author | berghofe |
Fri, 10 Dec 2004 16:48:01 +0100 | |
changeset 15394 | a2c34e6ca4f8 |
parent 15229 | 1eb23f805c06 |
child 17298 | ad73fb6144cf |
permissions | -rw-r--r-- |
13957 | 1 |
(* Title : NSCA.thy |
2 |
Author : Jacques D. Fleuriot |
|
3 |
Copyright : 2001,2002 University of Edinburgh |
|
4 |
*) |
|
5 |
||
14408 | 6 |
header{*Non-Standard Complex Analysis*} |
13957 | 7 |
|
15131 | 8 |
theory NSCA |
15140 | 9 |
imports NSComplex |
15131 | 10 |
begin |
13957 | 11 |
|
14408 | 12 |
constdefs |
13957 | 13 |
|
14653 | 14 |
CInfinitesimal :: "hcomplex set" |
15 |
"CInfinitesimal == {x. \<forall>r \<in> Reals. 0 < r --> hcmod x < r}" |
|
16 |
||
14408 | 17 |
capprox :: "[hcomplex,hcomplex] => bool" (infixl "@c=" 50) |
18 |
--{*the ``infinitely close'' relation*} |
|
19 |
"x @c= y == (x - y) \<in> CInfinitesimal" |
|
13957 | 20 |
|
21 |
(* standard complex numbers reagarded as an embedded subset of NS complex *) |
|
22 |
SComplex :: "hcomplex set" |
|
14408 | 23 |
"SComplex == {x. \<exists>r. x = hcomplex_of_complex r}" |
13957 | 24 |
|
25 |
CFinite :: "hcomplex set" |
|
14408 | 26 |
"CFinite == {x. \<exists>r \<in> Reals. hcmod x < r}" |
13957 | 27 |
|
28 |
CInfinite :: "hcomplex set" |
|
14408 | 29 |
"CInfinite == {x. \<forall>r \<in> Reals. r < hcmod x}" |
13957 | 30 |
|
14408 | 31 |
stc :: "hcomplex => hcomplex" |
32 |
--{* standard part map*} |
|
33 |
"stc x == (@r. x \<in> CFinite & r:SComplex & r @c= x)" |
|
13957 | 34 |
|
14408 | 35 |
cmonad :: "hcomplex => hcomplex set" |
13957 | 36 |
"cmonad x == {y. x @c= y}" |
37 |
||
14408 | 38 |
cgalaxy :: "hcomplex => hcomplex set" |
39 |
"cgalaxy x == {y. (x - y) \<in> CFinite}" |
|
40 |
||
41 |
||
42 |
||
43 |
subsection{*Closure Laws for SComplex, the Standard Complex Numbers*} |
|
44 |
||
45 |
lemma SComplex_add: "[| x \<in> SComplex; y \<in> SComplex |] ==> x + y \<in> SComplex" |
|
46 |
apply (simp add: SComplex_def, safe) |
|
47 |
apply (rule_tac x = "r + ra" in exI, simp) |
|
48 |
done |
|
49 |
||
50 |
lemma SComplex_mult: "[| x \<in> SComplex; y \<in> SComplex |] ==> x * y \<in> SComplex" |
|
51 |
apply (simp add: SComplex_def, safe) |
|
52 |
apply (rule_tac x = "r * ra" in exI, simp) |
|
53 |
done |
|
54 |
||
55 |
lemma SComplex_inverse: "x \<in> SComplex ==> inverse x \<in> SComplex" |
|
56 |
apply (simp add: SComplex_def) |
|
57 |
apply (blast intro: hcomplex_of_complex_inverse [symmetric]) |
|
58 |
done |
|
59 |
||
60 |
lemma SComplex_divide: "[| x \<in> SComplex; y \<in> SComplex |] ==> x/y \<in> SComplex" |
|
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14408
diff
changeset
|
61 |
by (simp add: SComplex_mult SComplex_inverse divide_inverse) |
14408 | 62 |
|
63 |
lemma SComplex_minus: "x \<in> SComplex ==> -x \<in> SComplex" |
|
64 |
apply (simp add: SComplex_def) |
|
65 |
apply (blast intro: hcomplex_of_complex_minus [symmetric]) |
|
66 |
done |
|
67 |
||
68 |
lemma SComplex_minus_iff [simp]: "(-x \<in> SComplex) = (x \<in> SComplex)" |
|
69 |
apply auto |
|
70 |
apply (erule_tac [2] SComplex_minus) |
|
71 |
apply (drule SComplex_minus, auto) |
|
72 |
done |
|
73 |
||
74 |
lemma SComplex_diff: "[| x \<in> SComplex; y \<in> SComplex |] ==> x - y \<in> SComplex" |
|
75 |
by (simp add: diff_minus SComplex_add) |
|
76 |
||
77 |
lemma SComplex_add_cancel: |
|
78 |
"[| x + y \<in> SComplex; y \<in> SComplex |] ==> x \<in> SComplex" |
|
79 |
by (drule SComplex_diff, assumption, simp) |
|
80 |
||
81 |
lemma SReal_hcmod_hcomplex_of_complex [simp]: |
|
82 |
"hcmod (hcomplex_of_complex r) \<in> Reals" |
|
83 |
by (simp add: hcomplex_of_complex_def hcmod SReal_def hypreal_of_real_def) |
|
84 |
||
85 |
lemma SReal_hcmod_number_of [simp]: "hcmod (number_of w ::hcomplex) \<in> Reals" |
|
86 |
apply (subst hcomplex_number_of [symmetric]) |
|
87 |
apply (rule SReal_hcmod_hcomplex_of_complex) |
|
88 |
done |
|
89 |
||
90 |
lemma SReal_hcmod_SComplex: "x \<in> SComplex ==> hcmod x \<in> Reals" |
|
91 |
by (auto simp add: SComplex_def) |
|
92 |
||
93 |
lemma SComplex_hcomplex_of_complex [simp]: "hcomplex_of_complex x \<in> SComplex" |
|
94 |
by (simp add: SComplex_def) |
|
95 |
||
96 |
lemma SComplex_number_of [simp]: "(number_of w ::hcomplex) \<in> SComplex" |
|
97 |
apply (subst hcomplex_number_of [symmetric]) |
|
98 |
apply (rule SComplex_hcomplex_of_complex) |
|
99 |
done |
|
100 |
||
101 |
lemma SComplex_divide_number_of: |
|
102 |
"r \<in> SComplex ==> r/(number_of w::hcomplex) \<in> SComplex" |
|
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14408
diff
changeset
|
103 |
apply (simp only: divide_inverse) |
14408 | 104 |
apply (blast intro!: SComplex_number_of SComplex_mult SComplex_inverse) |
105 |
done |
|
106 |
||
107 |
lemma SComplex_UNIV_complex: |
|
108 |
"{x. hcomplex_of_complex x \<in> SComplex} = (UNIV::complex set)" |
|
109 |
by (simp add: SComplex_def) |
|
110 |
||
111 |
lemma SComplex_iff: "(x \<in> SComplex) = (\<exists>y. x = hcomplex_of_complex y)" |
|
112 |
by (simp add: SComplex_def) |
|
113 |
||
114 |
lemma hcomplex_of_complex_image: |
|
115 |
"hcomplex_of_complex `(UNIV::complex set) = SComplex" |
|
116 |
by (auto simp add: SComplex_def) |
|
117 |
||
118 |
lemma inv_hcomplex_of_complex_image: "inv hcomplex_of_complex `SComplex = UNIV" |
|
119 |
apply (auto simp add: SComplex_def) |
|
120 |
apply (rule inj_hcomplex_of_complex [THEN inv_f_f, THEN subst], blast) |
|
121 |
done |
|
122 |
||
123 |
lemma SComplex_hcomplex_of_complex_image: |
|
124 |
"[| \<exists>x. x: P; P \<le> SComplex |] ==> \<exists>Q. P = hcomplex_of_complex ` Q" |
|
125 |
apply (simp add: SComplex_def, blast) |
|
126 |
done |
|
127 |
||
128 |
lemma SComplex_SReal_dense: |
|
129 |
"[| x \<in> SComplex; y \<in> SComplex; hcmod x < hcmod y |
|
130 |
|] ==> \<exists>r \<in> Reals. hcmod x< r & r < hcmod y" |
|
131 |
apply (auto intro: SReal_dense simp add: SReal_hcmod_SComplex) |
|
132 |
done |
|
133 |
||
134 |
lemma SComplex_hcmod_SReal: |
|
135 |
"z \<in> SComplex ==> hcmod z \<in> Reals" |
|
136 |
apply (simp add: SComplex_def SReal_def) |
|
137 |
apply (rule_tac z = z in eq_Abs_hcomplex) |
|
138 |
apply (auto simp add: hcmod hypreal_of_real_def hcomplex_of_complex_def cmod_def) |
|
139 |
apply (rule_tac x = "cmod r" in exI) |
|
140 |
apply (simp add: cmod_def, ultra) |
|
141 |
done |
|
142 |
||
143 |
lemma SComplex_zero [simp]: "0 \<in> SComplex" |
|
144 |
by (simp add: SComplex_def hcomplex_of_complex_zero_iff) |
|
145 |
||
146 |
lemma SComplex_one [simp]: "1 \<in> SComplex" |
|
147 |
by (simp add: SComplex_def hcomplex_of_complex_def hcomplex_one_def) |
|
148 |
||
149 |
(* |
|
150 |
Goalw [SComplex_def,SReal_def] "hcmod z \<in> Reals ==> z \<in> SComplex" |
|
151 |
by (res_inst_tac [("z","z")] eq_Abs_hcomplex 1); |
|
152 |
by (auto_tac (claset(),simpset() addsimps [hcmod,hypreal_of_real_def, |
|
153 |
hcomplex_of_complex_def,cmod_def])); |
|
154 |
*) |
|
155 |
||
156 |
||
157 |
subsection{*The Finite Elements form a Subring*} |
|
158 |
||
159 |
lemma CFinite_add: "[|x \<in> CFinite; y \<in> CFinite|] ==> (x+y) \<in> CFinite" |
|
160 |
apply (simp add: CFinite_def) |
|
161 |
apply (blast intro!: SReal_add hcmod_add_less) |
|
162 |
done |
|
163 |
||
164 |
lemma CFinite_mult: "[|x \<in> CFinite; y \<in> CFinite|] ==> x*y \<in> CFinite" |
|
165 |
apply (simp add: CFinite_def) |
|
166 |
apply (blast intro!: SReal_mult hcmod_mult_less) |
|
167 |
done |
|
168 |
||
169 |
lemma CFinite_minus_iff [simp]: "(-x \<in> CFinite) = (x \<in> CFinite)" |
|
170 |
by (simp add: CFinite_def) |
|
171 |
||
172 |
lemma SComplex_subset_CFinite [simp]: "SComplex \<le> CFinite" |
|
173 |
apply (auto simp add: SComplex_def CFinite_def) |
|
174 |
apply (rule_tac x = "1 + hcmod (hcomplex_of_complex r) " in bexI) |
|
175 |
apply (auto intro: SReal_add) |
|
176 |
done |
|
177 |
||
178 |
lemma HFinite_hcmod_hcomplex_of_complex [simp]: |
|
179 |
"hcmod (hcomplex_of_complex r) \<in> HFinite" |
|
180 |
by (auto intro!: SReal_subset_HFinite [THEN subsetD]) |
|
181 |
||
182 |
lemma CFinite_hcomplex_of_complex [simp]: "hcomplex_of_complex x \<in> CFinite" |
|
183 |
by (auto intro!: SComplex_subset_CFinite [THEN subsetD]) |
|
184 |
||
185 |
lemma CFiniteD: "x \<in> CFinite ==> \<exists>t \<in> Reals. hcmod x < t" |
|
186 |
by (simp add: CFinite_def) |
|
187 |
||
188 |
lemma CFinite_hcmod_iff: "(x \<in> CFinite) = (hcmod x \<in> HFinite)" |
|
189 |
by (simp add: CFinite_def HFinite_def) |
|
190 |
||
191 |
lemma CFinite_number_of [simp]: "number_of w \<in> CFinite" |
|
192 |
by (rule SComplex_number_of [THEN SComplex_subset_CFinite [THEN subsetD]]) |
|
193 |
||
194 |
lemma CFinite_bounded: "[|x \<in> CFinite; y \<le> hcmod x; 0 \<le> y |] ==> y: HFinite" |
|
195 |
by (auto intro: HFinite_bounded simp add: CFinite_hcmod_iff) |
|
196 |
||
197 |
||
198 |
subsection{*The Complex Infinitesimals form a Subring*} |
|
199 |
||
200 |
lemma CInfinitesimal_zero [iff]: "0 \<in> CInfinitesimal" |
|
201 |
by (simp add: CInfinitesimal_def) |
|
202 |
||
203 |
lemma hcomplex_sum_of_halves: "x/(2::hcomplex) + x/(2::hcomplex) = x" |
|
204 |
by auto |
|
205 |
||
206 |
lemma CInfinitesimal_hcmod_iff: |
|
207 |
"(z \<in> CInfinitesimal) = (hcmod z \<in> Infinitesimal)" |
|
208 |
by (simp add: CInfinitesimal_def Infinitesimal_def) |
|
209 |
||
210 |
lemma one_not_CInfinitesimal [simp]: "1 \<notin> CInfinitesimal" |
|
211 |
by (simp add: CInfinitesimal_hcmod_iff) |
