author | wenzelm |
Tue, 26 Apr 2005 19:51:28 +0200 | |
changeset 15849 | a2c8160b58fd |
parent 15772 | 949204e73081 |
child 16353 | 94e565ded526 |
permissions | -rw-r--r-- |
10602 | 1 |
% |
11187 | 2 |
\begin{isabellebody}% |
3 |
\def\isabellecontext{Numbers}% |
|
10602 | 4 |
\isanewline |
11187 | 5 |
\isacommand{theory}\ Numbers\ {\isacharequal}\ Real{\isacharcolon}\isanewline |
10602 | 6 |
\isanewline |
11866 | 7 |
\isamarkupfalse% |
8 |
\isamarkupfalse% |
|
15481 | 9 |
\isamarkupfalse% |
11866 | 10 |
% |
11187 | 11 |
\begin{isamarkuptext}% |
10602 | 12 |
numeric literals; default simprules; can re-orient% |
11187 | 13 |
\end{isamarkuptext}% |
11866 | 14 |
\isamarkuptrue% |
15 |
\isacommand{lemma}\ {\isachardoublequote}{\isadigit{2}}\ {\isacharasterisk}\ m\ {\isacharequal}\ m\ {\isacharplus}\ m{\isachardoublequote}\isamarkupfalse% |
|
16 |
\isamarkuptrue% |
|
15481 | 17 |
\isanewline |
11866 | 18 |
\isamarkupfalse% |
11187 | 19 |
\isacommand{consts}\ h\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat\ {\isasymRightarrow}\ nat{\isachardoublequote}\isanewline |
11866 | 20 |
\isamarkupfalse% |
11187 | 21 |
\isacommand{recdef}\ h\ {\isachardoublequote}{\isacharbraceleft}{\isacharbraceright}{\isachardoublequote}\isanewline |
11866 | 22 |
{\isachardoublequote}h\ i\ {\isacharequal}\ {\isacharparenleft}if\ i\ {\isacharequal}\ {\isadigit{3}}\ then\ {\isadigit{2}}\ else\ i{\isacharparenright}{\isachardoublequote}\isamarkupfalse% |
23 |
% |
|
11187 | 24 |
\begin{isamarkuptext}% |
11708 | 25 |
\isa{h\ {\isadigit{3}}\ {\isacharequal}\ {\isadigit{2}}} |
11187 | 26 |
\isa{h\ i\ {\isacharequal}\ i}% |
27 |
\end{isamarkuptext}% |
|
11866 | 28 |
\isamarkuptrue% |
10878 | 29 |
% |
11187 | 30 |
\begin{isamarkuptext}% |
31 |
\begin{isabelle}% |
|
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14353
diff
changeset
|
32 |
Numeral{\isadigit{0}}\ {\isacharequal}\ {\isacharparenleft}{\isadigit{0}}{\isasymColon}{\isacharprime}a{\isacharparenright}% |
11187 | 33 |
\end{isabelle} |
11174 | 34 |
\rulename{numeral_0_eq_0} |
10602 | 35 |
|
11187 | 36 |
\begin{isabelle}% |
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14353
diff
changeset
|
37 |
Numeral{\isadigit{1}}\ {\isacharequal}\ {\isacharparenleft}{\isadigit{1}}{\isasymColon}{\isacharprime}a{\isacharparenright}% |
10602 | 38 |
\end{isabelle} |
11187 | 39 |
\rulename{numeral_1_eq_1} |
11174 | 40 |
|
11187 | 41 |
\begin{isabelle}% |
11708 | 42 |
{\isadigit{2}}\ {\isacharplus}\ n\ {\isacharequal}\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}% |
11187 | 43 |
\end{isabelle} |
10602 | 44 |
\rulename{add_2_eq_Suc} |
11187 | 45 |
|
46 |
\begin{isabelle}% |
|
11708 | 47 |
n\ {\isacharplus}\ {\isadigit{2}}\ {\isacharequal}\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}% |
