| author | nipkow | 
| Mon, 09 Feb 2009 18:50:10 +0100 | |
| changeset 29849 | a2baf1b221be | 
| parent 28711 | 60e51a045755 | 
| child 30301 | 429612400fe9 | 
| permissions | -rw-r--r-- | 
| 1475 | 1 | (* Title: HOL/Fun.thy | 
| 923 | 2 | ID: $Id$ | 
| 1475 | 3 | Author: Tobias Nipkow, Cambridge University Computer Laboratory | 
| 923 | 4 | Copyright 1994 University of Cambridge | 
| 18154 | 5 | *) | 
| 923 | 6 | |
| 18154 | 7 | header {* Notions about functions *}
 | 
| 923 | 8 | |
| 15510 | 9 | theory Fun | 
| 22886 | 10 | imports Set | 
| 15131 | 11 | begin | 
| 2912 | 12 | |
| 26147 | 13 | text{*As a simplification rule, it replaces all function equalities by
 | 
| 14 | first-order equalities.*} | |
| 15 | lemma expand_fun_eq: "f = g \<longleftrightarrow> (\<forall>x. f x = g x)" | |
| 16 | apply (rule iffI) | |
| 17 | apply (simp (no_asm_simp)) | |
| 18 | apply (rule ext) | |
| 19 | apply (simp (no_asm_simp)) | |
| 20 | done | |
| 5305 | 21 | |
| 26147 | 22 | lemma apply_inverse: | 
| 26357 | 23 | "f x = u \<Longrightarrow> (\<And>x. P x \<Longrightarrow> g (f x) = x) \<Longrightarrow> P x \<Longrightarrow> x = g u" | 
| 26147 | 24 | by auto | 
| 2912 | 25 | |
| 12258 | 26 | |
| 26147 | 27 | subsection {* The Identity Function @{text id} *}
 | 
| 6171 | 28 | |
| 22744 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 29 | definition | 
| 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 30 | id :: "'a \<Rightarrow> 'a" | 
| 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 31 | where | 
| 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 32 | "id = (\<lambda>x. x)" | 
| 13910 | 33 | |
| 26147 | 34 | lemma id_apply [simp]: "id x = x" | 
| 35 | by (simp add: id_def) | |
| 36 | ||
| 37 | lemma image_ident [simp]: "(%x. x) ` Y = Y" | |
| 38 | by blast | |
| 39 | ||
| 40 | lemma image_id [simp]: "id ` Y = Y" | |
| 41 | by (simp add: id_def) | |
| 42 | ||
| 43 | lemma vimage_ident [simp]: "(%x. x) -` Y = Y" | |
| 44 | by blast | |
| 45 | ||
| 46 | lemma vimage_id [simp]: "id -` A = A" | |
| 47 | by (simp add: id_def) | |
| 48 | ||
| 49 | ||
| 50 | subsection {* The Composition Operator @{text "f \<circ> g"} *}
 | |
| 51 | ||
| 22744 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 52 | definition | 
| 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 53 |   comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "o" 55)
 | 
| 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 54 | where | 
| 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 55 | "f o g = (\<lambda>x. f (g x))" | 
| 11123 | 56 | |
| 21210 | 57 | notation (xsymbols) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19536diff
changeset | 58 | comp (infixl "\<circ>" 55) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19536diff
changeset | 59 | |
| 21210 | 60 | notation (HTML output) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19536diff
changeset | 61 | comp (infixl "\<circ>" 55) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19536diff
changeset | 62 | |
| 13585 | 63 | text{*compatibility*}
 | 
| 64 | lemmas o_def = comp_def | |
| 2912 | 65 | |
| 13585 | 66 | lemma o_apply [simp]: "(f o g) x = f (g x)" | 
| 67 | by (simp add: comp_def) | |
| 68 | ||
| 69 | lemma o_assoc: "f o (g o h) = f o g o h" | |
| 70 | by (simp add: comp_def) | |
| 71 | ||