|
212 |
||
213 |
lemma CInfinitesimal_add: |
|
214 |
"[| x \<in> CInfinitesimal; y \<in> CInfinitesimal |] ==> (x+y) \<in> CInfinitesimal" |
|
215 |
apply (auto simp add: CInfinitesimal_hcmod_iff) |
|
216 |
apply (rule hrabs_le_Infinitesimal) |
|
217 |
apply (rule_tac y = "hcmod y" in Infinitesimal_add, auto) |
|
218 |
done |
|
219 |
||
220 |
lemma CInfinitesimal_minus_iff [simp]: |
|
221 |
"(-x:CInfinitesimal) = (x:CInfinitesimal)" |
|
222 |
by (simp add: CInfinitesimal_def) |
|
223 |
||
224 |
lemma CInfinitesimal_diff: |
|
225 |
"[| x \<in> CInfinitesimal; y \<in> CInfinitesimal |] ==> x-y \<in> CInfinitesimal" |
|
226 |
by (simp add: diff_minus CInfinitesimal_add) |
|
227 |
||
228 |
lemma CInfinitesimal_mult: |
|
229 |
"[| x \<in> CInfinitesimal; y \<in> CInfinitesimal |] ==> x * y \<in> CInfinitesimal" |
|
230 |
by (auto intro: Infinitesimal_mult simp add: CInfinitesimal_hcmod_iff hcmod_mult) |
|
231 |
||
232 |
lemma CInfinitesimal_CFinite_mult: |
|
233 |
"[| x \<in> CInfinitesimal; y \<in> CFinite |] ==> (x * y) \<in> CInfinitesimal" |
|
234 |
by (auto intro: Infinitesimal_HFinite_mult simp add: CInfinitesimal_hcmod_iff CFinite_hcmod_iff hcmod_mult) |
|
235 |
||
236 |
lemma CInfinitesimal_CFinite_mult2: |
|
237 |
"[| x \<in> CInfinitesimal; y \<in> CFinite |] ==> (y * x) \<in> CInfinitesimal" |
|
238 |
by (auto dest: CInfinitesimal_CFinite_mult simp add: hcomplex_mult_commute) |
|
239 |
||
240 |
lemma CInfinite_hcmod_iff: "(z \<in> CInfinite) = (hcmod z \<in> HInfinite)" |
|
241 |
by (simp add: CInfinite_def HInfinite_def) |
|
242 |
||
243 |
lemma CInfinite_inverse_CInfinitesimal: |
|
244 |
"x \<in> CInfinite ==> inverse x \<in> CInfinitesimal" |
|
245 |
by (auto intro: HInfinite_inverse_Infinitesimal simp add: CInfinitesimal_hcmod_iff CInfinite_hcmod_iff hcmod_hcomplex_inverse) |
|
246 |
||
247 |
lemma CInfinite_mult: "[|x \<in> CInfinite; y \<in> CInfinite|] ==> (x*y): CInfinite" |
|
248 |
by (auto intro: HInfinite_mult simp add: CInfinite_hcmod_iff hcmod_mult) |
|
249 |
||
250 |
lemma CInfinite_minus_iff [simp]: "(-x \<in> CInfinite) = (x \<in> CInfinite)" |
|
251 |
by (simp add: CInfinite_def) |
|
252 |
||
253 |
lemma CFinite_sum_squares: |
|
254 |
"[|a \<in> CFinite; b \<in> CFinite; c \<in> CFinite|] |
|
255 |
==> a*a + b*b + c*c \<in> CFinite" |
|
256 |
by (auto intro: CFinite_mult CFinite_add) |
|
257 |
||
258 |
lemma not_CInfinitesimal_not_zero: "x \<notin> CInfinitesimal ==> x \<noteq> 0" |
|
259 |
by auto |
|
260 |
||
261 |
lemma not_CInfinitesimal_not_zero2: "x \<in> CFinite - CInfinitesimal ==> x \<noteq> 0" |
|
262 |
by auto |
|
263 |
||
264 |
lemma CFinite_diff_CInfinitesimal_hcmod: |
|
265 |
"x \<in> CFinite - CInfinitesimal ==> hcmod x \<in> HFinite - Infinitesimal" |
|
266 |
by (simp add: CFinite_hcmod_iff CInfinitesimal_hcmod_iff) |
|
267 |
||
268 |
lemma hcmod_less_CInfinitesimal: |
|
269 |
"[| e \<in> CInfinitesimal; hcmod x < hcmod e |] ==> x \<in> CInfinitesimal" |
|
270 |
by (auto intro: hrabs_less_Infinitesimal simp add: CInfinitesimal_hcmod_iff) |
|
271 |
||
272 |
lemma hcmod_le_CInfinitesimal: |
|
273 |
"[| e \<in> CInfinitesimal; hcmod x \<le> hcmod e |] ==> x \<in> CInfinitesimal" |
|
274 |
by (auto intro: hrabs_le_Infinitesimal simp add: CInfinitesimal_hcmod_iff) |
|
275 |
||
276 |
lemma CInfinitesimal_interval: |
|
277 |
"[| e \<in> CInfinitesimal; |
|
278 |
e' \<in> CInfinitesimal; |
|
279 |
hcmod e' < hcmod x ; hcmod x < hcmod e |
|
280 |
|] ==> x \<in> CInfinitesimal" |
|
281 |
by (auto intro: Infinitesimal_interval simp add: CInfinitesimal_hcmod_iff) |
|
282 |
||
283 |
lemma CInfinitesimal_interval2: |
|
284 |
"[| e \<in> CInfinitesimal; |
|
285 |
e' \<in> CInfinitesimal; |
|
286 |
hcmod e' \<le> hcmod x ; hcmod x \<le> hcmod e |
|
287 |
|] ==> x \<in> CInfinitesimal" |
|
288 |
by (auto intro: Infinitesimal_interval2 simp add: CInfinitesimal_hcmod_iff) |
|
289 |
||
290 |
lemma not_CInfinitesimal_mult: |
|
291 |
"[| x \<notin> CInfinitesimal; y \<notin> CInfinitesimal|] ==> (x*y) \<notin> CInfinitesimal" |
|
292 |
apply (auto simp add: CInfinitesimal_hcmod_iff hcmod_mult) |
|
293 |
apply (drule not_Infinitesimal_mult, auto) |
|
294 |
done |
|
295 |
||
296 |
lemma CInfinitesimal_mult_disj: |
|
297 |
"x*y \<in> CInfinitesimal ==> x \<in> CInfinitesimal | y \<in> CInfinitesimal" |
|
298 |
by (auto dest: Infinitesimal_mult_disj simp add: CInfinitesimal_hcmod_iff hcmod_mult) |
|
299 |
||
300 |
lemma CFinite_CInfinitesimal_diff_mult: |
|
301 |
"[| x \<in> CFinite - CInfinitesimal; y \<in> CFinite - CInfinitesimal |] |
|
302 |
==> x*y \<in> CFinite - CInfinitesimal" |
|
303 |
by (blast dest: CFinite_mult not_CInfinitesimal_mult) |
|
304 |
||
305 |
lemma CInfinitesimal_subset_CFinite: "CInfinitesimal \<le> CFinite" |
|
306 |
by (auto intro: Infinitesimal_subset_HFinite [THEN subsetD] |
|
307 |
simp add: CInfinitesimal_hcmod_iff CFinite_hcmod_iff) |
|
308 |
||
309 |
lemma CInfinitesimal_hcomplex_of_complex_mult: |
|
310 |
"x \<in> CInfinitesimal ==> x * hcomplex_of_complex r \<in> CInfinitesimal" |
|
311 |
by (auto intro!: Infinitesimal_HFinite_mult simp add: CInfinitesimal_hcmod_iff hcmod_mult) |
|
312 |
||
313 |
lemma CInfinitesimal_hcomplex_of_complex_mult2: |
|
314 |
"x \<in> CInfinitesimal ==> hcomplex_of_complex r * x \<in> CInfinitesimal" |
|
315 |
by (auto intro!: Infinitesimal_HFinite_mult2 simp add: CInfinitesimal_hcmod_iff hcmod_mult) |
|
316 |
||
317 |
||
318 |
subsection{*The ``Infinitely Close'' Relation*} |
|
319 |
||
320 |
(* |
|
321 |
Goalw [capprox_def,approx_def] "(z @c= w) = (hcmod z @= hcmod w)" |
|
322 |
by (auto_tac (claset(),simpset() addsimps [CInfinitesimal_hcmod_iff])); |
|
323 |
*) |
|
324 |
||
325 |
lemma mem_cinfmal_iff: "x:CInfinitesimal = (x @c= 0)" |
|
326 |
by (simp add: CInfinitesimal_hcmod_iff capprox_def) |
|
327 |
||
328 |
lemma capprox_minus_iff: "(x @c= y) = (x + -y @c= 0)" |
|
329 |
by (simp add: capprox_def diff_minus) |
|
330 |
||
331 |
lemma capprox_minus_iff2: "(x @c= y) = (-y + x @c= 0)" |
|
332 |
by (simp add: capprox_def diff_minus add_commute) |
|
333 |
||
334 |
lemma capprox_refl [simp]: "x @c= x" |
|
335 |
by (simp add: capprox_def) |
|
336 |
||
337 |
lemma capprox_sym: "x @c= y ==> y @c= x" |
|
338 |
by (simp add: capprox_def CInfinitesimal_def hcmod_diff_commute) |
|
339 |
||
340 |
lemma capprox_trans: "[| x @c= y; y @c= z |] ==> x @c= z" |
|
341 |
apply (simp add: capprox_def) |
|
342 |
apply (drule CInfinitesimal_add, assumption) |
|
343 |
apply (simp add: diff_minus) |
|
344 |
done |
|
345 |
||
346 |
lemma capprox_trans2: "[| r @c= x; s @c= x |] ==> r @c= s" |
|
347 |
by (blast intro: capprox_sym capprox_trans) |
|
348 |
||
349 |
lemma capprox_trans3: "[| x @c= r; x @c= s|] ==> r @c= s" |
|
350 |
by (blast intro: capprox_sym capprox_trans) |
|
351 |
||
352 |
lemma number_of_capprox_reorient [simp]: |
|
353 |
"(number_of w @c= x) = (x @c= number_of w)" |
|
354 |
by (blast intro: capprox_sym) |
|
355 |
||
356 |
lemma CInfinitesimal_capprox_minus: "(x-y \<in> CInfinitesimal) = (x @c= y)" |
|
357 |
by (simp add: diff_minus capprox_minus_iff [symmetric] mem_cinfmal_iff) |
|
358 |
||
359 |
lemma capprox_monad_iff: "(x @c= y) = (cmonad(x)=cmonad(y))" |
|
360 |
by (auto simp add: cmonad_def dest: capprox_sym elim!: capprox_trans equalityCE) |
|
361 |
||
362 |
lemma Infinitesimal_capprox: |
|
363 |
"[| x \<in> CInfinitesimal; y \<in> CInfinitesimal |] ==> x @c= y" |
|
364 |
apply (simp add: mem_cinfmal_iff) |
|
365 |
apply (blast intro: capprox_trans capprox_sym) |
|
366 |
done |
|
367 |
||
368 |
lemma capprox_add: "[| a @c= b; c @c= d |] ==> a+c @c= b+d" |
|
369 |
apply (simp add: capprox_def diff_minus) |
|
370 |
apply (rule minus_add_distrib [THEN ssubst]) |
|
371 |
apply (rule add_assoc [THEN ssubst]) |
|
372 |
apply (rule_tac b1 = c in add_left_commute [THEN subst]) |
|
373 |
apply (rule add_assoc [THEN subst]) |
|
374 |
apply (blast intro: CInfinitesimal_add) |
|
375 |
done |
|
376 |
||
377 |
lemma capprox_minus: "a @c= b ==> -a @c= -b" |
|
378 |
apply (rule capprox_minus_iff [THEN iffD2, THEN capprox_sym]) |
|
379 |
apply (drule capprox_minus_iff [THEN iffD1]) |
|
380 |
apply (simp add: add_commute) |
|
381 |
done |
|
382 |
||
383 |
lemma capprox_minus2: "-a @c= -b ==> a @c= b" |
|
384 |
by (auto dest: capprox_minus) |
|
385 |
||
386 |
lemma capprox_minus_cancel [simp]: "(-a @c= -b) = (a @c= b)" |
|
387 |
by (blast intro: capprox_minus capprox_minus2) |
|
388 |
||
389 |
lemma capprox_add_minus: "[| a @c= b; c @c= d |] ==> a + -c @c= b + -d" |
|
390 |
by (blast intro!: capprox_add capprox_minus) |
|
391 |
||
392 |
lemma capprox_mult1: |
|
393 |
"[| a @c= b; c \<in> CFinite|] ==> a*c @c= b*c" |
|
394 |
apply (simp add: capprox_def diff_minus) |
|
395 |
apply (simp only: CInfinitesimal_CFinite_mult minus_mult_left hcomplex_add_mult_distrib [symmetric]) |
|
396 |
done |
|
397 |
||
398 |
lemma capprox_mult2: "[|a @c= b; c \<in> CFinite|] ==> c*a @c= c*b" |
|
399 |
by (simp add: capprox_mult1 hcomplex_mult_commute) |
|
400 |
||
401 |
lemma capprox_mult_subst: |
|
402 |
"[|u @c= v*x; x @c= y; v \<in> CFinite|] ==> u @c= v*y" |
|
403 |
by (blast intro: capprox_mult2 capprox_trans) |
|
404 |
||
405 |
lemma capprox_mult_subst2: |
|
406 |
"[| u @c= x*v; x @c= y; v \<in> CFinite |] ==> u @c= y*v" |
|
407 |
by (blast intro: capprox_mult1 capprox_trans) |
|