10602 | 48 |
\end{isabelle} |
11174 | 49 |
\rulename{add_2_eq_Suc'} |
50 |
||
11187 | 51 |
\begin{isabelle}% |
14270 | 52 |
a\ {\isacharplus}\ b\ {\isacharplus}\ c\ {\isacharequal}\ a\ {\isacharplus}\ {\isacharparenleft}b\ {\isacharplus}\ c{\isacharparenright}% |
11174 | 53 |
\end{isabelle} |
11187 | 54 |
\rulename{add_assoc} |
10602 | 55 |
|
11187 | 56 |
\begin{isabelle}% |
14270 | 57 |
a\ {\isacharplus}\ b\ {\isacharequal}\ b\ {\isacharplus}\ a% |
11174 | 58 |
\end{isabelle} |
11187 | 59 |
\rulename{add_commute} |
10602 | 60 |
|
11187 | 61 |
\begin{isabelle}% |
14270 | 62 |
a\ {\isacharplus}\ {\isacharparenleft}b\ {\isacharplus}\ c{\isacharparenright}\ {\isacharequal}\ b\ {\isacharplus}\ {\isacharparenleft}a\ {\isacharplus}\ c{\isacharparenright}% |
11187 | 63 |
\end{isabelle} |
11174 | 64 |
\rulename{add_left_commute} |
10602 | 65 |
|
66 |
these form add_ac; similarly there is mult_ac% |
|
11187 | 67 |
\end{isamarkuptext}% |
11866 | 68 |
\isamarkuptrue% |
69 |
\isacommand{lemma}\ {\isachardoublequote}Suc{\isacharparenleft}i\ {\isacharplus}\ j{\isacharasterisk}l{\isacharasterisk}k\ {\isacharplus}\ m{\isacharasterisk}n{\isacharparenright}\ {\isacharequal}\ f\ {\isacharparenleft}n{\isacharasterisk}m\ {\isacharplus}\ i\ {\isacharplus}\ k{\isacharasterisk}j{\isacharasterisk}l{\isacharparenright}{\isachardoublequote}\isamarkupfalse% |
|
70 |
\isamarkuptrue% |
|
15481 | 71 |
\isamarkupfalse% |
11866 | 72 |
\isamarkuptrue% |
15481 | 73 |
\isamarkupfalse% |
11866 | 74 |
% |
11187 | 75 |
\begin{isamarkuptext}% |
76 |
\begin{isabelle}% |
|
77 |
m\ {\isasymle}\ n\ {\isasymLongrightarrow}\ m\ div\ k\ {\isasymle}\ n\ div\ k% |
|
78 |
\end{isabelle} |
|
11174 | 79 |
\rulename{div_le_mono} |
10602 | 80 |
|
11187 | 81 |
\begin{isabelle}% |
82 |
{\isacharparenleft}m\ {\isacharminus}\ n{\isacharparenright}\ {\isacharasterisk}\ k\ {\isacharequal}\ m\ {\isacharasterisk}\ k\ {\isacharminus}\ n\ {\isacharasterisk}\ k% |
|
83 |
\end{isabelle} |
|
11174 | 84 |
\rulename{diff_mult_distrib} |
10602 | 85 |
|
11187 | 86 |
\begin{isabelle}% |
87 |
m\ mod\ n\ {\isacharasterisk}\ k\ {\isacharequal}\ m\ {\isacharasterisk}\ k\ mod\ {\isacharparenleft}n\ {\isacharasterisk}\ k{\isacharparenright}% |
|
88 |
\end{isabelle} |
|
11174 | 89 |
\rulename{mod_mult_distrib} |
10602 | 90 |
|
11187 | 91 |
\begin{isabelle}% |
92 |
P\ {\isacharparenleft}a\ {\isacharminus}\ b{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}{\isacharparenleft}a\ {\isacharless}\ b\ {\isasymlongrightarrow}\ P\ {\isadigit{0}}{\isacharparenright}\ {\isasymand}\ {\isacharparenleft}{\isasymforall}d{\isachardot}\ a\ {\isacharequal}\ b\ {\isacharplus}\ d\ {\isasymlongrightarrow}\ P\ d{\isacharparenright}{\isacharparenright}% |
|
10602 | 93 |
\end{isabelle} |