| 72 | lemma id_o [simp]: "id o g = g" | |
| 73 | by (simp add: comp_def) | |
| 74 | ||
| 75 | lemma o_id [simp]: "f o id = f" | |
| 76 | by (simp add: comp_def) | |
| 77 | ||
| 78 | lemma image_compose: "(f o g) ` r = f`(g`r)" | |
| 79 | by (simp add: comp_def, blast) | |
| 80 | ||
| 81 | lemma UN_o: "UNION A (g o f) = UNION (f`A) g" | |
| 82 | by (unfold comp_def, blast) | |
| 83 | ||
| 84 | ||
| 26588 
d83271bfaba5
removed syntax from monad combinators; renamed mbind to scomp
 haftmann parents: 
26357diff
changeset | 85 | subsection {* The Forward Composition Operator @{text fcomp} *}
 | 
| 26357 | 86 | |
| 87 | definition | |
| 88 |   fcomp :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "o>" 60)
 | |
| 89 | where | |
| 90 | "f o> g = (\<lambda>x. g (f x))" | |
| 91 | ||
| 92 | lemma fcomp_apply: "(f o> g) x = g (f x)" | |
| 93 | by (simp add: fcomp_def) | |
| 94 | ||
| 95 | lemma fcomp_assoc: "(f o> g) o> h = f o> (g o> h)" | |
| 96 | by (simp add: fcomp_def) | |
| 97 | ||
| 98 | lemma id_fcomp [simp]: "id o> g = g" | |
| 99 | by (simp add: fcomp_def) | |
| 100 | ||
| 101 | lemma fcomp_id [simp]: "f o> id = f" | |
| 102 | by (simp add: fcomp_def) | |
| 103 | ||
| 26588 
d83271bfaba5
removed syntax from monad combinators; renamed mbind to scomp
 haftmann parents: 
26357diff
changeset | 104 | no_notation fcomp (infixl "o>" 60) | 
| 
d83271bfaba5
removed syntax from monad combinators; renamed mbind to scomp
 haftmann parents: 
26357diff
changeset | 105 | |
| 26357 | 106 | |
| 26147 | 107 | subsection {* Injectivity and Surjectivity *}
 | 
| 108 | ||
| 109 | constdefs | |
| 110 | inj_on :: "['a => 'b, 'a set] => bool" -- "injective" | |
| 111 | "inj_on f A == ! x:A. ! y:A. f(x)=f(y) --> x=y" | |
| 112 | ||
| 113 | text{*A common special case: functions injective over the entire domain type.*}
 | |
| 114 | ||
| 115 | abbreviation | |
| 116 | "inj f == inj_on f UNIV" | |
| 13585 | 117 | |
| 26147 | 118 | definition | 
| 119 |   bij_betw :: "('a => 'b) => 'a set => 'b set => bool" where -- "bijective"
 | |
| 28562 | 120 | [code del]: "bij_betw f A B \<longleftrightarrow> inj_on f A & f ` A = B" | 
| 26147 | 121 | |
| 122 | constdefs | |
| 123 |   surj :: "('a => 'b) => bool"                   (*surjective*)
 | |
| 124 | "surj f == ! y. ? x. y=f(x)" | |
| 13585 | 125 | |
| 26147 | 126 |   bij :: "('a => 'b) => bool"                    (*bijective*)
 | 
| 127 | "bij f == inj f & surj f" | |
| 128 | ||
| 129 | lemma injI: | |
| 130 | assumes "\<And>x y. f x = f y \<Longrightarrow> x = y" | |
| 131 | shows "inj f" | |
| 132 | using assms unfolding inj_on_def by auto | |
| 13585 | 133 | |
| 134 | text{*For Proofs in @{text "Tools/datatype_rep_proofs"}*}
 | |
| 135 | lemma datatype_injI: | |
| 136 | "(!! x. ALL y. f(x) = f(y) --> x=y) ==> inj(f)" | |
| 137 | by (simp add: inj_on_def) | |
| 138 | ||
| 13637 | 139 | theorem range_ex1_eq: "inj f \<Longrightarrow> b : range f = (EX! x. b = f x)" | 
| 140 | by (unfold inj_on_def, blast) | |
| 141 | ||
| 13585 | 142 | lemma injD: "[| inj(f); f(x) = f(y) |] ==> x=y" | 
| 143 | by (simp add: inj_on_def) | |
| 144 | ||
| 145 | (*Useful with the simplifier*) | |
| 146 | lemma inj_eq: "inj(f) ==> (f(x) = f(y)) = (x=y)" | |
| 147 | by (force simp add: inj_on_def) | |
| 148 | ||
| 26147 | 149 | lemma inj_on_id[simp]: "inj_on id A" | 