408 |
||
409 |
lemma capprox_mult_subst_SComplex: |
|
410 |
"[| u @c= x*hcomplex_of_complex v; x @c= y |] |
|
411 |
==> u @c= y*hcomplex_of_complex v" |
|
412 |
by (auto intro: capprox_mult_subst2) |
|
413 |
||
414 |
lemma capprox_eq_imp: "a = b ==> a @c= b" |
|
415 |
by (simp add: capprox_def) |
|
416 |
||
417 |
lemma CInfinitesimal_minus_capprox: "x \<in> CInfinitesimal ==> -x @c= x" |
|
418 |
by (blast intro: CInfinitesimal_minus_iff [THEN iffD2] mem_cinfmal_iff [THEN iffD1] capprox_trans2) |
|
419 |
||
420 |
lemma bex_CInfinitesimal_iff: "(\<exists>y \<in> CInfinitesimal. x - z = y) = (x @c= z)" |
|
421 |
by (unfold capprox_def, blast) |
|
422 |
||
423 |
lemma bex_CInfinitesimal_iff2: "(\<exists>y \<in> CInfinitesimal. x = z + y) = (x @c= z)" |
|
424 |
by (simp add: bex_CInfinitesimal_iff [symmetric], force) |
|
425 |
||
426 |
lemma CInfinitesimal_add_capprox: |
|
427 |
"[| y \<in> CInfinitesimal; x + y = z |] ==> x @c= z" |
|
428 |
apply (rule bex_CInfinitesimal_iff [THEN iffD1]) |
|
429 |
apply (drule CInfinitesimal_minus_iff [THEN iffD2]) |
|
430 |
apply (simp add: eq_commute compare_rls) |
|
431 |
done |
|
432 |
||
433 |
lemma CInfinitesimal_add_capprox_self: "y \<in> CInfinitesimal ==> x @c= x + y" |
|
434 |
apply (rule bex_CInfinitesimal_iff [THEN iffD1]) |
|
435 |
apply (drule CInfinitesimal_minus_iff [THEN iffD2]) |
|
436 |
apply (simp add: eq_commute compare_rls) |
|
437 |
done |
|
438 |
||
439 |
lemma CInfinitesimal_add_capprox_self2: "y \<in> CInfinitesimal ==> x @c= y + x" |
|
440 |
by (auto dest: CInfinitesimal_add_capprox_self simp add: add_commute) |
|
441 |
||
442 |
lemma CInfinitesimal_add_minus_capprox_self: |
|
443 |
"y \<in> CInfinitesimal ==> x @c= x + -y" |
|
444 |
by (blast intro!: CInfinitesimal_add_capprox_self CInfinitesimal_minus_iff [THEN iffD2]) |
|
445 |
||
446 |
lemma CInfinitesimal_add_cancel: |
|
447 |
"[| y \<in> CInfinitesimal; x+y @c= z|] ==> x @c= z" |
|
448 |
apply (drule_tac x = x in CInfinitesimal_add_capprox_self [THEN capprox_sym]) |
|
449 |
apply (erule capprox_trans3 [THEN capprox_sym], assumption) |
|
450 |
done |
|
451 |
||
452 |
lemma CInfinitesimal_add_right_cancel: |
|
453 |
"[| y \<in> CInfinitesimal; x @c= z + y|] ==> x @c= z" |
|
454 |
apply (drule_tac x = z in CInfinitesimal_add_capprox_self2 [THEN capprox_sym]) |
|
455 |
apply (erule capprox_trans3 [THEN capprox_sym]) |
|
456 |
apply (simp add: add_commute) |
|
457 |
apply (erule capprox_sym) |
|
458 |
done |
|
459 |
||
460 |
lemma capprox_add_left_cancel: "d + b @c= d + c ==> b @c= c" |
|
461 |
apply (drule capprox_minus_iff [THEN iffD1]) |
|
462 |
apply (simp add: minus_add_distrib capprox_minus_iff [symmetric] add_ac) |
|
463 |
done |
|
464 |
||
465 |
lemma capprox_add_right_cancel: "b + d @c= c + d ==> b @c= c" |
|
466 |
apply (rule capprox_add_left_cancel) |
|
467 |
apply (simp add: add_commute) |
|
468 |
done |
|
469 |
||
470 |
lemma capprox_add_mono1: "b @c= c ==> d + b @c= d + c" |
|
471 |
apply (rule capprox_minus_iff [THEN iffD2]) |
|
472 |
apply (simp add: capprox_minus_iff [symmetric] add_ac) |
|
473 |
done |
|
474 |
||
475 |
lemma capprox_add_mono2: "b @c= c ==> b + a @c= c + a" |
|
476 |
apply (simp (no_asm_simp) add: add_commute capprox_add_mono1) |
|
477 |
done |
|
478 |
||
479 |
lemma capprox_add_left_iff [iff]: "(a + b @c= a + c) = (b @c= c)" |
|
480 |
by (fast elim: capprox_add_left_cancel capprox_add_mono1) |
|
481 |
||
482 |
lemma capprox_add_right_iff [iff]: "(b + a @c= c + a) = (b @c= c)" |
|
483 |
by (simp add: add_commute) |
|
484 |
||
485 |
lemma capprox_CFinite: "[| x \<in> CFinite; x @c= y |] ==> y \<in> CFinite" |
|
486 |
apply (drule bex_CInfinitesimal_iff2 [THEN iffD2], safe) |
|
487 |
apply (drule CInfinitesimal_subset_CFinite [THEN subsetD, THEN CFinite_minus_iff [THEN iffD2]]) |
|
488 |
apply (drule CFinite_add) |
|
489 |
apply (assumption, auto) |
|
490 |
done |
|
491 |
||
492 |
lemma capprox_hcomplex_of_complex_CFinite: |
|
493 |
"x @c= hcomplex_of_complex D ==> x \<in> CFinite" |
|
494 |
by (rule capprox_sym [THEN [2] capprox_CFinite], auto) |
|
495 |
||
496 |
lemma capprox_mult_CFinite: |
|
497 |
"[|a @c= b; c @c= d; b \<in> CFinite; d \<in> CFinite|] ==> a*c @c= b*d" |
|
498 |
apply (rule capprox_trans) |
|
499 |
apply (rule_tac [2] capprox_mult2) |
|
500 |
apply (rule capprox_mult1) |
|
501 |
prefer 2 apply (blast intro: capprox_CFinite capprox_sym, auto) |
|
502 |
done |
|
503 |
||
504 |
lemma capprox_mult_hcomplex_of_complex: |
|
505 |
"[|a @c= hcomplex_of_complex b; c @c= hcomplex_of_complex d |] |
|
506 |
==> a*c @c= hcomplex_of_complex b * hcomplex_of_complex d" |
|
507 |
apply (blast intro!: capprox_mult_CFinite capprox_hcomplex_of_complex_CFinite CFinite_hcomplex_of_complex) |
|
508 |
done |
|
509 |
||
510 |
lemma capprox_SComplex_mult_cancel_zero: |
|
511 |
"[| a \<in> SComplex; a \<noteq> 0; a*x @c= 0 |] ==> x @c= 0" |
|
512 |
apply (drule SComplex_inverse [THEN SComplex_subset_CFinite [THEN subsetD]]) |
|
15013 | 513 |
apply (auto dest: capprox_mult2 simp add: mult_assoc [symmetric]) |
14408 | 514 |
done |
515 |
||
516 |
lemma capprox_mult_SComplex1: "[| a \<in> SComplex; x @c= 0 |] ==> x*a @c= 0" |
|
517 |
by (auto dest: SComplex_subset_CFinite [THEN subsetD] capprox_mult1) |
|
518 |
||
519 |
lemma capprox_mult_SComplex2: "[| a \<in> SComplex; x @c= 0 |] ==> a*x @c= 0" |
|
520 |
by (auto dest: SComplex_subset_CFinite [THEN subsetD] capprox_mult2) |
|
521 |
||
522 |
lemma capprox_mult_SComplex_zero_cancel_iff [simp]: |
|
523 |
"[|a \<in> SComplex; a \<noteq> 0 |] ==> (a*x @c= 0) = (x @c= 0)" |
|
524 |
by (blast intro: capprox_SComplex_mult_cancel_zero capprox_mult_SComplex2) |
|
525 |
||
526 |
lemma capprox_SComplex_mult_cancel: |
|
527 |
"[| a \<in> SComplex; a \<noteq> 0; a* w @c= a*z |] ==> w @c= z" |
|
528 |
apply (drule SComplex_inverse [THEN SComplex_subset_CFinite [THEN subsetD]]) |
|
15013 | 529 |
apply (auto dest: capprox_mult2 simp add: mult_assoc [symmetric]) |
14408 | 530 |
done |
531 |
||
532 |
lemma capprox_SComplex_mult_cancel_iff1 [simp]: |
|
533 |
"[| a \<in> SComplex; a \<noteq> 0|] ==> (a* w @c= a*z) = (w @c= z)" |
|
534 |
by (auto intro!: capprox_mult2 SComplex_subset_CFinite [THEN subsetD] |
|
535 |
intro: capprox_SComplex_mult_cancel) |
|
536 |
||
537 |
lemma capprox_hcmod_approx_zero: "(x @c= y) = (hcmod (y - x) @= 0)" |
|
538 |
apply (rule capprox_minus_iff [THEN ssubst]) |
|
539 |
apply (simp add: capprox_def CInfinitesimal_hcmod_iff mem_infmal_iff diff_minus [symmetric] hcmod_diff_commute) |
|
540 |
done |
|
541 |
||
542 |
lemma capprox_approx_zero_iff: "(x @c= 0) = (hcmod x @= 0)" |
|
543 |
by (simp add: capprox_hcmod_approx_zero) |
|
544 |
||
545 |
lemma capprox_minus_zero_cancel_iff [simp]: "(-x @c= 0) = (x @c= 0)" |
|
546 |
by (simp add: capprox_hcmod_approx_zero) |
|
547 |
||
548 |
lemma Infinitesimal_hcmod_add_diff: |
|
549 |
"u @c= 0 ==> hcmod(x + u) - hcmod x \<in> Infinitesimal" |
|
550 |
apply (rule_tac e = "hcmod u" and e' = "- hcmod u" in Infinitesimal_interval2) |
|
551 |
apply (auto dest: capprox_approx_zero_iff [THEN iffD1] |
|
552 |
simp add: mem_infmal_iff [symmetric] hypreal_diff_def) |
|
553 |
apply (rule_tac c1 = "hcmod x" in add_le_cancel_left [THEN iffD1]) |
|
554 |
apply (auto simp add: diff_minus [symmetric]) |
|
555 |
done |
|
556 |
||
557 |
lemma approx_hcmod_add_hcmod: "u @c= 0 ==> hcmod(x + u) @= hcmod x" |
|
558 |
apply (rule approx_minus_iff [THEN iffD2]) |
|
559 |
apply (auto intro: Infinitesimal_hcmod_add_diff simp add: mem_infmal_iff [symmetric] diff_minus [symmetric]) |
|
560 |
done |
|
561 |
||
562 |
lemma capprox_hcmod_approx: "x @c= y ==> hcmod x @= hcmod y" |
|
563 |
by (auto intro: approx_hcmod_add_hcmod |
|
564 |
dest!: bex_CInfinitesimal_iff2 [THEN iffD2] |
|
565 |
simp add: mem_cinfmal_iff) |
|
13957 | 566 |
|
567 |
||
14408 | 568 |
subsection{*Zero is the Only Infinitesimal Complex Number*} |
569 |
||
570 |
lemma CInfinitesimal_less_SComplex: |
|
571 |
"[| x \<in> SComplex; y \<in> CInfinitesimal; 0 < hcmod x |] ==> hcmod y < hcmod x" |
|
572 |
by (auto intro!: Infinitesimal_less_SReal SComplex_hcmod_SReal simp add: CInfinitesimal_hcmod_iff) |
|
573 |
||
574 |
lemma SComplex_Int_CInfinitesimal_zero: "SComplex Int CInfinitesimal = {0}" |
|
575 |
apply (auto simp add: SComplex_def CInfinitesimal_hcmod_iff) |
|
576 |
apply (cut_tac r = r in SReal_hcmod_hcomplex_of_complex) |
|
577 |
apply (drule_tac A = Reals in IntI, assumption) |
|
578 |
apply (subgoal_tac "hcmod (hcomplex_of_complex r) = 0") |
|
579 |
apply simp |
|
580 |
apply (simp add: SReal_Int_Infinitesimal_zero) |
|
581 |
done |
|
582 |
||
583 |
lemma SComplex_CInfinitesimal_zero: |
|
584 |
"[| x \<in> SComplex; x \<in> CInfinitesimal|] ==> x = 0" |
|
585 |
by (cut_tac SComplex_Int_CInfinitesimal_zero, blast) |
|
586 |
||
587 |
lemma SComplex_CFinite_diff_CInfinitesimal: |
|
588 |
"[| x \<in> SComplex; x \<noteq> 0 |] ==> x \<in> CFinite - CInfinitesimal" |
|
589 |
by (auto dest: SComplex_CInfinitesimal_zero SComplex_subset_CFinite [THEN subsetD]) |
|
590 |
||
591 |
lemma hcomplex_of_complex_CFinite_diff_CInfinitesimal: |
|
592 |
"hcomplex_of_complex x \<noteq> 0 |
|
593 |
==> hcomplex_of_complex x \<in> CFinite - CInfinitesimal" |
|
594 |
by (rule SComplex_CFinite_diff_CInfinitesimal, auto) |
|
595 |
||
596 |
lemma hcomplex_of_complex_CInfinitesimal_iff_0 [iff]: |