11187 | 94 |
\rulename{nat_diff_split}% |
95 |
\end{isamarkuptext}% |
|
11866 | 96 |
\isamarkuptrue% |
12156
d2758965362e
new-style numerals without leading #, along with generic 0 and 1
paulson
parents:
11870
diff
changeset
|
97 |
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}n\ {\isacharminus}\ {\isadigit{1}}{\isacharparenright}\ {\isacharasterisk}\ {\isacharparenleft}n\ {\isacharplus}\ {\isadigit{1}}{\isacharparenright}\ {\isacharequal}\ n\ {\isacharasterisk}\ n\ {\isacharminus}\ {\isacharparenleft}{\isadigit{1}}{\isacharcolon}{\isacharcolon}nat{\isacharparenright}{\isachardoublequote}\isanewline |
d2758965362e
new-style numerals without leading #, along with generic 0 and 1
paulson
parents:
11870
diff
changeset
|
98 |
\isamarkupfalse% |
15481 | 99 |
\isamarkupfalse% |
100 |
\isamarkupfalse% |
|
12156
d2758965362e
new-style numerals without leading #, along with generic 0 and 1
paulson
parents:
11870
diff
changeset
|
101 |
\isanewline |
d2758965362e
new-style numerals without leading #, along with generic 0 and 1
paulson
parents:
11870
diff
changeset
|
102 |
\isanewline |
d2758965362e
new-style numerals without leading #, along with generic 0 and 1
paulson
parents:
11870
diff
changeset
|
103 |
\isamarkupfalse% |
11708 | 104 |
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}n\ {\isacharminus}\ {\isadigit{2}}{\isacharparenright}\ {\isacharasterisk}\ {\isacharparenleft}n\ {\isacharplus}\ {\isadigit{2}}{\isacharparenright}\ {\isacharequal}\ n\ {\isacharasterisk}\ n\ {\isacharminus}\ {\isacharparenleft}{\isadigit{4}}{\isacharcolon}{\isacharcolon}nat{\isacharparenright}{\isachardoublequote}\isanewline |
11866 | 105 |
\isamarkupfalse% |
15481 | 106 |
\isamarkupfalse% |
11866 | 107 |
\isamarkupfalse% |
108 |
\isamarkupfalse% |
|
109 |
% |
|
11187 | 110 |
\begin{isamarkuptext}% |
111 |
\begin{isabelle}% |
|
112 |
m\ mod\ n\ {\isacharequal}\ {\isacharparenleft}if\ m\ {\isacharless}\ n\ then\ m\ else\ {\isacharparenleft}m\ {\isacharminus}\ n{\isacharparenright}\ mod\ n{\isacharparenright}% |
|
113 |
\end{isabelle} |
|
11174 | 114 |
\rulename{mod_if} |
11187 | 115 |
|
116 |
\begin{isabelle}% |
|
117 |
m\ div\ n\ {\isacharasterisk}\ n\ {\isacharplus}\ m\ mod\ n\ {\isacharequal}\ m% |
|
10602 | 118 |
\end{isabelle} |
11174 | 119 |
\rulename{mod_div_equality} |
10602 | 120 |
|
121 |
||
11187 | 122 |
\begin{isabelle}% |
123 |
a\ {\isacharasterisk}\ b\ div\ c\ {\isacharequal}\ a\ {\isacharasterisk}\ {\isacharparenleft}b\ div\ c{\isacharparenright}\ {\isacharplus}\ a\ {\isacharasterisk}\ {\isacharparenleft}b\ mod\ c{\isacharparenright}\ div\ c% |
|
124 |
\end{isabelle} |
|
11174 | 125 |
\rulename{div_mult1_eq} |
10602 | 126 |
|
11187 | 127 |
\begin{isabelle}% |
128 |