| 150 | by (simp add: inj_on_def) | |
| 13585 | 151 | |
| 26147 | 152 | lemma inj_on_id2[simp]: "inj_on (%x. x) A" | 
| 153 | by (simp add: inj_on_def) | |
| 154 | ||
| 155 | lemma surj_id[simp]: "surj id" | |
| 156 | by (simp add: surj_def) | |
| 157 | ||
| 158 | lemma bij_id[simp]: "bij id" | |
| 159 | by (simp add: bij_def inj_on_id surj_id) | |
| 13585 | 160 | |
| 161 | lemma inj_onI: | |
| 162 | "(!! x y. [| x:A; y:A; f(x) = f(y) |] ==> x=y) ==> inj_on f A" | |
| 163 | by (simp add: inj_on_def) | |
| 164 | ||
| 165 | lemma inj_on_inverseI: "(!!x. x:A ==> g(f(x)) = x) ==> inj_on f A" | |
| 166 | by (auto dest: arg_cong [of concl: g] simp add: inj_on_def) | |
| 167 | ||
| 168 | lemma inj_onD: "[| inj_on f A; f(x)=f(y); x:A; y:A |] ==> x=y" | |
| 169 | by (unfold inj_on_def, blast) | |
| 170 | ||
| 171 | lemma inj_on_iff: "[| inj_on f A; x:A; y:A |] ==> (f(x)=f(y)) = (x=y)" | |
| 172 | by (blast dest!: inj_onD) | |
| 173 | ||
| 174 | lemma comp_inj_on: | |
| 175 | "[| inj_on f A; inj_on g (f`A) |] ==> inj_on (g o f) A" | |
| 176 | by (simp add: comp_def inj_on_def) | |
| 177 | ||
| 15303 | 178 | lemma inj_on_imageI: "inj_on (g o f) A \<Longrightarrow> inj_on g (f ` A)" | 
| 179 | apply(simp add:inj_on_def image_def) | |
| 180 | apply blast | |
| 181 | done | |
| 182 | ||
| 15439 | 183 | lemma inj_on_image_iff: "\<lbrakk> ALL x:A. ALL y:A. (g(f x) = g(f y)) = (g x = g y); | 
| 184 | inj_on f A \<rbrakk> \<Longrightarrow> inj_on g (f ` A) = inj_on g A" | |
| 185 | apply(unfold inj_on_def) | |
| 186 | apply blast | |
| 187 | done | |
| 188 | ||
| 13585 | 189 | lemma inj_on_contraD: "[| inj_on f A; ~x=y; x:A; y:A |] ==> ~ f(x)=f(y)" | 
| 190 | by (unfold inj_on_def, blast) | |
| 12258 | 191 | |
| 13585 | 192 | lemma inj_singleton: "inj (%s. {s})"
 | 
| 193 | by (simp add: inj_on_def) | |
| 194 | ||
| 15111 | 195 | lemma inj_on_empty[iff]: "inj_on f {}"
 | 
| 196 | by(simp add: inj_on_def) | |
| 197 | ||
| 15303 | 198 | lemma subset_inj_on: "[| inj_on f B; A <= B |] ==> inj_on f A" | 
| 13585 | 199 | by (unfold inj_on_def, blast) | 
| 200 | ||
| 15111 | 201 | lemma inj_on_Un: | 
| 202 | "inj_on f (A Un B) = | |
| 203 |   (inj_on f A & inj_on f B & f`(A-B) Int f`(B-A) = {})"
 | |
| 204 | apply(unfold inj_on_def) | |
| 205 | apply (blast intro:sym) | |
| 206 | done | |
| 207 | ||
| 208 | lemma inj_on_insert[iff]: | |
| 209 |   "inj_on f (insert a A) = (inj_on f A & f a ~: f`(A-{a}))"
 | |
| 210 | apply(unfold inj_on_def) | |
| 211 | apply (blast intro:sym) | |
| 212 | done | |
| 213 | ||
| 214 | lemma inj_on_diff: "inj_on f A ==> inj_on f (A-B)" | |
| 215 | apply(unfold inj_on_def) | |
| 216 | apply (blast) | |
| 217 | done | |
| 218 | ||
| 13585 | 219 | lemma surjI: "(!! x. g(f x) = x) ==> surj g" | 
| 220 | apply (simp add: surj_def) | |
| 221 | apply (blast intro: sym) | |
| 222 | done | |
| 223 | ||
| 224 | lemma surj_range: "surj f ==> range f = UNIV" | |
| 225 | by (auto simp add: surj_def) | |
| 226 | ||
| 227 | lemma surjD: "surj f ==> EX x. y = f x" | |
| 228 | by (simp add: surj_def) | |
| 229 | ||
| 230 | lemma surjE: "surj f ==> (!!x. y = f x ==> C) ==> C" | |
| 231 | by (simp add: surj_def, blast) | |
| 232 | ||
| 233 | lemma comp_surj: "[| surj f; surj g |] ==> surj (g o f)" | |
| 234 | apply (simp add: comp_def surj_def, clarify) | |