|
597 |
"(hcomplex_of_complex x \<in> CInfinitesimal) = (x=0)" |
|
598 |
apply (auto simp add: hcomplex_of_complex_zero) |
|
599 |
apply (rule ccontr) |
|
600 |
apply (rule hcomplex_of_complex_CFinite_diff_CInfinitesimal [THEN DiffD2], auto) |
|
601 |
done |
|
602 |
||
603 |
lemma number_of_not_CInfinitesimal [simp]: |
|
604 |
"number_of w \<noteq> (0::hcomplex) ==> number_of w \<notin> CInfinitesimal" |
|
605 |
by (fast dest: SComplex_number_of [THEN SComplex_CInfinitesimal_zero]) |
|
606 |
||
607 |
lemma capprox_SComplex_not_zero: |
|
608 |
"[| y \<in> SComplex; x @c= y; y\<noteq> 0 |] ==> x \<noteq> 0" |
|
609 |
by (auto dest: SComplex_CInfinitesimal_zero capprox_sym [THEN mem_cinfmal_iff [THEN iffD2]]) |
|
610 |
||
611 |
lemma CFinite_diff_CInfinitesimal_capprox: |
|
612 |
"[| x @c= y; y \<in> CFinite - CInfinitesimal |] |
|
613 |
==> x \<in> CFinite - CInfinitesimal" |
|
614 |
apply (auto intro: capprox_sym [THEN [2] capprox_CFinite] |
|
615 |
simp add: mem_cinfmal_iff) |
|
616 |
apply (drule capprox_trans3, assumption) |
|
617 |
apply (blast dest: capprox_sym) |
|
618 |
done |
|
619 |
||
620 |
lemma CInfinitesimal_ratio: |
|
621 |
"[| y \<noteq> 0; y \<in> CInfinitesimal; x/y \<in> CFinite |] ==> x \<in> CInfinitesimal" |
|
622 |
apply (drule CInfinitesimal_CFinite_mult2, assumption) |
|
15013 | 623 |
apply (simp add: divide_inverse mult_assoc) |
14408 | 624 |
done |
625 |
||
626 |
lemma SComplex_capprox_iff: |
|
627 |
"[|x \<in> SComplex; y \<in> SComplex|] ==> (x @c= y) = (x = y)" |
|
628 |
apply auto |
|
629 |
apply (simp add: capprox_def) |
|
630 |
apply (subgoal_tac "x-y = 0", simp) |
|
631 |
apply (rule SComplex_CInfinitesimal_zero) |
|
632 |
apply (simp add: SComplex_diff, assumption) |
|
633 |
done |
|
634 |
||
635 |
lemma number_of_capprox_iff [simp]: |
|
636 |
"(number_of v @c= number_of w) = (number_of v = (number_of w :: hcomplex))" |
|
637 |
by (rule SComplex_capprox_iff, auto) |
|
638 |
||
639 |
lemma number_of_CInfinitesimal_iff [simp]: |
|
640 |
"(number_of w \<in> CInfinitesimal) = (number_of w = (0::hcomplex))" |
|
641 |
apply (rule iffI) |
|
642 |
apply (fast dest: SComplex_number_of [THEN SComplex_CInfinitesimal_zero]) |
|
643 |
apply (simp (no_asm_simp)) |
|
644 |
done |
|
645 |
||
646 |
lemma hcomplex_of_complex_approx_iff [simp]: |
|
647 |
"(hcomplex_of_complex k @c= hcomplex_of_complex m) = (k = m)" |
|
648 |
apply auto |
|
649 |
apply (rule inj_hcomplex_of_complex [THEN injD]) |
|
650 |
apply (rule SComplex_capprox_iff [THEN iffD1], auto) |
|
651 |
done |
|
652 |
||
653 |
lemma hcomplex_of_complex_capprox_number_of_iff [simp]: |
|
654 |
"(hcomplex_of_complex k @c= number_of w) = (k = number_of w)" |
|
655 |
by (subst hcomplex_of_complex_approx_iff [symmetric], auto) |
|
656 |
||
657 |
lemma capprox_unique_complex: |
|
658 |
"[| r \<in> SComplex; s \<in> SComplex; r @c= x; s @c= x|] ==> r = s" |
|
659 |
by (blast intro: SComplex_capprox_iff [THEN iffD1] capprox_trans2) |
|
660 |
||
661 |
lemma hcomplex_capproxD1: |
|
662 |
"Abs_hcomplex(hcomplexrel ``{%n. X n}) @c= Abs_hcomplex(hcomplexrel``{%n. Y n}) |
|
663 |
==> Abs_hypreal(hyprel `` {%n. Re(X n)}) @= |
|
664 |
Abs_hypreal(hyprel `` {%n. Re(Y n)})" |
|
665 |
apply (auto simp add: approx_FreeUltrafilterNat_iff) |
|
666 |
apply (drule capprox_minus_iff [THEN iffD1]) |
|
667 |
apply (auto simp add: hcomplex_minus hcomplex_add mem_cinfmal_iff [symmetric] CInfinitesimal_hcmod_iff hcmod Infinitesimal_FreeUltrafilterNat_iff2) |
|
668 |
apply (drule_tac x = m in spec, ultra) |
|
669 |
apply (rename_tac Z x) |
|
670 |
apply (case_tac "X x") |
|
671 |
apply (case_tac "Y x") |
|
672 |
apply (auto simp add: complex_minus complex_add complex_mod |
|
673 |
simp del: realpow_Suc) |
|
674 |
apply (rule_tac y="abs(Z x)" in order_le_less_trans) |
|
675 |
apply (drule_tac t = "Z x" in sym) |
|
15229 | 676 |
apply (auto simp del: realpow_Suc) |
14408 | 677 |
done |
678 |
||
679 |
(* same proof *) |
|
680 |
lemma hcomplex_capproxD2: |
|
681 |
"Abs_hcomplex(hcomplexrel ``{%n. X n}) @c= Abs_hcomplex(hcomplexrel``{%n. Y n}) |
|
682 |
==> Abs_hypreal(hyprel `` {%n. Im(X n)}) @= |
|
683 |
Abs_hypreal(hyprel `` {%n. Im(Y n)})" |
|
684 |
apply (auto simp add: approx_FreeUltrafilterNat_iff) |
|
685 |
apply (drule capprox_minus_iff [THEN iffD1]) |
|
686 |
apply (auto simp add: hcomplex_minus hcomplex_add mem_cinfmal_iff [symmetric] CInfinitesimal_hcmod_iff hcmod Infinitesimal_FreeUltrafilterNat_iff2) |
|
687 |
apply (drule_tac x = m in spec, ultra) |
|
688 |
apply (rename_tac Z x) |
|
689 |
apply (case_tac "X x") |
|
690 |
apply (case_tac "Y x") |
|
691 |
apply (auto simp add: complex_minus complex_add complex_mod simp del: realpow_Suc) |
|
692 |
apply (rule_tac y="abs(Z x)" in order_le_less_trans) |
|
693 |
apply (drule_tac t = "Z x" in sym) |
|
15229 | 694 |
apply (auto simp del: realpow_Suc) |
14408 | 695 |
done |
696 |
||
697 |
lemma hcomplex_capproxI: |
|
698 |
"[| Abs_hypreal(hyprel `` {%n. Re(X n)}) @= |
|
699 |
Abs_hypreal(hyprel `` {%n. Re(Y n)}); |
|
700 |
Abs_hypreal(hyprel `` {%n. Im(X n)}) @= |
|
701 |
Abs_hypreal(hyprel `` {%n. Im(Y n)}) |
|
702 |
|] ==> Abs_hcomplex(hcomplexrel ``{%n. X n}) @c= Abs_hcomplex(hcomplexrel``{%n. Y n})" |
|
703 |
apply (drule approx_minus_iff [THEN iffD1]) |
|
704 |
apply (drule approx_minus_iff [THEN iffD1]) |
|
705 |
apply (rule capprox_minus_iff [THEN iffD2]) |
|
706 |
apply (auto simp add: mem_cinfmal_iff [symmetric] mem_infmal_iff [symmetric] hypreal_minus hypreal_add hcomplex_minus hcomplex_add CInfinitesimal_hcmod_iff hcmod Infinitesimal_FreeUltrafilterNat_iff) |
|
707 |
apply (rule bexI, rule_tac [2] lemma_hyprel_refl, auto) |
|
708 |
apply (drule_tac x = "u/2" in spec) |
|
709 |
apply (drule_tac x = "u/2" in spec, auto, ultra) |
|
710 |
apply (drule sym, drule sym) |
|
711 |
apply (case_tac "X x") |
|
712 |
apply (case_tac "Y x") |
|
713 |
apply (auto simp add: complex_minus complex_add complex_mod snd_conv fst_conv numeral_2_eq_2) |
|
714 |
apply (rename_tac a b c d) |
|
715 |
apply (subgoal_tac "sqrt (abs (a + - c) ^ 2 + abs (b + - d) ^ 2) < u") |
|
716 |
apply (rule_tac [2] lemma_sqrt_hcomplex_capprox, auto) |
|
717 |
apply (simp add: power2_eq_square) |
|
718 |
done |
|
719 |
||
720 |
lemma capprox_approx_iff: |
|
721 |
"(Abs_hcomplex(hcomplexrel ``{%n. X n}) @c= Abs_hcomplex(hcomplexrel``{%n. Y n})) = |
|
722 |
(Abs_hypreal(hyprel `` {%n. Re(X n)}) @= Abs_hypreal(hyprel `` {%n. Re(Y n)}) & |
|
723 |
Abs_hypreal(hyprel `` {%n. Im(X n)}) @= Abs_hypreal(hyprel `` {%n. Im(Y n)}))" |
|
724 |
apply (blast intro: hcomplex_capproxI hcomplex_capproxD1 hcomplex_capproxD2) |
|
725 |
done |
|
726 |
||
727 |
lemma hcomplex_of_hypreal_capprox_iff [simp]: |
|
728 |
"(hcomplex_of_hypreal x @c= hcomplex_of_hypreal z) = (x @= z)" |
|
14469 | 729 |
apply (cases x, cases z) |
14408 | 730 |
apply (simp add: hcomplex_of_hypreal capprox_approx_iff) |
731 |
done |
|
732 |
||
733 |
lemma CFinite_HFinite_Re: |
|
734 |
"Abs_hcomplex(hcomplexrel ``{%n. X n}) \<in> CFinite |
|
735 |
==> Abs_hypreal(hyprel `` {%n. Re(X n)}) \<in> HFinite" |
|
736 |
apply (auto simp add: CFinite_hcmod_iff hcmod HFinite_FreeUltrafilterNat_iff) |
|
737 |
apply (rule bexI, rule_tac [2] lemma_hyprel_refl) |
|
738 |
apply (rule_tac x = u in exI, ultra) |
|
739 |
apply (drule sym, case_tac "X x") |
|
740 |
apply (auto simp add: complex_mod numeral_2_eq_2 simp del: realpow_Suc) |
|
741 |
apply (rule ccontr, drule linorder_not_less [THEN iffD1]) |
|
742 |
apply (drule order_less_le_trans, assumption) |
|
743 |
apply (drule real_sqrt_ge_abs1 [THEN [2] order_less_le_trans]) |
|
744 |
apply (auto simp add: numeral_2_eq_2 [symmetric]) |
|
745 |
done |
|
746 |
||
747 |
lemma CFinite_HFinite_Im: |
|
748 |
"Abs_hcomplex(hcomplexrel ``{%n. X n}) \<in> CFinite |
|
749 |
==> Abs_hypreal(hyprel `` {%n. Im(X n)}) \<in> HFinite" |
|
750 |
apply (auto simp add: CFinite_hcmod_iff hcmod HFinite_FreeUltrafilterNat_iff) |
|
751 |
apply (rule bexI, rule_tac [2] lemma_hyprel_refl) |
|
752 |
apply (rule_tac x = u in exI, ultra) |
|
753 |
apply (drule sym, case_tac "X x") |
|
754 |
apply (auto simp add: complex_mod simp del: realpow_Suc) |
|
755 |
apply (rule ccontr, drule linorder_not_less [THEN iffD1]) |
|
756 |
apply (drule order_less_le_trans, assumption) |
|
757 |
apply (drule real_sqrt_ge_abs2 [THEN [2] order_less_le_trans], auto) |
|
758 |
done |
|
759 |
||
760 |
lemma HFinite_Re_Im_CFinite: |
|
761 |
"[| Abs_hypreal(hyprel `` {%n. Re(X n)}) \<in> HFinite; |
|
762 |
Abs_hypreal(hyprel `` {%n. Im(X n)}) \<in> HFinite |
|
763 |
|] ==> Abs_hcomplex(hcomplexrel ``{%n. X n}) \<in> CFinite" |
|
764 |
apply (auto simp add: CFinite_hcmod_iff hcmod HFinite_FreeUltrafilterNat_iff) |
|
765 |
apply (rename_tac Y Z u v) |
|
766 |
apply (rule bexI, rule_tac [2] lemma_hyprel_refl) |
|
767 |
apply (rule_tac x = "2* (u + v) " in exI) |
|
768 |
apply ultra |
|
769 |
apply (drule sym, case_tac "X x") |
|
770 |
apply (auto simp add: complex_mod numeral_2_eq_2 simp del: realpow_Suc) |
|
771 |
apply (subgoal_tac "0 < u") |
|
772 |
prefer 2 apply arith |
|
773 |
apply (subgoal_tac "0 < v") |
|
774 |
prefer 2 apply arith |
|
775 |
apply (subgoal_tac "sqrt (abs (Y x) ^ 2 + abs (Z x) ^ 2) < 2*u + 2*v") |
|
776 |
apply (rule_tac [2] lemma_sqrt_hcomplex_capprox, auto) |
|
777 |
apply (simp add: power2_eq_square) |
|
778 |
