 | else (integ_of v $+ #1) zdiv (integ_of w))" | |
| 1729 | apply (simp_tac (simpset_of Int.thy add: zadd_assoc integ_of_BIT) | |
| 1730 | apply (simp (no_asm_simp) del: bin_arith_extra_simps@bin_rel_simps add: zdiv_zmult_zmult1 pos_zdiv_mult_2 lemma neg_zdiv_mult_2) | |
| 1731 | done | |
| 1732 | ||
| 1733 | declare zdiv_integ_of_BIT [simp] | |
| 1734 | ||
| 1735 | ||
| 1736 | (** computing "zmod" by shifting (proofs resemble those for "zdiv") **) | |
| 1737 | ||
| 1738 | lemma pos_zmod_mult_2: "#0 $<= a ==> (#1 $+ #2$*b) zmod (#2$*a) = #1 $+ #2 $* (b zmod a)" | |
| 1739 | apply (case_tac "a = #0") | |
| 1740 | apply (subgoal_tac "#1 $<= a") | |
| 1741 | apply (arith_tac 2) | |
| 1742 | apply (subgoal_tac "#1 $< a $* #2") | |
| 1743 | apply (arith_tac 2) | |
| 1744 | apply (subgoal_tac "#2$* (#1 $+ b zmod a) $<= #2$*a") | |
| 1745 | apply (rule_tac [2] zmult_zle_mono2) | |
| 1746 | apply (auto simp add: zadd_commute zmult_commute add1_zle_iff pos_mod_bound) | |
| 1747 | apply (subst zmod_zadd1_eq) | |
| 1748 | apply (simp (no_asm_simp) add: zmod_zmult_zmult2 zmod_pos_pos_trivial) | |
| 1749 | apply (rule zmod_pos_pos_trivial) | |
| 1750 | apply (simp (no_asm_simp) # add: [zmod_pos_pos_trivial pos_mod_sign [THEN zadd_zle_mono1] RSN (2,zle_trans) ]) | |
| 1751 | apply (auto simp add: zmod_pos_pos_trivial) | |
| 1752 | apply (subgoal_tac "#0 $<= b zmod a") | |
| 1753 | apply (asm_simp_tac (simpset () add: pos_mod_sign) 2) | |
| 1754 | apply arith | |
| 1755 | done | |
| 1756 | ||
| 1757 | ||
| 1758 | lemma neg_zmod_mult_2: "a $<= #0 ==> (#1 $+ #2$*b) zmod (#2$*a) = #2 $* ((b$+#1) zmod a) - #1" | |
| 1759 | apply (subgoal_tac " (#1 $+ #2$* ($-b-#1)) zmod (#2$* ($-a)) = #1 $+ #2$* (($-b-#1) zmod ($-a))") | |
| 1760 | apply (rule_tac [2] pos_zmod_mult_2) | |
| 1761 | apply (auto simp add: zmult_zminus_right) | |
| 1762 | apply (subgoal_tac " (#-1 - (#2 $* b)) = - (#1 $+ (#2 $* b))") | |
| 1763 | apply (Simp_tac 2) | |
| 1764 | apply (asm_full_simp_tac (HOL_ss add: zmod_zminus_zminus zdiff_def zminus_zadd_distrib [symmetric]) | |
| 1765 | apply (dtac (zminus_equation [THEN iffD1, symmetric]) | |
| 1766 | apply auto | |
| 1767 | done | |
| 1768 | ||
| 1769 | lemma zmod_integ_of_BIT: "integ_of (v BIT b) zmod integ_of (w BIT False) = | |
| 1770 | (if b then | |
| 1771 | if #0 $<= integ_of w | |
| 1772 | then #2 $* (integ_of v zmod integ_of w) $+ #1 | |
| 1773 | else #2 $* ((integ_of v $+ #1) zmod integ_of w) - #1 | |
| 1774 | else #2 $* (integ_of v zmod integ_of w))" | |
| 1775 | apply (simp_tac (simpset_of Int.thy add: zadd_assoc integ_of_BIT) | |
| 1776 | apply (simp (no_asm_simp) del: bin_arith_extra_simps@bin_rel_simps add: zmod_zmult_zmult1 pos_zmod_mult_2 lemma neg_zmod_mult_2) | |
| 1777 | done | |
| 1778 | ||
| 1779 | declare zmod_integ_of_BIT [simp] | |