| 235 | apply (drule_tac x = y in spec, clarify) | |
| 236 | apply (drule_tac x = x in spec, blast) | |
| 237 | done | |
| 238 | ||
| 239 | lemma bijI: "[| inj f; surj f |] ==> bij f" | |
| 240 | by (simp add: bij_def) | |
| 241 | ||
| 242 | lemma bij_is_inj: "bij f ==> inj f" | |
| 243 | by (simp add: bij_def) | |
| 244 | ||
| 245 | lemma bij_is_surj: "bij f ==> surj f" | |
| 246 | by (simp add: bij_def) | |
| 247 | ||
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 248 | lemma bij_betw_imp_inj_on: "bij_betw f A B \<Longrightarrow> inj_on f A" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 249 | by (simp add: bij_betw_def) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 250 | |
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 251 | lemma bij_betw_inv: assumes "bij_betw f A B" shows "EX g. bij_betw g B A" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 252 | proof - | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 253 | have i: "inj_on f A" and s: "f ` A = B" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 254 | using assms by(auto simp:bij_betw_def) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 255 | let ?P = "%b a. a:A \<and> f a = b" let ?g = "%b. The (?P b)" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 256 |   { fix a b assume P: "?P b a"
 | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 257 | hence ex1: "\<exists>a. ?P b a" using s unfolding image_def by blast | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 258 | hence uex1: "\<exists>!a. ?P b a" by(blast dest:inj_onD[OF i]) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 259 | hence " ?g b = a" using the1_equality[OF uex1, OF P] P by simp | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 260 | } note g = this | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 261 | have "inj_on ?g B" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 262 | proof(rule inj_onI) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 263 | fix x y assume "x:B" "y:B" "?g x = ?g y" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 264 | from s `x:B` obtain a1 where a1: "?P x a1" unfolding image_def by blast | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 265 | from s `y:B` obtain a2 where a2: "?P y a2" unfolding image_def by blast | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 266 | from g[OF a1] a1 g[OF a2] a2 `?g x = ?g y` show "x=y" by simp | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 267 | qed | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 268 | moreover have "?g ` B = A" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 269 | proof(auto simp:image_def) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 270 | fix b assume "b:B" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 271 | with s obtain a where P: "?P b a" unfolding image_def by blast | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 272 | thus "?g b \<in> A" using g[OF P] by auto | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 273 | next | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 274 | fix a assume "a:A" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 275 | then obtain b where P: "?P b a" using s unfolding image_def by blast | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 276 | then have "b:B" using s unfolding image_def by blast | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 277 | with g[OF P] show "\<exists>b\<in>B. a = ?g b" by blast | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 278 | qed | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 279 | ultimately show ?thesis by(auto simp:bij_betw_def) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 280 | qed | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 281 | |