a\ {\isacharasterisk}\ b\ mod\ c\ {\isacharequal}\ a\ {\isacharasterisk}\ {\isacharparenleft}b\ mod\ c{\isacharparenright}\ mod\ c% |
|
129 |
\end{isabelle} |
|
11174 | 130 |
\rulename{mod_mult1_eq} |
10602 | 131 |
|
11187 | 132 |
\begin{isabelle}% |
133 |
a\ div\ {\isacharparenleft}b\ {\isacharasterisk}\ c{\isacharparenright}\ {\isacharequal}\ a\ div\ b\ div\ c% |
|
134 |
\end{isabelle} |
|
11174 | 135 |
\rulename{div_mult2_eq} |
10602 | 136 |
|
11187 | 137 |
\begin{isabelle}% |
138 |
a\ mod\ {\isacharparenleft}b\ {\isacharasterisk}\ c{\isacharparenright}\ {\isacharequal}\ b\ {\isacharasterisk}\ {\isacharparenleft}a\ div\ b\ mod\ c{\isacharparenright}\ {\isacharplus}\ a\ mod\ b% |
|
139 |
\end{isabelle} |
|
11174 | 140 |
\rulename{mod_mult2_eq} |
10602 | 141 |
|
11187 | 142 |
\begin{isabelle}% |
143 |
{\isadigit{0}}\ {\isacharless}\ c\ {\isasymLongrightarrow}\ c\ {\isacharasterisk}\ a\ div\ {\isacharparenleft}c\ {\isacharasterisk}\ b{\isacharparenright}\ {\isacharequal}\ a\ div\ b% |
|
144 |
\end{isabelle} |
|
11174 | 145 |
\rulename{div_mult_mult1} |
10602 | 146 |
|
11187 | 147 |
\begin{isabelle}% |
148 |
a\ div\ {\isadigit{0}}\ {\isacharequal}\ {\isadigit{0}}% |
|
149 |
\end{isabelle} |
|
11174 | 150 |
\rulename{DIVISION_BY_ZERO_DIV} |
10602 | 151 |
|
11187 | 152 |
\begin{isabelle}% |
153 |
a\ mod\ {\isadigit{0}}\ {\isacharequal}\ a% |
|
154 |
\end{isabelle} |
|
11174 | 155 |
\rulename{DIVISION_BY_ZERO_MOD} |
10602 | 156 |
|
11187 | 157 |
\begin{isabelle}% |
158 |
{\isasymlbrakk}m\ dvd\ n{\isacharsemicolon}\ n\ dvd\ m{\isasymrbrakk}\ {\isasymLongrightarrow}\ m\ {\isacharequal}\ n% |
|
159 |
\end{isabelle} |
|
11174 | 160 |
\rulename{dvd_anti_sym} |
10602 | 161 |
|
11187 | 162 |
\begin{isabelle}% |
163 |
{\isasymlbrakk}k\ dvd\ m{\isacharsemicolon}\ k\ dvd\ n{\isasymrbrakk}\ {\isasymLongrightarrow}\ k\ dvd\ m\ {\isacharplus}\ n% |
|
164 |
\end{isabelle} |
|
11174 | 165 |
\rulename{dvd_add} |
10602 | 166 |
|
167 |
For the integers, I'd list a few theorems that somehow involve negative |
|
13758 | 168 |
numbers.% |
169 |
\end{isamarkuptext}% |
|
170 |
\isamarkuptrue% |
|
171 |
% |
|
172 |
\begin{isamarkuptext}% |
|
10602 | 173 |
Division, remainder of negatives |
174 |
||
175 |
||
11187 | 176 |
\begin{isabelle}% |
11870
181bd2050cf4
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents:
11866
diff
changeset
|
177 |
{\isadigit{0}}\ {\isacharless}\ b\ {\isasymLongrightarrow}\ {\isadigit{0}}\ {\isasymle}\ a\ mod\ b% |
11187 | 178 |
\end{isabelle} |
11174 | 179 |
\rulename{pos_mod_sign} |
10602 | 180 |
|
11187 | 181 |
\begin{isabelle}% |
11870
181bd2050cf4
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents:
11866
diff
changeset
|
182 |
{\isadigit{0}}\ {\isacharless}\ b\ {\isasymLongrightarrow}\ a\ mod\ b\ {\isacharless}\ b% |
11174 | 183 |