| 1780 | *) | |
| 1781 | ||
| 1782 | ML{*
 | |
| 1783 | val zspos_add_zspos_imp_zspos = thm "zspos_add_zspos_imp_zspos"; | |
| 1784 | val zpos_add_zpos_imp_zpos = thm "zpos_add_zpos_imp_zpos"; | |
| 1785 | val zneg_add_zneg_imp_zneg = thm "zneg_add_zneg_imp_zneg"; | |
| 1786 | val zneg_or_0_add_zneg_or_0_imp_zneg_or_0 = thm "zneg_or_0_add_zneg_or_0_imp_zneg_or_0"; | |
| 1787 | val zero_lt_zmagnitude = thm "zero_lt_zmagnitude"; | |
| 1788 | val zless_add_succ_iff = thm "zless_add_succ_iff"; | |
| 1789 | val zadd_succ_zle_iff = thm "zadd_succ_zle_iff"; | |
| 1790 | val zless_add1_iff_zle = thm "zless_add1_iff_zle"; | |
| 1791 | val add1_zle_iff = thm "add1_zle_iff"; | |
| 1792 | val add1_left_zle_iff = thm "add1_left_zle_iff"; | |
| 1793 | val zmult_zle_mono1 = thm "zmult_zle_mono1"; | |
| 1794 | val zmult_zle_mono1_neg = thm "zmult_zle_mono1_neg"; | |
| 1795 | val zmult_zle_mono2 = thm "zmult_zle_mono2"; | |
| 1796 | val zmult_zle_mono2_neg = thm "zmult_zle_mono2_neg"; | |
| 1797 | val zmult_zle_mono = thm "zmult_zle_mono"; | |
| 1798 | val zmult_zless_mono2 = thm "zmult_zless_mono2"; | |
| 1799 | val zmult_zless_mono1 = thm "zmult_zless_mono1"; | |
| 1800 | val zmult_zless_mono = thm "zmult_zless_mono"; | |
| 1801 | val zmult_zless_mono1_neg = thm "zmult_zless_mono1_neg"; | |
| 1802 | val zmult_zless_mono2_neg = thm "zmult_zless_mono2_neg"; | |
| 1803 | val zmult_eq_0_iff = thm "zmult_eq_0_iff"; | |
| 1804 | val zmult_zless_cancel2 = thm "zmult_zless_cancel2"; | |
| 1805 | val zmult_zless_cancel1 = thm "zmult_zless_cancel1"; | |
| 1806 | val zmult_zle_cancel2 = thm "zmult_zle_cancel2"; | |
| 1807 | val zmult_zle_cancel1 = thm "zmult_zle_cancel1"; | |
| 1808 | val int_eq_iff_zle = thm "int_eq_iff_zle"; | |
| 1809 | val zmult_cancel2 = thm "zmult_cancel2"; | |
| 1810 | val zmult_cancel1 = thm "zmult_cancel1"; | |
| 1811 | val unique_quotient = thm "unique_quotient"; | |
| 1812 | val unique_remainder = thm "unique_remainder"; | |
| 1813 | val adjust_eq = thm "adjust_eq"; | |
| 1814 | val posDivAlg_termination = thm "posDivAlg_termination"; | |
| 1815 | val posDivAlg_unfold = thm "posDivAlg_unfold"; | |
| 1816 | val posDivAlg_eqn = thm "posDivAlg_eqn"; | |
| 1817 | val posDivAlg_induct = thm "posDivAlg_induct"; | |
| 1818 | val intify_eq_0_iff_zle = thm "intify_eq_0_iff_zle"; | |
| 1819 | val zmult_pos = thm "zmult_pos"; | |
| 1820 | val zmult_neg = thm "zmult_neg"; | |
| 1821 | val zmult_pos_neg = thm "zmult_pos_neg"; | |
| 1822 | val int_0_less_mult_iff = thm "int_0_less_mult_iff"; | |
| 1823 | val int_0_le_mult_iff = thm "int_0_le_mult_iff"; | |
| 1824 | val zmult_less_0_iff = thm "zmult_less_0_iff"; | |
| 1825 | val zmult_le_0_iff = thm "zmult_le_0_iff"; | |
| 1826 | val posDivAlg_type = thm "posDivAlg_type"; | |