| 13585 | 282 | lemma surj_image_vimage_eq: "surj f ==> f ` (f -` A) = A" | 
| 283 | by (simp add: surj_range) | |
| 284 | ||
| 285 | lemma inj_vimage_image_eq: "inj f ==> f -` (f ` A) = A" | |
| 286 | by (simp add: inj_on_def, blast) | |
| 287 | ||
| 288 | lemma vimage_subsetD: "surj f ==> f -` B <= A ==> B <= f ` A" | |
| 289 | apply (unfold surj_def) | |
| 290 | apply (blast intro: sym) | |
| 291 | done | |
| 292 | ||
| 293 | lemma vimage_subsetI: "inj f ==> B <= f ` A ==> f -` B <= A" | |
| 294 | by (unfold inj_on_def, blast) | |
| 295 | ||
| 296 | lemma vimage_subset_eq: "bij f ==> (f -` B <= A) = (B <= f ` A)" | |
| 297 | apply (unfold bij_def) | |
| 298 | apply (blast del: subsetI intro: vimage_subsetI vimage_subsetD) | |
| 299 | done | |
| 300 | ||
| 301 | lemma inj_on_image_Int: | |
| 302 | "[| inj_on f C; A<=C; B<=C |] ==> f`(A Int B) = f`A Int f`B" | |
| 303 | apply (simp add: inj_on_def, blast) | |
| 304 | done | |
| 305 | ||
| 306 | lemma inj_on_image_set_diff: | |
| 307 | "[| inj_on f C; A<=C; B<=C |] ==> f`(A-B) = f`A - f`B" | |
| 308 | apply (simp add: inj_on_def, blast) | |
| 309 | done | |
| 310 | ||
| 311 | lemma image_Int: "inj f ==> f`(A Int B) = f`A Int f`B" | |
| 312 | by (simp add: inj_on_def, blast) | |
| 313 | ||
| 314 | lemma image_set_diff: "inj f ==> f`(A-B) = f`A - f`B" | |
| 315 | by (simp add: inj_on_def, blast) | |
| 316 | ||
| 317 | lemma inj_image_mem_iff: "inj f ==> (f a : f`A) = (a : A)" | |
| 318 | by (blast dest: injD) | |
| 319 | ||
| 320 | lemma inj_image_subset_iff: "inj f ==> (f`A <= f`B) = (A<=B)" | |
| 321 | by (simp add: inj_on_def, blast) | |
| 322 | ||
| 323 | lemma inj_image_eq_iff: "inj f ==> (f`A = f`B) = (A = B)" | |
| 324 | by (blast dest: injD) | |
| 325 | ||
| 326 | (*injectivity's required. Left-to-right inclusion holds even if A is empty*) | |
| 327 | lemma image_INT: | |
| 328 | "[| inj_on f C; ALL x:A. B x <= C; j:A |] | |
| 329 | ==> f ` (INTER A B) = (INT x:A. f ` B x)" | |
| 330 | apply (simp add: inj_on_def, blast) | |
| 331 | done | |
| 332 | ||
| 333 | (*Compare with image_INT: no use of inj_on, and if f is surjective then | |
| 334 | it doesn't matter whether A is empty*) | |
| 335 | lemma bij_image_INT: "bij f ==> f ` (INTER A B) = (INT x:A. f ` B x)" | |
| 336 | apply (simp add: bij_def) | |
| 337 | apply (simp add: inj_on_def surj_def, blast) | |
| 338 | done | |
| 339 | ||
| 340 | lemma surj_Compl_image_subset: "surj f ==> -(f`A) <= f`(-A)" | |
| 341 | by (auto simp add: surj_def) | |
| 342 | ||
| 343 | lemma inj_image_Compl_subset: "inj f ==> f`(-A) <= -(f`A)" | |
| 344 | by (auto simp add: inj_on_def) | |
| 5852 | 345 | |
| 13585 | 346 | lemma bij_image_Compl_eq: "bij f ==> f`(-A) = -(f`A)" | 
| 347 | apply (simp add: bij_def) | |
| 348 | apply (rule equalityI) | |
| 349 | apply (simp_all (no_asm_simp) add: inj_image_Compl_subset surj_Compl_image_subset) | |