\end{isabelle} |
11187 | 184 |
\rulename{pos_mod_bound} |
10602 | 185 |
|
11187 | 186 |
\begin{isabelle}% |
11870
181bd2050cf4
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents:
11866
diff
changeset
|
187 |
b\ {\isacharless}\ {\isadigit{0}}\ {\isasymLongrightarrow}\ a\ mod\ b\ {\isasymle}\ {\isadigit{0}}% |
11174 | 188 |
\end{isabelle} |
11187 | 189 |
\rulename{neg_mod_sign} |
10602 | 190 |
|
11187 | 191 |
\begin{isabelle}% |
11870
181bd2050cf4
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents:
11866
diff
changeset
|
192 |
b\ {\isacharless}\ {\isadigit{0}}\ {\isasymLongrightarrow}\ b\ {\isacharless}\ a\ mod\ b% |
11187 | 193 |
\end{isabelle} |
11174 | 194 |
\rulename{neg_mod_bound} |
10602 | 195 |
|
11187 | 196 |
\begin{isabelle}% |
197 |
{\isacharparenleft}a\ {\isacharplus}\ b{\isacharparenright}\ div\ c\ {\isacharequal}\ a\ div\ c\ {\isacharplus}\ b\ div\ c\ {\isacharplus}\ {\isacharparenleft}a\ mod\ c\ {\isacharplus}\ b\ mod\ c{\isacharparenright}\ div\ c% |
|
11174 | 198 |
\end{isabelle} |
11187 | 199 |
\rulename{zdiv_zadd1_eq} |
10602 | 200 |
|
11187 | 201 |
\begin{isabelle}% |
202 |
{\isacharparenleft}a\ {\isacharplus}\ b{\isacharparenright}\ mod\ c\ {\isacharequal}\ {\isacharparenleft}a\ mod\ c\ {\isacharplus}\ b\ mod\ c{\isacharparenright}\ mod\ c% |
|
203 |
\end{isabelle} |
|
10602 | 204 |
\rulename{zmod_zadd1_eq} |
205 |
||
11187 | 206 |
\begin{isabelle}% |
207 |
a\ {\isacharasterisk}\ b\ div\ c\ {\isacharequal}\ a\ {\isacharasterisk}\ {\isacharparenleft}b\ div\ c{\isacharparenright}\ {\isacharplus}\ a\ {\isacharasterisk}\ {\isacharparenleft}b\ mod\ c{\isacharparenright}\ div\ c% |
|
10602 | 208 |
\end{isabelle} |
11187 | 209 |
\rulename{zdiv_zmult1_eq} |
10602 | 210 |
|
11187 | 211 |
\begin{isabelle}% |
212 |
a\ {\isacharasterisk}\ b\ mod\ c\ {\isacharequal}\ a\ {\isacharasterisk}\ {\isacharparenleft}b\ mod\ c{\isacharparenright}\ mod\ c% |
|
213 |
\end{isabelle} |
|
10602 | 214 |
\rulename{zmod_zmult1_eq} |
215 |
||
11187 | 216 |
\begin{isabelle}% |
11870
181bd2050cf4
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents:
11866
diff
changeset
|
217 |
{\isadigit{0}}\ {\isacharless}\ c\ {\isasymLongrightarrow}\ a\ div\ {\isacharparenleft}b\ {\isacharasterisk}\ c{\isacharparenright}\ {\isacharequal}\ a\ div\ b\ div\ c% |
11174 | 218 |
\end{isabelle} |
11187 | 219 |
\rulename{zdiv_zmult2_eq} |
10602 | 220 |
|
11187 | 221 |
\begin{isabelle}% |
11870
181bd2050cf4
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents:
11866
diff
changeset
|
222 |
{\isadigit{0}}\ {\isacharless}\ c\ {\isasymLongrightarrow}\ a\ mod\ {\isacharparenleft}b\ {\isacharasterisk}\ c{\isacharparenright}\ {\isacharequal}\ b\ {\isacharasterisk}\ {\isacharparenleft}a\ div\ b\ mod\ c{\isacharparenright}\ {\isacharplus}\ a\ mod\ b% |