| 1827 | val posDivAlg_correct = thm "posDivAlg_correct"; | |
| 1828 | val negDivAlg_termination = thm "negDivAlg_termination"; | |
| 1829 | val negDivAlg_unfold = thm "negDivAlg_unfold"; | |
| 1830 | val negDivAlg_eqn = thm "negDivAlg_eqn"; | |
| 1831 | val negDivAlg_induct = thm "negDivAlg_induct"; | |
| 1832 | val negDivAlg_type = thm "negDivAlg_type"; | |
| 1833 | val negDivAlg_correct = thm "negDivAlg_correct"; | |
| 1834 | val quorem_0 = thm "quorem_0"; | |
| 1835 | val posDivAlg_zero_divisor = thm "posDivAlg_zero_divisor"; | |
| 1836 | val posDivAlg_0 = thm "posDivAlg_0"; | |
| 1837 | val negDivAlg_minus1 = thm "negDivAlg_minus1"; | |
| 1838 | val negateSnd_eq = thm "negateSnd_eq"; | |
| 1839 | val negateSnd_type = thm "negateSnd_type"; | |
| 1840 | val quorem_neg = thm "quorem_neg"; | |
| 1841 | val divAlg_correct = thm "divAlg_correct"; | |
| 1842 | val divAlg_type = thm "divAlg_type"; | |
| 1843 | val zdiv_intify1 = thm "zdiv_intify1"; | |
| 1844 | val zdiv_intify2 = thm "zdiv_intify2"; | |
| 1845 | val zdiv_type = thm "zdiv_type"; | |
| 1846 | val zmod_intify1 = thm "zmod_intify1"; | |
| 1847 | val zmod_intify2 = thm "zmod_intify2"; | |
| 1848 | val zmod_type = thm "zmod_type"; | |
| 1849 | val DIVISION_BY_ZERO_ZDIV = thm "DIVISION_BY_ZERO_ZDIV"; | |
| 1850 | val DIVISION_BY_ZERO_ZMOD = thm "DIVISION_BY_ZERO_ZMOD"; | |
| 1851 | val zmod_zdiv_equality = thm "zmod_zdiv_equality"; | |
| 1852 | val pos_mod = thm "pos_mod"; | |
| 1853 | val pos_mod_sign = thm "pos_mod_sign"; | |
| 1854 | val neg_mod = thm "neg_mod"; | |
| 1855 | val neg_mod_sign = thm "neg_mod_sign"; | |
| 1856 | val quorem_div_mod = thm "quorem_div_mod"; | |
| 1857 | val quorem_div = thm "quorem_div"; | |
| 1858 | val quorem_mod = thm "quorem_mod"; | |
| 1859 | val zdiv_pos_pos_trivial = thm "zdiv_pos_pos_trivial"; | |
| 1860 | val zdiv_neg_neg_trivial = thm "zdiv_neg_neg_trivial"; | |
| 1861 | val zdiv_pos_neg_trivial = thm "zdiv_pos_neg_trivial"; | |
| 1862 | val zmod_pos_pos_trivial = thm "zmod_pos_pos_trivial"; | |
| 1863 | val zmod_neg_neg_trivial = thm "zmod_neg_neg_trivial"; | |
| 1864 | val zmod_pos_neg_trivial = thm "zmod_pos_neg_trivial"; | |
| 1865 | val zdiv_zminus_zminus = thm "zdiv_zminus_zminus"; | |
| 1866 | val zmod_zminus_zminus = thm "zmod_zminus_zminus"; | |
| 1867 | val self_quotient = thm "self_quotient"; | |
| 1868 | val self_remainder = thm "self_remainder"; | |
| 1869 | val zdiv_self = thm "zdiv_self"; | |
| 1870 | val zmod_self = thm "zmod_self"; | |
| 1871 | val zdiv_zero = thm "zdiv_zero"; | |
| 1872 | val zdiv_eq_minus1 = thm "zdiv_eq_minus1"; | |
| 1873 | val zmod_zero = thm "zmod_zero"; | |
| 1874 | val zdiv_minus1 = thm "zdiv_minus1"; | |
| 1875 | val zmod_minus1 = thm "zmod_minus1"; | |
| 1876 | val zdiv_pos_pos = thm "zdiv_pos_pos"; | |