| 350 | done | |
| 351 | ||
| 352 | ||
| 353 | subsection{*Function Updating*}
 | |
| 354 | ||
| 26147 | 355 | constdefs | 
| 356 |   fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)"
 | |
| 357 | "fun_upd f a b == % x. if x=a then b else f x" | |
| 358 | ||
| 359 | nonterminals | |
| 360 | updbinds updbind | |
| 361 | syntax | |
| 362 |   "_updbind" :: "['a, 'a] => updbind"             ("(2_ :=/ _)")
 | |
| 363 |   ""         :: "updbind => updbinds"             ("_")
 | |
| 364 |   "_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _")
 | |
| 365 |   "_Update"  :: "['a, updbinds] => 'a"            ("_/'((_)')" [1000,0] 900)
 | |
| 366 | ||
| 367 | translations | |
| 368 | "_Update f (_updbinds b bs)" == "_Update (_Update f b) bs" | |
| 369 | "f(x:=y)" == "fun_upd f x y" | |
| 370 | ||
| 371 | (* Hint: to define the sum of two functions (or maps), use sum_case. | |
| 372 | A nice infix syntax could be defined (in Datatype.thy or below) by | |
| 373 | consts | |
| 374 |   fun_sum :: "('a => 'c) => ('b => 'c) => (('a+'b) => 'c)" (infixr "'(+')"80)
 | |
| 375 | translations | |
| 376 | "fun_sum" == sum_case | |
| 377 | *) | |
| 378 | ||
| 13585 | 379 | lemma fun_upd_idem_iff: "(f(x:=y) = f) = (f x = y)" | 
| 380 | apply (simp add: fun_upd_def, safe) | |
| 381 | apply (erule subst) | |
| 382 | apply (rule_tac [2] ext, auto) | |
| 383 | done | |
| 384 | ||
| 385 | (* f x = y ==> f(x:=y) = f *) | |
| 386 | lemmas fun_upd_idem = fun_upd_idem_iff [THEN iffD2, standard] | |
| 387 | ||
| 388 | (* f(x := f x) = f *) | |
| 17084 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
16973diff
changeset | 389 | lemmas fun_upd_triv = refl [THEN fun_upd_idem] | 
| 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
16973diff
changeset | 390 | declare fun_upd_triv [iff] | 
| 13585 | 391 | |
| 392 | lemma fun_upd_apply [simp]: "(f(x:=y))z = (if z=x then y else f z)" | |
| 17084 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
16973diff
changeset | 393 | by (simp add: fun_upd_def) | 
| 13585 | 394 | |
| 395 | (* fun_upd_apply supersedes these two, but they are useful | |
| 396 | if fun_upd_apply is intentionally removed from the simpset *) | |
| 397 | lemma fun_upd_same: "(f(x:=y)) x = y" | |
| 398 | by simp | |
| 399 | ||
| 400 | lemma fun_upd_other: "z~=x ==> (f(x:=y)) z = f z" | |
| 401 | by simp | |
| 402 | ||
| 403 | lemma fun_upd_upd [simp]: "f(x:=y,x:=z) = f(x:=z)" | |
| 404 | by (simp add: expand_fun_eq) | |
| 405 | ||
| 406 | lemma fun_upd_twist: "a ~= c ==> (m(a:=b))(c:=d) = (m(c:=d))(a:=b)" | |
| 407 | by (rule ext, auto) | |
| 408 | ||
| 15303 | 409 | lemma inj_on_fun_updI: "\<lbrakk> inj_on f A; y \<notin> f`A \<rbrakk> \<Longrightarrow> inj_on (f(x:=y)) A" | 
| 410 | by(fastsimp simp:inj_on_def image_def) | |
| 411 | ||
| 15510 | 412 | lemma fun_upd_image: | 
| 413 |      "f(x:=y) ` A = (if x \<in> A then insert y (f ` (A-{x})) else f ` A)"
 | |
| 414 | by auto | |
| 415 | ||
| 26147 | 416 | |
| 417 | subsection {* @{text override_on} *}
 | |
| 418 | ||
| 419 | definition | |
| 420 |   override_on :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b"
 | |
| 421 | where | |
| 422 | "override_on f g A = (\<lambda>a. if a \<in> A then g a else f a)" | |
| 13910 | 423 | |
| 15691 | 424 | lemma override_on_emptyset[simp]: "override_on f g {} = f"