11187 | 223 |
\end{isabelle} |
14400 | 224 |
\rulename{zmod_zmult2_eq}% |
11187 | 225 |
\end{isamarkuptext}% |
11866 | 226 |
\isamarkuptrue% |
11187 | 227 |
\isacommand{lemma}\ {\isachardoublequote}abs\ {\isacharparenleft}x{\isacharplus}y{\isacharparenright}\ {\isasymle}\ abs\ x\ {\isacharplus}\ abs\ {\isacharparenleft}y\ {\isacharcolon}{\isacharcolon}\ int{\isacharparenright}{\isachardoublequote}\isanewline |
11866 | 228 |
\isamarkupfalse% |
15481 | 229 |
\isanewline |
11866 | 230 |
\isamarkupfalse% |
11708 | 231 |
\isacommand{lemma}\ {\isachardoublequote}abs\ {\isacharparenleft}{\isadigit{2}}{\isacharasterisk}x{\isacharparenright}\ {\isacharequal}\ {\isadigit{2}}\ {\isacharasterisk}\ abs\ {\isacharparenleft}x\ {\isacharcolon}{\isacharcolon}\ int{\isacharparenright}{\isachardoublequote}\isanewline |
11866 | 232 |
\isamarkupfalse% |
15481 | 233 |
\isamarkupfalse% |
11866 | 234 |
% |
11187 | 235 |
\begin{isamarkuptext}% |
13758 | 236 |
Induction rules for the Integers |
237 |
||
238 |
\begin{isabelle}% |
|
239 |
{\isasymlbrakk}k\ {\isasymle}\ i{\isacharsemicolon}\ P\ k{\isacharsemicolon}\ {\isasymAnd}i{\isachardot}\ {\isasymlbrakk}k\ {\isasymle}\ i{\isacharsemicolon}\ P\ i{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ {\isacharparenleft}i\ {\isacharplus}\ {\isadigit{1}}{\isacharparenright}{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ i% |
|
240 |
\end{isabelle} |
|
241 |
\rulename{int_ge_induct} |
|
242 |
||
243 |
\begin{isabelle}% |
|
244 |
{\isasymlbrakk}k\ {\isacharless}\ i{\isacharsemicolon}\ P\ {\isacharparenleft}k\ {\isacharplus}\ {\isadigit{1}}{\isacharparenright}{\isacharsemicolon}\ {\isasymAnd}i{\isachardot}\ {\isasymlbrakk}k\ {\isacharless}\ i{\isacharsemicolon}\ P\ i{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ {\isacharparenleft}i\ {\isacharplus}\ {\isadigit{1}}{\isacharparenright}{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ i% |
|
245 |
\end{isabelle} |
|
246 |
\rulename{int_gr_induct} |
|
247 |
||
248 |
\begin{isabelle}% |
|
249 |
{\isasymlbrakk}i\ {\isasymle}\ k{\isacharsemicolon}\ P\ k{\isacharsemicolon}\ {\isasymAnd}i{\isachardot}\ {\isasymlbrakk}i\ {\isasymle}\ k{\isacharsemicolon}\ P\ i{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ {\isacharparenleft}i\ {\isacharminus}\ {\isadigit{1}}{\isacharparenright}{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ i% |
|
250 |
\end{isabelle} |
|
251 |
\rulename{int_le_induct} |
|
252 |
||
253 |
\begin{isabelle}% |
|
254 |
{\isasymlbrakk}i\ {\isacharless}\ k{\isacharsemicolon}\ P\ {\isacharparenleft}k\ {\isacharminus}\ {\isadigit{1}}{\isacharparenright}{\isacharsemicolon}\ {\isasymAnd}i{\isachardot}\ {\isasymlbrakk}i\ {\isacharless}\ k{\isacharsemicolon}\ P\ i{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ {\isacharparenleft}i\ {\isacharminus}\ {\isadigit{1}}{\isacharparenright}{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ i% |