done |
|
779 |
||
780 |
lemma CFinite_HFinite_iff: |
|
781 |
"(Abs_hcomplex(hcomplexrel ``{%n. X n}) \<in> CFinite) = |
|
782 |
(Abs_hypreal(hyprel `` {%n. Re(X n)}) \<in> HFinite & |
|
783 |
Abs_hypreal(hyprel `` {%n. Im(X n)}) \<in> HFinite)" |
|
784 |
by (blast intro: HFinite_Re_Im_CFinite CFinite_HFinite_Im CFinite_HFinite_Re) |
|
785 |
||
786 |
lemma SComplex_Re_SReal: |
|
787 |
"Abs_hcomplex(hcomplexrel ``{%n. X n}) \<in> SComplex |
|
788 |
==> Abs_hypreal(hyprel `` {%n. Re(X n)}) \<in> Reals" |
|
789 |
apply (auto simp add: SComplex_def hcomplex_of_complex_def SReal_def hypreal_of_real_def) |
|
790 |
apply (rule_tac x = "Re r" in exI, ultra) |
|
791 |
done |
|
792 |
||
793 |
lemma SComplex_Im_SReal: |
|
794 |
"Abs_hcomplex(hcomplexrel ``{%n. X n}) \<in> SComplex |
|
795 |
==> Abs_hypreal(hyprel `` {%n. Im(X n)}) \<in> Reals" |
|
796 |
apply (auto simp add: SComplex_def hcomplex_of_complex_def SReal_def hypreal_of_real_def) |
|
797 |
apply (rule_tac x = "Im r" in exI, ultra) |
|
798 |
done |
|
799 |
||
800 |
lemma Reals_Re_Im_SComplex: |
|
801 |
"[| Abs_hypreal(hyprel `` {%n. Re(X n)}) \<in> Reals; |
|
802 |
Abs_hypreal(hyprel `` {%n. Im(X n)}) \<in> Reals |
|
803 |
|] ==> Abs_hcomplex(hcomplexrel ``{%n. X n}) \<in> SComplex" |
|
804 |
apply (auto simp add: SComplex_def hcomplex_of_complex_def SReal_def hypreal_of_real_def) |
|
805 |
apply (rule_tac x = "Complex r ra" in exI, ultra) |
|
806 |
done |
|
807 |
||
808 |
lemma SComplex_SReal_iff: |
|
809 |
"(Abs_hcomplex(hcomplexrel ``{%n. X n}) \<in> SComplex) = |
|
810 |
(Abs_hypreal(hyprel `` {%n. Re(X n)}) \<in> Reals & |
|
811 |
Abs_hypreal(hyprel `` {%n. Im(X n)}) \<in> Reals)" |
|
812 |
by (blast intro: SComplex_Re_SReal SComplex_Im_SReal Reals_Re_Im_SComplex) |
|
813 |
||
814 |
lemma CInfinitesimal_Infinitesimal_iff: |
|
815 |
"(Abs_hcomplex(hcomplexrel ``{%n. X n}) \<in> CInfinitesimal) = |
|
816 |
(Abs_hypreal(hyprel `` {%n. Re(X n)}) \<in> Infinitesimal & |
|
817 |
Abs_hypreal(hyprel `` {%n. Im(X n)}) \<in> Infinitesimal)" |
|
818 |
by (simp add: mem_cinfmal_iff mem_infmal_iff hcomplex_zero_num hypreal_zero_num capprox_approx_iff) |
|
819 |
||
820 |
lemma eq_Abs_hcomplex_EX: |
|
821 |
"(\<exists>t. P t) = (\<exists>X. P (Abs_hcomplex(hcomplexrel `` {X})))" |
|
822 |
apply auto |
|
823 |
apply (rule_tac z = t in eq_Abs_hcomplex, auto) |
|
824 |
done |
|
825 |
||
826 |
lemma eq_Abs_hcomplex_Bex: |
|
827 |
"(\<exists>t \<in> A. P t) = (\<exists>X. (Abs_hcomplex(hcomplexrel `` {X})) \<in> A & |
|
828 |
P (Abs_hcomplex(hcomplexrel `` {X})))" |
|
829 |
apply auto |
|
830 |
apply (rule_tac z = t in eq_Abs_hcomplex, auto) |
|
831 |
done |
|
832 |
||
833 |
(* Here we go - easy proof now!! *) |
|
834 |
lemma stc_part_Ex: "x:CFinite ==> \<exists>t \<in> SComplex. x @c= t" |
|
835 |
apply (rule_tac z = x in eq_Abs_hcomplex) |
|
836 |
apply (auto simp add: CFinite_HFinite_iff eq_Abs_hcomplex_Bex SComplex_SReal_iff capprox_approx_iff) |
|
837 |
apply (drule st_part_Ex, safe)+ |
|
838 |
apply (rule_tac z = t in eq_Abs_hypreal) |
|
839 |
apply (rule_tac z = ta in eq_Abs_hypreal, auto) |
|
840 |
apply (rule_tac x = "%n. Complex (xa n) (xb n) " in exI) |
|
841 |
apply auto |
|
842 |
done |
|
843 |
||
844 |
lemma stc_part_Ex1: "x:CFinite ==> EX! t. t \<in> SComplex & x @c= t" |
|
845 |
apply (drule stc_part_Ex, safe) |
|
846 |
apply (drule_tac [2] capprox_sym, drule_tac [2] capprox_sym, drule_tac [2] capprox_sym) |
|
847 |
apply (auto intro!: capprox_unique_complex) |
|
848 |
done |
|
849 |
||
850 |
lemma CFinite_Int_CInfinite_empty: "CFinite Int CInfinite = {}" |
|
851 |
by (simp add: CFinite_def CInfinite_def, auto) |
|
852 |
||
853 |
lemma CFinite_not_CInfinite: "x \<in> CFinite ==> x \<notin> CInfinite" |
|
854 |
by (insert CFinite_Int_CInfinite_empty, blast) |
|
855 |
||
856 |
text{*Not sure this is a good idea!*} |
|
857 |
declare CFinite_Int_CInfinite_empty [simp] |
|
858 |
||
859 |
lemma not_CFinite_CInfinite: "x\<notin> CFinite ==> x \<in> CInfinite" |
|
860 |
by (auto intro: not_HFinite_HInfinite simp add: CFinite_hcmod_iff CInfinite_hcmod_iff) |
|
861 |
||
862 |
lemma CInfinite_CFinite_disj: "x \<in> CInfinite | x \<in> CFinite" |
|
863 |
by (blast intro: not_CFinite_CInfinite) |
|
864 |
||
865 |
lemma CInfinite_CFinite_iff: "(x \<in> CInfinite) = (x \<notin> CFinite)" |
|
866 |
by (blast dest: CFinite_not_CInfinite not_CFinite_CInfinite) |
|
867 |
||
868 |
lemma CFinite_CInfinite_iff: "(x \<in> CFinite) = (x \<notin> CInfinite)" |
|
869 |
by (simp add: CInfinite_CFinite_iff) |
|
870 |
||
871 |
lemma CInfinite_diff_CFinite_CInfinitesimal_disj: |
|
872 |
"x \<notin> CInfinitesimal ==> x \<in> CInfinite | x \<in> CFinite - CInfinitesimal" |
|
873 |
by (fast intro: not_CFinite_CInfinite) |
|
874 |
||
875 |
lemma CFinite_inverse: |
|
876 |
"[| x \<in> CFinite; x \<notin> CInfinitesimal |] ==> inverse x \<in> CFinite" |
|
877 |
apply (cut_tac x = "inverse x" in CInfinite_CFinite_disj) |
|
878 |
apply (auto dest!: CInfinite_inverse_CInfinitesimal) |
|
879 |
done |
|
880 |
||
881 |
lemma CFinite_inverse2: "x \<in> CFinite - CInfinitesimal ==> inverse x \<in> CFinite" |
|
882 |
by (blast intro: CFinite_inverse) |
|
883 |
||
884 |
lemma CInfinitesimal_inverse_CFinite: |
|
885 |
"x \<notin> CInfinitesimal ==> inverse(x) \<in> CFinite" |
|
886 |
apply (drule CInfinite_diff_CFinite_CInfinitesimal_disj) |
|
887 |
apply (blast intro: CFinite_inverse CInfinite_inverse_CInfinitesimal CInfinitesimal_subset_CFinite [THEN subsetD]) |
|
888 |
done |
|
889 |
||
890 |
||
891 |
lemma CFinite_not_CInfinitesimal_inverse: |
|
892 |
"x \<in> CFinite - CInfinitesimal ==> inverse x \<in> CFinite - CInfinitesimal" |
|
893 |
apply (auto intro: CInfinitesimal_inverse_CFinite) |
|
894 |
apply (drule CInfinitesimal_CFinite_mult2, assumption) |
|
895 |
apply (simp add: not_CInfinitesimal_not_zero) |
|
896 |
done |
|
897 |
||
898 |
lemma capprox_inverse: |
|
899 |
"[| x @c= y; y \<in> CFinite - CInfinitesimal |] ==> inverse x @c= inverse y" |
|
900 |
apply (frule CFinite_diff_CInfinitesimal_capprox, assumption) |
|
901 |
apply (frule not_CInfinitesimal_not_zero2) |
|
902 |
apply (frule_tac x = x in not_CInfinitesimal_not_zero2) |
|
903 |
apply (drule CFinite_inverse2)+ |
|
904 |
apply (drule capprox_mult2, assumption, auto) |
|
905 |
apply (drule_tac c = "inverse x" in capprox_mult1, assumption) |
|
15013 | 906 |
apply (auto intro: capprox_sym simp add: mult_assoc) |
14408 | 907 |
done |
908 |
||
15013 | 909 |
lemmas hcomplex_of_complex_capprox_inverse = |
910 |
hcomplex_of_complex_CFinite_diff_CInfinitesimal [THEN [2] capprox_inverse] |
|
14408 | 911 |
|
912 |
lemma inverse_add_CInfinitesimal_capprox: |
|
913 |
"[| x \<in> CFinite - CInfinitesimal; |
|
914 |
h \<in> CInfinitesimal |] ==> inverse(x + h) @c= inverse x" |
|
915 |
by (auto intro: capprox_inverse capprox_sym CInfinitesimal_add_capprox_self) |
|
916 |
||
917 |
lemma inverse_add_CInfinitesimal_capprox2: |
|
918 |
"[| x \<in> CFinite - CInfinitesimal; |
|
919 |
h \<in> CInfinitesimal |] ==> inverse(h + x) @c= inverse x" |
|
920 |
apply (rule add_commute [THEN subst]) |
|
921 |
apply (blast intro: inverse_add_CInfinitesimal_capprox) |
|
922 |
done |
|
923 |
||
924 |
lemma inverse_add_CInfinitesimal_approx_CInfinitesimal: |
|
925 |
"[| x \<in> CFinite - CInfinitesimal; |
|
926 |
h \<in> CInfinitesimal |] ==> inverse(x + h) - inverse x @c= h" |
|
927 |
apply (rule capprox_trans2) |
|
928 |
apply (auto intro: inverse_add_CInfinitesimal_capprox |
|
929 |
simp add: mem_cinfmal_iff diff_minus capprox_minus_iff [symmetric]) |
|
930 |
done |
|
931 |
||
932 |
lemma CInfinitesimal_square_iff [iff]: |
|
933 |
"(x*x \<in> CInfinitesimal) = (x \<in> CInfinitesimal)" |
|
934 |
by (simp add: CInfinitesimal_hcmod_iff hcmod_mult) |
|
935 |
||
936 |
lemma capprox_CFinite_mult_cancel: |
|
937 |
"[| a \<in> CFinite-CInfinitesimal; a*w @c= a*z |] ==> w @c= z" |
|
938 |
apply safe |
|
939 |
apply (frule CFinite_inverse, assumption) |
|
940 |
apply (drule not_CInfinitesimal_not_zero) |
|
15013 | 941 |
apply (auto dest: capprox_mult2 simp add: mult_assoc [symmetric]) |
14408 | 942 |
done |
943 |
||
944 |
lemma capprox_CFinite_mult_cancel_iff1: |
|
945 |
"a \<in> CFinite-CInfinitesimal ==> (a * w @c= a * z) = (w @c= z)" |
|
946 |
by (auto intro: capprox_mult2 capprox_CFinite_mult_cancel) |
|
947 |
||
948 |
||
949 |
subsection{*Theorems About Monads*} |
|
950 |
||
951 |
lemma capprox_cmonad_iff: "(x @c= y) = (cmonad(x)=cmonad(y))" |
|
952 |
apply (simp add: cmonad_def) |
|
953 |
apply (auto dest: capprox_sym elim!: capprox_trans equalityCE) |
|
954 |
done |
|
955 |
||
956 |
lemma CInfinitesimal_cmonad_eq: |
|
957 |
"e \<in> CInfinitesimal ==> cmonad (x+e) = cmonad x" |
|
958 |
by (fast intro!: CInfinitesimal_add_capprox_self [THEN capprox_sym] capprox_cmonad_iff [THEN iffD1]) |
|
959 |
||
960 |
lemma mem_cmonad_iff: "(u \<in> cmonad x) = (-u \<in> cmonad (-x))" |
|
961 |
by (simp add: cmonad_def) |
|
962 |
||
963 |
lemma CInfinitesimal_cmonad_zero_iff: "(x:CInfinitesimal) = (x \<in> cmonad 0)" |
|
964 |
by (auto intro: capprox_sym simp add: mem_cinfmal_iff cmonad_def) |
|
965 |
||
966 |
lemma cmonad_zero_minus_iff: "(x \<in> cmonad 0) = (-x \<in> cmonad 0)" |
|
967 |
by (simp add: CInfinitesimal_cmonad_zero_iff [symmetric]) |
|
968 |
||
969 |
lemma cmonad_zero_hcmod_iff: "(x \<in> cmonad 0) = (hcmod x:monad 0)" |