 | 
| 425 | by(simp add:override_on_def) | |
| 13910 | 426 | |
| 15691 | 427 | lemma override_on_apply_notin[simp]: "a ~: A ==> (override_on f g A) a = f a" | 
| 428 | by(simp add:override_on_def) | |
| 13910 | 429 | |
| 15691 | 430 | lemma override_on_apply_in[simp]: "a : A ==> (override_on f g A) a = g a" | 
| 431 | by(simp add:override_on_def) | |
| 13910 | 432 | |
| 26147 | 433 | |
| 434 | subsection {* @{text swap} *}
 | |
| 15510 | 435 | |
| 22744 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 436 | definition | 
| 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 437 |   swap :: "'a \<Rightarrow> 'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)"
 | 
| 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 438 | where | 
| 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 439 | "swap a b f = f (a := f b, b:= f a)" | 
| 15510 | 440 | |
| 441 | lemma swap_self: "swap a a f = f" | |
| 15691 | 442 | by (simp add: swap_def) | 
| 15510 | 443 | |
| 444 | lemma swap_commute: "swap a b f = swap b a f" | |
| 445 | by (rule ext, simp add: fun_upd_def swap_def) | |
| 446 | ||
| 447 | lemma swap_nilpotent [simp]: "swap a b (swap a b f) = f" | |
| 448 | by (rule ext, simp add: fun_upd_def swap_def) | |
| 449 | ||
| 450 | lemma inj_on_imp_inj_on_swap: | |
| 22744 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 451 | "[|inj_on f A; a \<in> A; b \<in> A|] ==> inj_on (swap a b f) A" | 
| 15510 | 452 | by (simp add: inj_on_def swap_def, blast) | 
| 453 | ||
| 454 | lemma inj_on_swap_iff [simp]: | |
| 455 | assumes A: "a \<in> A" "b \<in> A" shows "inj_on (swap a b f) A = inj_on f A" | |
| 456 | proof | |
| 457 | assume "inj_on (swap a b f) A" | |
| 458 | with A have "inj_on (swap a b (swap a b f)) A" | |
| 17589 | 459 | by (iprover intro: inj_on_imp_inj_on_swap) | 
| 15510 | 460 | thus "inj_on f A" by simp | 
| 461 | next | |
| 462 | assume "inj_on f A" | |
| 27165 | 463 | with A show "inj_on (swap a b f) A" by(iprover intro: inj_on_imp_inj_on_swap) | 
| 15510 | 464 | qed | 
| 465 | ||
| 466 | lemma surj_imp_surj_swap: "surj f ==> surj (swap a b f)" | |
| 467 | apply (simp add: surj_def swap_def, clarify) | |
| 27125 | 468 | apply (case_tac "y = f b", blast) | 
| 469 | apply (case_tac "y = f a", auto) | |
| 15510 | 470 | done | 
| 471 | ||
| 472 | lemma surj_swap_iff [simp]: "surj (swap a b f) = surj f" | |
| 473 | proof | |
| 474 | assume "surj (swap a b f)" | |
| 475 | hence "surj (swap a b (swap a b f))" by (rule surj_imp_surj_swap) | |
| 476 | thus "surj f" by simp | |
| 477 | next | |
| 478 | assume "surj f" | |
| 479 | thus "surj (swap a b f)" by (rule surj_imp_surj_swap) | |
| 480 | qed | |
| 481 | ||
| 482 | lemma bij_swap_iff: "bij (swap a b f) = bij f" | |
| 483 | by (simp add: bij_def) | |
| 21547 
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
 haftmann parents: 
21327diff
changeset | 484 | |
| 27188 | 485 | hide (open) const swap | 
| 21547 
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
 haftmann parents: 
21327diff
changeset | 486 | |
| 22845 | 487 | subsection {* Proof tool setup *} 
 | 
| 488 | ||
| 489 | text {* simplifies terms of the form
 | |
| 490 | f(...,x:=y,...,x:=z,...) to f(...,x:=z,...) *} | |
| 491 | ||
| 24017 | 492 | simproc_setup fun_upd2 ("f(v := w, x := y)") = {* fn _ =>