|
255 |
\end{isabelle} |
|
256 |
\rulename{int_less_induct}% |
|
257 |
\end{isamarkuptext}% |
|
258 |
\isamarkuptrue% |
|
259 |
% |
|
260 |
\begin{isamarkuptext}% |
|
14400 | 261 |
FIELDS |
10776 | 262 |
|
11187 | 263 |
\begin{isabelle}% |
15364 | 264 |
a\ {\isacharless}\ b\ {\isasymLongrightarrow}\ {\isasymexists}r{\isachargreater}a{\isachardot}\ r\ {\isacharless}\ b% |
11187 | 265 |
\end{isabelle} |
14295 | 266 |
\rulename{dense} |
10776 | 267 |
|
11187 | 268 |
\begin{isabelle}% |
14288 | 269 |
a\ {\isacharasterisk}\ {\isacharparenleft}b\ {\isacharslash}\ c{\isacharparenright}\ {\isacharequal}\ a\ {\isacharasterisk}\ b\ {\isacharslash}\ c% |
11187 | 270 |
\end{isabelle} |
14288 | 271 |
\rulename{times_divide_eq_right} |
10776 | 272 |
|
11187 | 273 |
\begin{isabelle}% |
14288 | 274 |
b\ {\isacharslash}\ c\ {\isacharasterisk}\ a\ {\isacharequal}\ b\ {\isacharasterisk}\ a\ {\isacharslash}\ c% |
11187 | 275 |
\end{isabelle} |
14288 | 276 |
\rulename{times_divide_eq_left} |
10776 | 277 |
|
11187 | 278 |
\begin{isabelle}% |
14288 | 279 |
a\ {\isacharslash}\ {\isacharparenleft}b\ {\isacharslash}\ c{\isacharparenright}\ {\isacharequal}\ a\ {\isacharasterisk}\ c\ {\isacharslash}\ b% |
11187 | 280 |
\end{isabelle} |
14288 | 281 |
\rulename{divide_divide_eq_right} |
10776 | 282 |
|
11187 | 283 |
\begin{isabelle}% |
14288 | 284 |
a\ {\isacharslash}\ b\ {\isacharslash}\ c\ {\isacharequal}\ a\ {\isacharslash}\ {\isacharparenleft}b\ {\isacharasterisk}\ c{\isacharparenright}% |
11187 | 285 |
\end{isabelle} |
14288 | 286 |
\rulename{divide_divide_eq_left} |
10776 | 287 |
|
11187 | 288 |
\begin{isabelle}% |
14295 | 289 |
{\isacharminus}\ {\isacharparenleft}a\ {\isacharslash}\ b{\isacharparenright}\ {\isacharequal}\ {\isacharminus}\ a\ {\isacharslash}\ b% |
11187 | 290 |
\end{isabelle} |
14295 | 291 |
\rulename{minus_divide_left} |
10776 | 292 |
|
11187 | 293 |
\begin{isabelle}% |
14295 | 294 |
{\isacharminus}\ {\isacharparenleft}a\ {\isacharslash}\ b{\isacharparenright}\ {\isacharequal}\ a\ {\isacharslash}\ {\isacharminus}\ b% |
11187 | 295 |
\end{isabelle} |
14295 | 296 |
\rulename{minus_divide_right} |
10776 | 297 |
|
298 |
This last NOT a simprule |
|
299 |
||
11187 | 300 |
\begin{isabelle}% |
14295 | 301 |
{\isacharparenleft}a\ {\isacharplus}\ b{\isacharparenright}\ {\isacharslash}\ c\ {\isacharequal}\ a\ {\isacharslash}\ c\ {\isacharplus}\ b\ {\isacharslash}\ c% |
11174 | 302 |
\end{isabelle} |
14295 | 303 |
\rulename{add_divide_distrib}% |
11187 | 304 |
\end{isamarkuptext}% |
11866 | 305 |
\isamarkuptrue% |
11708 | 306 |