|
970 |
by (simp add: CInfinitesimal_cmonad_zero_iff [symmetric] CInfinitesimal_hcmod_iff Infinitesimal_monad_zero_iff [symmetric]) |
|
971 |
||
972 |
lemma mem_cmonad_self [simp]: "x \<in> cmonad x" |
|
973 |
by (simp add: cmonad_def) |
|
974 |
||
975 |
||
976 |
subsection{*Theorems About Standard Part*} |
|
977 |
||
978 |
lemma stc_capprox_self: "x \<in> CFinite ==> stc x @c= x" |
|
979 |
apply (simp add: stc_def) |
|
980 |
apply (frule stc_part_Ex, safe) |
|
981 |
apply (rule someI2) |
|
982 |
apply (auto intro: capprox_sym) |
|
983 |
done |
|
984 |
||
985 |
lemma stc_SComplex: "x \<in> CFinite ==> stc x \<in> SComplex" |
|
986 |
apply (simp add: stc_def) |
|
987 |
apply (frule stc_part_Ex, safe) |
|
988 |
apply (rule someI2) |
|
989 |
apply (auto intro: capprox_sym) |
|
990 |
done |
|
991 |
||
992 |
lemma stc_CFinite: "x \<in> CFinite ==> stc x \<in> CFinite" |
|
993 |
by (erule stc_SComplex [THEN SComplex_subset_CFinite [THEN subsetD]]) |
|
994 |
||
995 |
lemma stc_SComplex_eq [simp]: "x \<in> SComplex ==> stc x = x" |
|
996 |
apply (simp add: stc_def) |
|
997 |
apply (rule some_equality) |
|
998 |
apply (auto intro: SComplex_subset_CFinite [THEN subsetD]) |
|
999 |
apply (blast dest: SComplex_capprox_iff [THEN iffD1]) |
|
1000 |
done |
|
1001 |
||
1002 |
lemma stc_hcomplex_of_complex: |
|
1003 |
"stc (hcomplex_of_complex x) = hcomplex_of_complex x" |
|
1004 |
by auto |
|
1005 |
||
1006 |
lemma stc_eq_capprox: |
|
1007 |
"[| x \<in> CFinite; y \<in> CFinite; stc x = stc y |] ==> x @c= y" |
|
1008 |
by (auto dest!: stc_capprox_self elim!: capprox_trans3) |
|
1009 |
||
1010 |
lemma capprox_stc_eq: |
|
1011 |
"[| x \<in> CFinite; y \<in> CFinite; x @c= y |] ==> stc x = stc y" |
|
1012 |
by (blast intro: capprox_trans capprox_trans2 SComplex_capprox_iff [THEN iffD1] |
|
1013 |
dest: stc_capprox_self stc_SComplex) |
|
13957 | 1014 |
|
14408 | 1015 |
lemma stc_eq_capprox_iff: |
1016 |
"[| x \<in> CFinite; y \<in> CFinite|] ==> (x @c= y) = (stc x = stc y)" |
|
1017 |
by (blast intro: capprox_stc_eq stc_eq_capprox) |
|
1018 |
||
1019 |
lemma stc_CInfinitesimal_add_SComplex: |
|
1020 |
"[| x \<in> SComplex; e \<in> CInfinitesimal |] ==> stc(x + e) = x" |
|
1021 |
apply (frule stc_SComplex_eq [THEN subst]) |
|
1022 |
prefer 2 apply assumption |
|
1023 |
apply (frule SComplex_subset_CFinite [THEN subsetD]) |
|
1024 |
apply (frule CInfinitesimal_subset_CFinite [THEN subsetD]) |
|
1025 |
apply (drule stc_SComplex_eq) |
|
1026 |
apply (rule capprox_stc_eq) |
|
1027 |
apply (auto intro: CFinite_add simp add: CInfinitesimal_add_capprox_self [THEN capprox_sym]) |
|
1028 |
done |
|
1029 |
||
1030 |
lemma stc_CInfinitesimal_add_SComplex2: |
|
1031 |
"[| x \<in> SComplex; e \<in> CInfinitesimal |] ==> stc(e + x) = x" |
|
1032 |
apply (rule add_commute [THEN subst]) |
|
1033 |
apply (blast intro!: stc_CInfinitesimal_add_SComplex) |
|
1034 |
done |
|
1035 |
||
1036 |
lemma CFinite_stc_CInfinitesimal_add: |
|
1037 |
"x \<in> CFinite ==> \<exists>e \<in> CInfinitesimal. x = stc(x) + e" |
|
1038 |
by (blast dest!: stc_capprox_self [THEN capprox_sym] bex_CInfinitesimal_iff2 [THEN iffD2]) |
|
1039 |
||
1040 |
lemma stc_add: |
|
1041 |
"[| x \<in> CFinite; y \<in> CFinite |] ==> stc (x + y) = stc(x) + stc(y)" |
|
1042 |
apply (frule CFinite_stc_CInfinitesimal_add) |
|
1043 |
apply (frule_tac x = y in CFinite_stc_CInfinitesimal_add, safe) |
|
1044 |
apply (subgoal_tac "stc (x + y) = stc ((stc x + e) + (stc y + ea))") |
|
1045 |
apply (drule_tac [2] sym, drule_tac [2] sym) |
|
1046 |
prefer 2 apply simp |
|
1047 |
apply (simp (no_asm_simp) add: add_ac) |
|
1048 |
apply (drule stc_SComplex)+ |
|
1049 |
apply (drule SComplex_add, assumption) |
|
1050 |
apply (drule CInfinitesimal_add, assumption) |
|
1051 |
apply (rule add_assoc [THEN subst]) |
|
1052 |
apply (blast intro!: stc_CInfinitesimal_add_SComplex2) |
|
1053 |
done |
|
1054 |
||
1055 |
lemma stc_number_of [simp]: "stc (number_of w) = number_of w" |
|
1056 |
by (rule SComplex_number_of [THEN stc_SComplex_eq]) |
|
1057 |
||
1058 |
lemma stc_zero [simp]: "stc 0 = 0" |
|
1059 |
by simp |
|
1060 |
||
1061 |
lemma stc_one [simp]: "stc 1 = 1" |
|
1062 |
by simp |
|
1063 |
||
1064 |
lemma stc_minus: "y \<in> CFinite ==> stc(-y) = -stc(y)" |
|
1065 |
apply (frule CFinite_minus_iff [THEN iffD2]) |
|
1066 |
apply (rule hcomplex_add_minus_eq_minus) |
|
1067 |
apply (drule stc_add [symmetric], assumption) |
|
1068 |
apply (simp add: add_commute) |
|
1069 |
done |
|
1070 |
||
1071 |
lemma stc_diff: |
|
1072 |
"[| x \<in> CFinite; y \<in> CFinite |] ==> stc (x-y) = stc(x) - stc(y)" |
|
1073 |
apply (simp add: diff_minus) |
|
1074 |
apply (frule_tac y1 = y in stc_minus [symmetric]) |
|
1075 |
apply (drule_tac x1 = y in CFinite_minus_iff [THEN iffD2]) |
|
1076 |
apply (auto intro: stc_add) |
|
1077 |
done |
|
1078 |
||
1079 |
lemma lemma_stc_mult: |
|
1080 |
"[| x \<in> CFinite; y \<in> CFinite; |
|
1081 |
e \<in> CInfinitesimal; |
|
1082 |
ea: CInfinitesimal |] |
|
1083 |
==> e*y + x*ea + e*ea: CInfinitesimal" |
|
1084 |
apply (frule_tac x = e and y = y in CInfinitesimal_CFinite_mult) |
|
1085 |
apply (frule_tac [2] x = ea and y = x in CInfinitesimal_CFinite_mult) |
|
1086 |
apply (drule_tac [3] CInfinitesimal_mult) |
|
1087 |
apply (auto intro: CInfinitesimal_add simp add: add_ac mult_ac) |
|
1088 |
done |
|
1089 |
||
1090 |
lemma stc_mult: |
|
1091 |
"[| x \<in> CFinite; y \<in> CFinite |] |
|
1092 |
==> stc (x * y) = stc(x) * stc(y)" |
|
1093 |
apply (frule CFinite_stc_CInfinitesimal_add) |
|
1094 |
apply (frule_tac x = y in CFinite_stc_CInfinitesimal_add, safe) |
|
1095 |
apply (subgoal_tac "stc (x * y) = stc ((stc x + e) * (stc y + ea))") |
|
1096 |
apply (drule_tac [2] sym, drule_tac [2] sym) |
|
1097 |
prefer 2 apply simp |
|
1098 |
apply (erule_tac V = "x = stc x + e" in thin_rl) |
|
1099 |
apply (erule_tac V = "y = stc y + ea" in thin_rl) |
|
1100 |
apply (simp add: hcomplex_add_mult_distrib right_distrib) |
|
1101 |
apply (drule stc_SComplex)+ |
|
1102 |
apply (simp (no_asm_use) add: add_assoc) |
|
1103 |
apply (rule stc_CInfinitesimal_add_SComplex) |
|
1104 |
apply (blast intro!: SComplex_mult) |
|
1105 |
apply (drule SComplex_subset_CFinite [THEN subsetD])+ |
|
1106 |
apply (rule add_assoc [THEN subst]) |
|
1107 |
apply (blast intro!: lemma_stc_mult) |
|
1108 |
done |
|
1109 |
||
1110 |
lemma stc_CInfinitesimal: "x \<in> CInfinitesimal ==> stc x = 0" |
|
1111 |
apply (rule stc_zero [THEN subst]) |
|
1112 |
apply (rule capprox_stc_eq) |
|
1113 |
apply (auto intro: CInfinitesimal_subset_CFinite [THEN subsetD] |
|
1114 |
simp add: mem_cinfmal_iff [symmetric]) |
|
1115 |
done |
|
1116 |
||
1117 |
lemma stc_not_CInfinitesimal: "stc(x) \<noteq> 0 ==> x \<notin> CInfinitesimal" |
|
1118 |
by (fast intro: stc_CInfinitesimal) |
|
1119 |
||
1120 |
lemma stc_inverse: |
|
1121 |
"[| x \<in> CFinite; stc x \<noteq> 0 |] |
|
1122 |
==> stc(inverse x) = inverse (stc x)" |
|
1123 |
apply (rule_tac c1 = "stc x" in hcomplex_mult_left_cancel [THEN iffD1]) |
|
1124 |
apply (auto simp add: stc_mult [symmetric] stc_not_CInfinitesimal CFinite_inverse) |
|
1125 |
apply (subst right_inverse, auto) |
|
1126 |
done |
|
1127 |
||
1128 |
lemma stc_divide [simp]: |
|
1129 |
"[| x \<in> CFinite; y \<in> CFinite; stc y \<noteq> 0 |] |
|
1130 |
==> stc(x/y) = (stc x) / (stc y)" |
|
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14408
diff
changeset
|
1131 |
by (simp add: divide_inverse stc_mult stc_not_CInfinitesimal CFinite_inverse stc_inverse) |
14408 | 1132 |
|
1133 |
lemma stc_idempotent [simp]: "x \<in> CFinite ==> stc(stc(x)) = stc(x)" |
|
1134 |
by (blast intro: stc_CFinite stc_capprox_self capprox_stc_eq) |
|
1135 |
||
1136 |
lemma CFinite_HFinite_hcomplex_of_hypreal: |
|
1137 |
"z \<in> HFinite ==> hcomplex_of_hypreal z \<in> CFinite" |
|
14469 | 1138 |
apply (cases z) |
14408 | 1139 |
apply (simp add: hcomplex_of_hypreal CFinite_HFinite_iff hypreal_zero_def [symmetric]) |
1140 |
done |
|
1141 |
||
1142 |
lemma SComplex_SReal_hcomplex_of_hypreal: |
|
1143 |
"x \<in> Reals ==> hcomplex_of_hypreal x \<in> SComplex" |
|
14469 | 1144 |
apply (cases x) |
14408 | 1145 |
apply (simp add: hcomplex_of_hypreal SComplex_SReal_iff hypreal_zero_def [symmetric]) |
1146 |
done |
|
1147 |
||
1148 |
lemma stc_hcomplex_of_hypreal: |
|
1149 |
"z \<in> HFinite ==> stc(hcomplex_of_hypreal z) = hcomplex_of_hypreal (st z)" |
|
1150 |
apply (simp add: st_def stc_def) |
|
1151 |
apply (frule st_part_Ex, safe) |
|
1152 |
apply (rule someI2) |
|
1153 |
apply (auto intro: approx_sym) |
|
1154 |
apply (drule CFinite_HFinite_hcomplex_of_hypreal) |
|
1155 |
apply (frule stc_part_Ex, safe) |
|
1156 |
apply (rule someI2) |
|
1157 |
apply (auto intro: capprox_sym intro!: capprox_unique_complex dest: SComplex_SReal_hcomplex_of_hypreal) |
|
1158 |
done |
|
1159 |
||
1160 |
(* |
|
1161 |
Goal "x \<in> CFinite ==> hcmod(stc x) = st(hcmod x)" |
|
1162 |
by (dtac stc_capprox_self 1) |
|
1163 |
by (auto_tac (claset(),simpset() addsimps [bex_CInfinitesimal_iff2 RS sym])); |
|
1164 |
||
1165 |
||
1166 |
approx_hcmod_add_hcmod |
|
1167 |
*) |
|
1168 |
||
1169 |
lemma CInfinitesimal_hcnj_iff [simp]: |
|
1170 |
"(hcnj z \<in> CInfinitesimal) = (z \<in> CInfinitesimal)" |
|
1171 |
by (simp add: CInfinitesimal_hcmod_iff) |
|
1172 |
||
1173 |