 | 
| 22845 | 493 | let | 
| 494 | fun gen_fun_upd NONE T _ _ = NONE | |
| 24017 | 495 |     | gen_fun_upd (SOME f) T x y = SOME (Const (@{const_name fun_upd}, T) $ f $ x $ y)
 | 
| 22845 | 496 | fun dest_fun_T1 (Type (_, T :: Ts)) = T | 
| 497 |   fun find_double (t as Const (@{const_name fun_upd},T) $ f $ x $ y) =
 | |
| 498 | let | |
| 499 |       fun find (Const (@{const_name fun_upd},T) $ g $ v $ w) =
 | |
| 500 | if v aconv x then SOME g else gen_fun_upd (find g) T v w | |
| 501 | | find t = NONE | |
| 502 | in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end | |
| 24017 | 503 | |
| 504 | fun proc ss ct = | |
| 505 | let | |
| 506 | val ctxt = Simplifier.the_context ss | |
| 507 | val t = Thm.term_of ct | |
| 508 | in | |
| 509 | case find_double t of | |
| 510 | (T, NONE) => NONE | |
| 511 | | (T, SOME rhs) => | |
| 27330 | 512 | SOME (Goal.prove ctxt [] [] (Logic.mk_equals (t, rhs)) | 
| 24017 | 513 | (fn _ => | 
| 514 | rtac eq_reflection 1 THEN | |
| 515 | rtac ext 1 THEN | |
| 516 |               simp_tac (Simplifier.inherit_context ss @{simpset}) 1))
 | |
| 517 | end | |
| 518 | in proc end | |
| 22845 | 519 | *} | 
| 520 | ||
| 521 | ||
| 21870 | 522 | subsection {* Code generator setup *}
 | 
| 523 | ||
| 25886 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 524 | types_code | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 525 |   "fun"  ("(_ ->/ _)")
 | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 526 | attach (term_of) {*
 | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 527 | fun term_of_fun_type _ aT _ bT _ = Free ("<function>", aT --> bT);
 | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 528 | *} | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 529 | attach (test) {*
 | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 530 | fun gen_fun_type aF aT bG bT i = | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 531 | let | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 532 | val tab = ref []; | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 533 |     fun mk_upd (x, (_, y)) t = Const ("Fun.fun_upd",
 | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 534 | (aT --> bT) --> aT --> bT --> aT --> bT) $ t $ aF x $ y () | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 535 | in | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 536 | (fn x => | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 537 | case AList.lookup op = (!tab) x of | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 538 | NONE => | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 539 | let val p as (y, _) = bG i | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 540 | in (tab := (x, p) :: !tab; y) end | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 541 | | SOME (y, _) => y, | 
| 28711 | 542 |      fn () => Basics.fold mk_upd (!tab) (Const ("HOL.undefined", aT --> bT)))
 | 
| 25886 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 543 | end; | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 544 | *} | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 545 | |
| 21870 | 546 | code_const "op \<circ>" | 
| 547 | (SML infixl 5 "o") | |
| 548 | (Haskell infixr 9 ".") | |
| 549 | ||
| 21906 | 550 | code_const "id" | 
| 551 | (Haskell "id") | |
| 552 | ||
| 2912 | 553 | end |