| 1877 | val zmod_pos_pos = thm "zmod_pos_pos"; | |
| 1878 | val zdiv_neg_pos = thm "zdiv_neg_pos"; | |
| 1879 | val zmod_neg_pos = thm "zmod_neg_pos"; | |
| 1880 | val zdiv_pos_neg = thm "zdiv_pos_neg"; | |
| 1881 | val zmod_pos_neg = thm "zmod_pos_neg"; | |
| 1882 | val zdiv_neg_neg = thm "zdiv_neg_neg"; | |
| 1883 | val zmod_neg_neg = thm "zmod_neg_neg"; | |
| 1884 | val zmod_1 = thm "zmod_1"; | |
| 1885 | val zdiv_1 = thm "zdiv_1"; | |
| 1886 | val zmod_minus1_right = thm "zmod_minus1_right"; | |
| 1887 | val zdiv_minus1_right = thm "zdiv_minus1_right"; | |
| 1888 | val zdiv_mono1 = thm "zdiv_mono1"; | |
| 1889 | val zdiv_mono1_neg = thm "zdiv_mono1_neg"; | |
| 1890 | val zdiv_mono2 = thm "zdiv_mono2"; | |
| 1891 | val zdiv_mono2_neg = thm "zdiv_mono2_neg"; | |
| 1892 | val zdiv_zmult1_eq = thm "zdiv_zmult1_eq"; | |
| 1893 | val zmod_zmult1_eq = thm "zmod_zmult1_eq"; | |
| 1894 | val zmod_zmult1_eq' = thm "zmod_zmult1_eq'"; | |
| 1895 | val zmod_zmult_distrib = thm "zmod_zmult_distrib"; | |
| 1896 | val zdiv_zmult_self1 = thm "zdiv_zmult_self1"; | |
| 1897 | val zdiv_zmult_self2 = thm "zdiv_zmult_self2"; | |
| 1898 | val zmod_zmult_self1 = thm "zmod_zmult_self1"; | |
| 1899 | val zmod_zmult_self2 = thm "zmod_zmult_self2"; | |
| 1900 | val zdiv_zadd1_eq = thm "zdiv_zadd1_eq"; | |
| 1901 | val zmod_zadd1_eq = thm "zmod_zadd1_eq"; | |
| 1902 | val zmod_div_trivial = thm "zmod_div_trivial"; | |
| 1903 | val zmod_mod_trivial = thm "zmod_mod_trivial"; | |
| 1904 | val zmod_zadd_left_eq = thm "zmod_zadd_left_eq"; | |
| 1905 | val zmod_zadd_right_eq = thm "zmod_zadd_right_eq"; | |
| 1906 | val zdiv_zadd_self1 = thm "zdiv_zadd_self1"; | |
| 1907 | val zdiv_zadd_self2 = thm "zdiv_zadd_self2"; | |
| 1908 | val zmod_zadd_self1 = thm "zmod_zadd_self1"; | |
| 1909 | val zmod_zadd_self2 = thm "zmod_zadd_self2"; | |
| 1910 | val zdiv_zmult2_eq = thm "zdiv_zmult2_eq"; | |
| 1911 | val zmod_zmult2_eq = thm "zmod_zmult2_eq"; | |
| 1912 | val zdiv_zmult_zmult1 = thm "zdiv_zmult_zmult1"; | |
| 1913 | val zdiv_zmult_zmult2 = thm "zdiv_zmult_zmult2"; | |
| 1914 | val zmod_zmult_zmult1 = thm "zmod_zmult_zmult1"; | |
| 1915 | val zmod_zmult_zmult2 = thm "zmod_zmult_zmult2"; | |
| 1916 | val zdiv_neg_pos_less0 = thm "zdiv_neg_pos_less0"; | |
| 1917 | val zdiv_nonneg_neg_le0 = thm "zdiv_nonneg_neg_le0"; | |
| 1918 | val pos_imp_zdiv_nonneg_iff = thm "pos_imp_zdiv_nonneg_iff"; | |
| 1919 | val neg_imp_zdiv_nonneg_iff = thm "neg_imp_zdiv_nonneg_iff"; | |
| 1920 | val pos_imp_zdiv_neg_iff = thm "pos_imp_zdiv_neg_iff"; | |
| 1921 | val neg_imp_zdiv_neg_iff = thm "neg_imp_zdiv_neg_iff"; | |
| 1922 | *} | |
| 1923 | ||
| 9578 
ab26d6c8ebfe
new theory Integ/IntDiv and many more monotonicity laws, etc., for the integers
 paulson parents: diff
changeset | 1924 | end | 
| 13520 | 1925 |