lemma CInfinite_HInfinite_iff: |
|
1174 |
"(Abs_hcomplex(hcomplexrel ``{%n. X n}) \<in> CInfinite) = |
|
1175 |
(Abs_hypreal(hyprel `` {%n. Re(X n)}) \<in> HInfinite | |
|
1176 |
Abs_hypreal(hyprel `` {%n. Im(X n)}) \<in> HInfinite)" |
|
1177 |
by (simp add: CInfinite_CFinite_iff HInfinite_HFinite_iff CFinite_HFinite_iff) |
|
1178 |
||
1179 |
text{*These theorems should probably be deleted*} |
|
1180 |
lemma hcomplex_split_CInfinitesimal_iff: |
|
1181 |
"(hcomplex_of_hypreal x + iii * hcomplex_of_hypreal y \<in> CInfinitesimal) = |
|
1182 |
(x \<in> Infinitesimal & y \<in> Infinitesimal)" |
|
14469 | 1183 |
apply (cases x, cases y) |
14408 | 1184 |
apply (simp add: iii_def hcomplex_add hcomplex_mult hcomplex_of_hypreal CInfinitesimal_Infinitesimal_iff) |
1185 |
done |
|
1186 |
||
1187 |
lemma hcomplex_split_CFinite_iff: |
|
1188 |
"(hcomplex_of_hypreal x + iii * hcomplex_of_hypreal y \<in> CFinite) = |
|
1189 |
(x \<in> HFinite & y \<in> HFinite)" |
|
14469 | 1190 |
apply (cases x, cases y) |
14408 | 1191 |
apply (simp add: iii_def hcomplex_add hcomplex_mult hcomplex_of_hypreal CFinite_HFinite_iff) |
1192 |
done |
|
1193 |
||
1194 |
lemma hcomplex_split_SComplex_iff: |
|
1195 |
"(hcomplex_of_hypreal x + iii * hcomplex_of_hypreal y \<in> SComplex) = |
|
1196 |
(x \<in> Reals & y \<in> Reals)" |
|
14469 | 1197 |
apply (cases x, cases y) |
14408 | 1198 |
apply (simp add: iii_def hcomplex_add hcomplex_mult hcomplex_of_hypreal SComplex_SReal_iff) |
1199 |
done |
|
1200 |
||
1201 |
lemma hcomplex_split_CInfinite_iff: |
|
1202 |
"(hcomplex_of_hypreal x + iii * hcomplex_of_hypreal y \<in> CInfinite) = |
|
1203 |
(x \<in> HInfinite | y \<in> HInfinite)" |
|
14469 | 1204 |
apply (cases x, cases y) |
14408 | 1205 |
apply (simp add: iii_def hcomplex_add hcomplex_mult hcomplex_of_hypreal CInfinite_HInfinite_iff) |
1206 |
done |
|
1207 |
||
1208 |
lemma hcomplex_split_capprox_iff: |
|
1209 |
"(hcomplex_of_hypreal x + iii * hcomplex_of_hypreal y @c= |
|
1210 |
hcomplex_of_hypreal x' + iii * hcomplex_of_hypreal y') = |
|
1211 |
(x @= x' & y @= y')" |
|
14469 | 1212 |
apply (cases x, cases y, cases x', cases y') |
14408 | 1213 |
apply (simp add: iii_def hcomplex_add hcomplex_mult hcomplex_of_hypreal capprox_approx_iff) |
1214 |
done |
|
1215 |
||
1216 |
lemma complex_seq_to_hcomplex_CInfinitesimal: |
|
1217 |
"\<forall>n. cmod (X n - x) < inverse (real (Suc n)) ==> |
|
1218 |
Abs_hcomplex(hcomplexrel``{X}) - hcomplex_of_complex x \<in> CInfinitesimal" |
|
1219 |
apply (simp add: hcomplex_diff CInfinitesimal_hcmod_iff hcomplex_of_complex_def Infinitesimal_FreeUltrafilterNat_iff hcmod) |
|
1220 |
apply (rule bexI, auto) |
|
1221 |
apply (auto dest: FreeUltrafilterNat_inverse_real_of_posnat FreeUltrafilterNat_all FreeUltrafilterNat_Int intro: order_less_trans FreeUltrafilterNat_subset) |
|
1222 |
done |
|
1223 |
||
1224 |
lemma CInfinitesimal_hcomplex_of_hypreal_epsilon [simp]: |
|
1225 |
"hcomplex_of_hypreal epsilon \<in> CInfinitesimal" |
|
1226 |
by (simp add: CInfinitesimal_hcmod_iff) |
|
1227 |
||
1228 |
lemma hcomplex_of_complex_approx_zero_iff [simp]: |
|
1229 |
"(hcomplex_of_complex z @c= 0) = (z = 0)" |
|
1230 |
by (simp add: hcomplex_of_complex_zero [symmetric] |
|
1231 |
del: hcomplex_of_complex_zero) |
|
1232 |
||
1233 |
lemma hcomplex_of_complex_approx_zero_iff2 [simp]: |
|
1234 |
"(0 @c= hcomplex_of_complex z) = (z = 0)" |
|
1235 |
by (simp add: hcomplex_of_complex_zero [symmetric] |
|
1236 |
del: hcomplex_of_complex_zero) |
|
1237 |
||
1238 |
||
1239 |
ML |
|
1240 |
{* |
|
1241 |
val SComplex_add = thm "SComplex_add"; |
|
1242 |
val SComplex_mult = thm "SComplex_mult"; |
|
1243 |
val SComplex_inverse = thm "SComplex_inverse"; |
|
1244 |
val SComplex_divide = thm "SComplex_divide"; |
|
1245 |
val SComplex_minus = thm "SComplex_minus"; |
|
1246 |
val SComplex_minus_iff = thm "SComplex_minus_iff"; |
|
1247 |
val SComplex_diff = thm "SComplex_diff"; |
|
1248 |
val SComplex_add_cancel = thm "SComplex_add_cancel"; |
|
1249 |
val SReal_hcmod_hcomplex_of_complex = thm "SReal_hcmod_hcomplex_of_complex"; |
|
1250 |
val SReal_hcmod_number_of = thm "SReal_hcmod_number_of"; |
|
1251 |
val SReal_hcmod_SComplex = thm "SReal_hcmod_SComplex"; |
|
1252 |
val SComplex_hcomplex_of_complex = thm "SComplex_hcomplex_of_complex"; |
|
1253 |
val SComplex_number_of = thm "SComplex_number_of"; |
|
1254 |
val SComplex_divide_number_of = thm "SComplex_divide_number_of"; |
|
1255 |
val SComplex_UNIV_complex = thm "SComplex_UNIV_complex"; |
|
1256 |
val SComplex_iff = thm "SComplex_iff"; |
|
1257 |
val hcomplex_of_complex_image = thm "hcomplex_of_complex_image"; |
|
1258 |
val inv_hcomplex_of_complex_image = thm "inv_hcomplex_of_complex_image"; |
|
1259 |
val SComplex_hcomplex_of_complex_image = thm "SComplex_hcomplex_of_complex_image"; |
|
1260 |
val SComplex_SReal_dense = thm "SComplex_SReal_dense"; |
|
1261 |
val SComplex_hcmod_SReal = thm "SComplex_hcmod_SReal"; |
|
1262 |
val SComplex_zero = thm "SComplex_zero"; |
|
1263 |
val SComplex_one = thm "SComplex_one"; |
|
1264 |
val CFinite_add = thm "CFinite_add"; |
|
1265 |
val CFinite_mult = thm "CFinite_mult"; |
|
1266 |
val CFinite_minus_iff = thm "CFinite_minus_iff"; |
|
1267 |
val SComplex_subset_CFinite = thm "SComplex_subset_CFinite"; |
|
1268 |
val HFinite_hcmod_hcomplex_of_complex = thm "HFinite_hcmod_hcomplex_of_complex"; |
|
1269 |
val CFinite_hcomplex_of_complex = thm "CFinite_hcomplex_of_complex"; |
|
1270 |
val CFiniteD = thm "CFiniteD"; |
|
1271 |
val CFinite_hcmod_iff = thm "CFinite_hcmod_iff"; |
|
1272 |
val CFinite_number_of = thm "CFinite_number_of"; |
|
1273 |
val CFinite_bounded = thm "CFinite_bounded"; |
|
1274 |
val CInfinitesimal_zero = thm "CInfinitesimal_zero"; |
|
1275 |
val hcomplex_sum_of_halves = thm "hcomplex_sum_of_halves"; |
|
1276 |
val CInfinitesimal_hcmod_iff = thm "CInfinitesimal_hcmod_iff"; |
|
1277 |
val one_not_CInfinitesimal = thm "one_not_CInfinitesimal"; |
|
1278 |
val CInfinitesimal_add = thm "CInfinitesimal_add"; |
|
1279 |
val CInfinitesimal_minus_iff = thm "CInfinitesimal_minus_iff"; |
|
1280 |
val CInfinitesimal_diff = thm "CInfinitesimal_diff"; |
|
1281 |
val CInfinitesimal_mult = thm "CInfinitesimal_mult"; |
|
1282 |
val CInfinitesimal_CFinite_mult = thm "CInfinitesimal_CFinite_mult"; |
|
1283 |
val CInfinitesimal_CFinite_mult2 = thm "CInfinitesimal_CFinite_mult2"; |
|
1284 |
val CInfinite_hcmod_iff = thm "CInfinite_hcmod_iff"; |
|
1285 |
val CInfinite_inverse_CInfinitesimal = thm "CInfinite_inverse_CInfinitesimal"; |
|
1286 |
val CInfinite_mult = thm "CInfinite_mult"; |
|
1287 |
val CInfinite_minus_iff = thm "CInfinite_minus_iff"; |
|
1288 |
val CFinite_sum_squares = thm "CFinite_sum_squares"; |
|
1289 |
val not_CInfinitesimal_not_zero = thm "not_CInfinitesimal_not_zero"; |
|
1290 |
val not_CInfinitesimal_not_zero2 = thm "not_CInfinitesimal_not_zero2"; |
|
1291 |
val CFinite_diff_CInfinitesimal_hcmod = thm "CFinite_diff_CInfinitesimal_hcmod"; |
|
1292 |
val hcmod_less_CInfinitesimal = thm "hcmod_less_CInfinitesimal"; |
|
1293 |
val hcmod_le_CInfinitesimal = thm "hcmod_le_CInfinitesimal"; |
|
1294 |
val CInfinitesimal_interval = thm "CInfinitesimal_interval"; |
|
1295 |
val CInfinitesimal_interval2 = thm "CInfinitesimal_interval2"; |
|
1296 |
val not_CInfinitesimal_mult = thm "not_CInfinitesimal_mult"; |
|
1297 |
val CInfinitesimal_mult_disj = thm "CInfinitesimal_mult_disj"; |
|
1298 |
val CFinite_CInfinitesimal_diff_mult = thm "CFinite_CInfinitesimal_diff_mult"; |
|
1299 |
val CInfinitesimal_subset_CFinite = thm "CInfinitesimal_subset_CFinite"; |
|
1300 |
val CInfinitesimal_hcomplex_of_complex_mult = thm "CInfinitesimal_hcomplex_of_complex_mult"; |
|
1301 |
val CInfinitesimal_hcomplex_of_complex_mult2 = thm "CInfinitesimal_hcomplex_of_complex_mult2"; |
|
1302 |
val mem_cinfmal_iff = thm "mem_cinfmal_iff"; |
|
1303 |
val capprox_minus_iff = thm "capprox_minus_iff"; |
|
1304 |
val capprox_minus_iff2 = thm "capprox_minus_iff2"; |
|
1305 |
val capprox_refl = thm "capprox_refl"; |
|
1306 |
val capprox_sym = thm "capprox_sym"; |
|
1307 |
val capprox_trans = thm "capprox_trans"; |
|
1308 |
val capprox_trans2 = thm "capprox_trans2"; |
|
1309 |
val capprox_trans3 = thm "capprox_trans3"; |
|
1310 |
val number_of_capprox_reorient = thm "number_of_capprox_reorient"; |
|
1311 |
val CInfinitesimal_capprox_minus = thm "CInfinitesimal_capprox_minus"; |
|
1312 |
val capprox_monad_iff = thm "capprox_monad_iff"; |
|
1313 |
val Infinitesimal_capprox = thm "Infinitesimal_capprox"; |
|
1314 |
val capprox_add = thm "capprox_add"; |
|
1315 |
val capprox_minus = thm "capprox_minus"; |
|
1316 |
val capprox_minus2 = thm "capprox_minus2"; |
|
1317 |
val capprox_minus_cancel = thm "capprox_minus_cancel"; |
|
1318 |
val capprox_add_minus = thm "capprox_add_minus"; |
|
1319 |
val capprox_mult1 = thm "capprox_mult1"; |
|
1320 |
val capprox_mult2 = thm "capprox_mult2"; |
|
1321 |
val capprox_mult_subst = thm "capprox_mult_subst"; |
|
1322 |
val capprox_mult_subst2 = thm "capprox_mult_subst2"; |
|
1323 |
val capprox_mult_subst_SComplex = thm "capprox_mult_subst_SComplex"; |
|
1324 |
val capprox_eq_imp = thm "capprox_eq_imp"; |
|
1325 |
val CInfinitesimal_minus_capprox = thm "CInfinitesimal_minus_capprox"; |
|
1326 |
val bex_CInfinitesimal_iff = thm "bex_CInfinitesimal_iff"; |
|
1327 |
val bex_CInfinitesimal_iff2 = thm "bex_CInfinitesimal_iff2"; |
|
1328 |
val CInfinitesimal_add_capprox = thm "CInfinitesimal_add_capprox"; |
|
1329 |
val CInfinitesimal_add_capprox_self = thm "CInfinitesimal_add_capprox_self"; |
|
1330 |
val CInfinitesimal_add_capprox_self2 = thm "CInfinitesimal_add_capprox_self2"; |
|
1331 |
val CInfinitesimal_add_minus_capprox_self = thm "CInfinitesimal_add_minus_capprox_self"; |
|
1332 |
val CInfinitesimal_add_cancel = thm "CInfinitesimal_add_cancel"; |
|
1333 |
val CInfinitesimal_add_right_cancel = thm "CInfinitesimal_add_right_cancel"; |
|
1334 |
val capprox_add_left_cancel = thm "capprox_add_left_cancel"; |
|
1335 |
val capprox_add_right_cancel = thm "capprox_add_right_cancel"; |
|
1336 |
val capprox_add_mono1 = thm "capprox_add_mono1"; |
|
1337 |
val capprox_add_mono2 = thm "capprox_add_mono2"; |
|
1338 |
val capprox_add_left_iff = thm "capprox_add_left_iff"; |
|
1339 |
val capprox_add_right_iff = thm "capprox_add_right_iff"; |
|
1340 |
val capprox_CFinite = thm "capprox_CFinite"; |
|
1341 |
val capprox_hcomplex_of_complex_CFinite = thm "capprox_hcomplex_of_complex_CFinite"; |
|
1342 |
val capprox_mult_CFinite = thm "capprox_mult_CFinite"; |
|
1343 |
val capprox_mult_hcomplex_of_complex = thm "capprox_mult_hcomplex_of_complex"; |
|
1344 |
val capprox_SComplex_mult_cancel_zero = thm "capprox_SComplex_mult_cancel_zero"; |
|
1345 |
val capprox_mult_SComplex1 = thm "capprox_mult_SComplex1"; |
|
1346 |
val capprox_mult_SComplex2 = thm "capprox_mult_SComplex2"; |
|
1347 |
val capprox_mult_SComplex_zero_cancel_iff = thm "capprox_mult_SComplex_zero_cancel_iff"; |
|
1348 |
val capprox_SComplex_mult_cancel = thm "capprox_SComplex_mult_cancel"; |
|
1349 |
val capprox_SComplex_mult_cancel_iff1 = thm "capprox_SComplex_mult_cancel_iff1"; |
|
1350 |
val capprox_hcmod_approx_zero = thm "capprox_hcmod_approx_zero"; |
|
1351 |
val capprox_approx_zero_iff = thm "capprox_approx_zero_iff"; |
|
1352 |
val capprox_minus_zero_cancel_iff = thm "capprox_minus_zero_cancel_iff"; |
|
1353 |
val Infinitesimal_hcmod_add_diff = thm "Infinitesimal_hcmod_add_diff"; |
|
1354 |
val approx_hcmod_add_hcmod = thm "approx_hcmod_add_hcmod"; |
|
1355 |
val capprox_hcmod_approx = thm "capprox_hcmod_approx"; |
|
1356 |
val CInfinitesimal_less_SComplex = thm "CInfinitesimal_less_SComplex"; |
|
1357 |
val SComplex_Int_CInfinitesimal_zero = thm "SComplex_Int_CInfinitesimal_zero"; |
|
1358 |
val SComplex_CInfinitesimal_zero = thm "SComplex_CInfinitesimal_zero"; |
|
1359 |
val SComplex_CFinite_diff_CInfinitesimal = thm "SComplex_CFinite_diff_CInfinitesimal"; |
|
1360 |
val hcomplex_of_complex_CFinite_diff_CInfinitesimal = thm "hcomplex_of_complex_CFinite_diff_CInfinitesimal"; |
|
1361 |
val hcomplex_of_complex_CInfinitesimal_iff_0 = thm "hcomplex_of_complex_CInfinitesimal_iff_0"; |
|
1362 |
val number_of_not_CInfinitesimal = thm "number_of_not_CInfinitesimal"; |
|
1363 |
val capprox_SComplex_not_zero = thm "capprox_SComplex_not_zero"; |
|
1364 |
val CFinite_diff_CInfinitesimal_capprox = thm "CFinite_diff_CInfinitesimal_capprox"; |
|
1365 |
val CInfinitesimal_ratio = thm "CInfinitesimal_ratio"; |
|
1366 |
val SComplex_capprox_iff = thm "SComplex_capprox_iff"; |
|
1367 |
val number_of_capprox_iff = thm "number_of_capprox_iff"; |
|
1368 |
val number_of_CInfinitesimal_iff = thm "number_of_CInfinitesimal_iff"; |
|
1369 |
val hcomplex_of_complex_approx_iff = thm "hcomplex_of_complex_approx_iff"; |
|
1370 |
val hcomplex_of_complex_capprox_number_of_iff = thm "hcomplex_of_complex_capprox_number_of_iff"; |
|
1371 |
val capprox_unique_complex = thm "capprox_unique_complex"; |
|
1372 |
val hcomplex_capproxD1 = thm "hcomplex_capproxD1"; |
|
1373 |
val hcomplex_capproxD2 = thm "hcomplex_capproxD2"; |
|
1374 |
val hcomplex_capproxI = thm "hcomplex_capproxI"; |
|
1375 |
val capprox_approx_iff = thm "capprox_approx_iff"; |
|
1376 |
val hcomplex_of_hypreal_capprox_iff = thm "hcomplex_of_hypreal_capprox_iff"; |
|
1377 |
val CFinite_HFinite_Re = thm "CFinite_HFinite_Re"; |
|
1378 |
val CFinite_HFinite_Im = thm "CFinite_HFinite_Im"; |
|
1379 |
val HFinite_Re_Im_CFinite = thm "HFinite_Re_Im_CFinite"; |
|
1380 |
val CFinite_HFinite_iff = thm "CFinite_HFinite_iff"; |
|
1381 |
val SComplex_Re_SReal = thm "SComplex_Re_SReal"; |
|
1382 |
val SComplex_Im_SReal = thm "SComplex_Im_SReal"; |
|
1383 |
val Reals_Re_Im_SComplex = thm "Reals_Re_Im_SComplex"; |
|
1384 |
val SComplex_SReal_iff = thm "SComplex_SReal_iff"; |
|
1385 |
val CInfinitesimal_Infinitesimal_iff = thm "CInfinitesimal_Infinitesimal_iff"; |
|
1386 |
val eq_Abs_hcomplex_Bex = thm "eq_Abs_hcomplex_Bex"; |
|
1387 |
val stc_part_Ex = thm "stc_part_Ex"; |
|
1388 |
val stc_part_Ex1 = thm "stc_part_Ex1"; |
|
1389 |
val CFinite_Int_CInfinite_empty = thm "CFinite_Int_CInfinite_empty"; |
|
1390 |
val CFinite_not_CInfinite = thm "CFinite_not_CInfinite"; |
|
1391 |
val not_CFinite_CInfinite = thm "not_CFinite_CInfinite"; |
|
1392 |
val CInfinite_CFinite_disj = thm "CInfinite_CFinite_disj"; |
|
1393 |
val CInfinite_CFinite_iff = thm "CInfinite_CFinite_iff"; |
|
1394 |
val CFinite_CInfinite_iff = thm "CFinite_CInfinite_iff"; |
|
1395 |
val CInfinite_diff_CFinite_CInfinitesimal_disj = thm "CInfinite_diff_CFinite_CInfinitesimal_disj"; |
|
1396 |
val CFinite_inverse = thm "CFinite_inverse"; |
|
1397 |
val CFinite_inverse2 = thm "CFinite_inverse2"; |
|
1398 |
val CInfinitesimal_inverse_CFinite = thm "CInfinitesimal_inverse_CFinite"; |
|
1399 |
val CFinite_not_CInfinitesimal_inverse = thm "CFinite_not_CInfinitesimal_inverse"; |
|
1400 |
val capprox_inverse = thm "capprox_inverse"; |
|
1401 |
val hcomplex_of_complex_capprox_inverse = thms "hcomplex_of_complex_capprox_inverse"; |
|
1402 |
val inverse_add_CInfinitesimal_capprox = thm "inverse_add_CInfinitesimal_capprox"; |
|
1403 |
val inverse_add_CInfinitesimal_capprox2 = thm "inverse_add_CInfinitesimal_capprox2"; |
|
1404 |
val inverse_add_CInfinitesimal_approx_CInfinitesimal = thm "inverse_add_CInfinitesimal_approx_CInfinitesimal"; |
|
1405 |
val CInfinitesimal_square_iff = thm "CInfinitesimal_square_iff"; |
|
1406 |
val capprox_CFinite_mult_cancel = thm "capprox_CFinite_mult_cancel"; |
|
1407 |
val capprox_CFinite_mult_cancel_iff1 = thm "capprox_CFinite_mult_cancel_iff1"; |
|
1408 |
val capprox_cmonad_iff = thm "capprox_cmonad_iff"; |
|
1409 |
val CInfinitesimal_cmonad_eq = thm "CInfinitesimal_cmonad_eq"; |
|
1410 |
val mem_cmonad_iff = thm "mem_cmonad_iff"; |
|
1411 |
val CInfinitesimal_cmonad_zero_iff = thm "CInfinitesimal_cmonad_zero_iff"; |
|
1412 |
val cmonad_zero_minus_iff = thm "cmonad_zero_minus_iff"; |
|
1413 |
val cmonad_zero_hcmod_iff = thm "cmonad_zero_hcmod_iff"; |
|
1414 |
val mem_cmonad_self = thm "mem_cmonad_self"; |
|
1415 |
val stc_capprox_self = thm "stc_capprox_self"; |
|
1416 |
val stc_SComplex = thm "stc_SComplex"; |
|
1417 |
val stc_CFinite = thm "stc_CFinite"; |
|
1418 |
val stc_SComplex_eq = thm "stc_SComplex_eq"; |
|
1419 |
val stc_hcomplex_of_complex = thm "stc_hcomplex_of_complex"; |
|
1420 |
val stc_eq_capprox = thm "stc_eq_capprox"; |
|
1421 |
val capprox_stc_eq = thm "capprox_stc_eq"; |
|
1422 |
val stc_eq_capprox_iff = thm "stc_eq_capprox_iff"; |
|
1423 |
val stc_CInfinitesimal_add_SComplex = thm "stc_CInfinitesimal_add_SComplex"; |
|
1424 |
val stc_CInfinitesimal_add_SComplex2 = thm "stc_CInfinitesimal_add_SComplex2"; |
|
1425 |
val CFinite_stc_CInfinitesimal_add = thm "CFinite_stc_CInfinitesimal_add"; |
|
1426 |
val stc_add = thm "stc_add"; |
|
1427 |
val stc_number_of = thm "stc_number_of"; |
|
1428 |
val stc_zero = thm "stc_zero"; |
|
1429 |
val stc_one = thm "stc_one"; |
|
1430 |
val stc_minus = thm "stc_minus"; |
|
1431 |
val stc_diff = thm "stc_diff"; |
|
1432 |
val lemma_stc_mult = thm "lemma_stc_mult"; |
|
1433 |
val stc_mult = thm "stc_mult"; |
|
1434 |
val stc_CInfinitesimal = thm "stc_CInfinitesimal"; |
|
1435 |
val stc_not_CInfinitesimal = thm "stc_not_CInfinitesimal"; |
|
1436 |
val stc_inverse = thm "stc_inverse"; |
|
1437 |
val stc_divide = thm "stc_divide"; |
|
1438 |
val stc_idempotent = thm "stc_idempotent"; |
|
1439 |
val CFinite_HFinite_hcomplex_of_hypreal = thm "CFinite_HFinite_hcomplex_of_hypreal"; |
|
1440 |
val SComplex_SReal_hcomplex_of_hypreal = thm "SComplex_SReal_hcomplex_of_hypreal"; |
|
1441 |
val stc_hcomplex_of_hypreal = thm "stc_hcomplex_of_hypreal"; |
|
1442 |
val CInfinitesimal_hcnj_iff = thm "CInfinitesimal_hcnj_iff"; |
|
1443 |
val CInfinite_HInfinite_iff = thm "CInfinite_HInfinite_iff"; |
|
1444 |
val hcomplex_split_CInfinitesimal_iff = thm "hcomplex_split_CInfinitesimal_iff"; |
|
1445 |
val hcomplex_split_CFinite_iff = thm "hcomplex_split_CFinite_iff"; |
|
1446 |
val hcomplex_split_SComplex_iff = thm "hcomplex_split_SComplex_iff"; |
|
1447 |
val hcomplex_split_CInfinite_iff = thm "hcomplex_split_CInfinite_iff"; |
|
1448 |
val hcomplex_split_capprox_iff = thm "hcomplex_split_capprox_iff"; |
|
1449 |
val complex_seq_to_hcomplex_CInfinitesimal = thm "complex_seq_to_hcomplex_CInfinitesimal"; |
|
1450 |
val CInfinitesimal_hcomplex_of_hypreal_epsilon = thm "CInfinitesimal_hcomplex_of_hypreal_epsilon"; |
|
1451 |
val hcomplex_of_complex_approx_zero_iff = thm "hcomplex_of_complex_approx_zero_iff"; |
|
1452 |
val hcomplex_of_complex_approx_zero_iff2 = thm "hcomplex_of_complex_approx_zero_iff2"; |
|
1453 |
*} |
|
1454 |
||
13957 | 1455 |
|
1456 |
end |