\isacommand{lemma}\ {\isachardoublequote}{\isadigit{3}}{\isacharslash}{\isadigit{4}}\ {\isacharless}\ {\isacharparenleft}{\isadigit{7}}{\isacharslash}{\isadigit{8}}\ {\isacharcolon}{\isacharcolon}\ real{\isacharparenright}{\isachardoublequote}\isanewline |
11866 | 307 |
\isamarkupfalse% |
11174 | 308 |
\isanewline |
11866 | 309 |
\isamarkupfalse% |
310 |
\isacommand{lemma}\ {\isachardoublequote}P\ {\isacharparenleft}{\isacharparenleft}{\isadigit{3}}{\isacharslash}{\isadigit{4}}{\isacharparenright}\ {\isacharasterisk}\ {\isacharparenleft}{\isadigit{8}}{\isacharslash}{\isadigit{1}}{\isadigit{5}}\ {\isacharcolon}{\isacharcolon}\ real{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isamarkupfalse% |
|
311 |
\isamarkuptrue% |
|
15481 | 312 |
\isamarkupfalse% |
11866 | 313 |
\isamarkuptrue% |
15481 | 314 |
\isanewline |
11866 | 315 |
\isamarkupfalse% |
316 |
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}{\isadigit{3}}{\isacharslash}{\isadigit{4}}{\isacharparenright}\ {\isacharasterisk}\ {\isacharparenleft}{\isadigit{8}}{\isacharslash}{\isadigit{1}}{\isadigit{5}}{\isacharparenright}\ {\isacharless}\ {\isacharparenleft}x\ {\isacharcolon}{\isacharcolon}\ real{\isacharparenright}{\isachardoublequote}\isamarkupfalse% |
|
317 |
\isamarkuptrue% |
|
15481 | 318 |
\isamarkupfalse% |
11866 | 319 |
\isamarkuptrue% |
15481 | 320 |
\isamarkupfalse% |
14400 | 321 |
% |
322 |
\begin{isamarkuptext}% |
|
323 |
Ring and Field |
|
324 |
||
325 |
Requires a field, or else an ordered ring |
|
326 |
||
327 |
\begin{isabelle}% |
|
328 |
{\isacharparenleft}a\ {\isacharasterisk}\ b\ {\isacharequal}\ {\isacharparenleft}{\isadigit{0}}{\isasymColon}{\isacharprime}a{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}a\ {\isacharequal}\ {\isacharparenleft}{\isadigit{0}}{\isasymColon}{\isacharprime}a{\isacharparenright}\ {\isasymor}\ b\ {\isacharequal}\ {\isacharparenleft}{\isadigit{0}}{\isasymColon}{\isacharprime}a{\isacharparenright}{\isacharparenright}% |
|
329 |
\end{isabelle} |
|
330 |
\rulename{mult_eq_0_iff} |
|
331 |
||
332 |
\begin{isabelle}% |
|
333 |
{\isacharparenleft}a\ {\isacharasterisk}\ b\ {\isacharequal}\ {\isacharparenleft}{\isadigit{0}}{\isasymColon}{\isacharprime}a{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}a\ {\isacharequal}\ {\isacharparenleft}{\isadigit{0}}{\isasymColon}{\isacharprime}a{\isacharparenright}\ {\isasymor}\ b\ {\isacharequal}\ {\isacharparenleft}{\isadigit{0}}{\isasymColon}{\isacharprime}a{\isacharparenright}{\isacharparenright}% |
|
334 |
\end{isabelle} |
|
335 |
\rulename{field_mult_eq_0_iff} |
|
336 |
||
337 |
\begin{isabelle}% |
|
338 |
{\isacharparenleft}a\ {\isacharasterisk}\ c\ {\isacharequal}\ b\ {\isacharasterisk}\ c{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}c\ {\isacharequal}\ {\isacharparenleft}{\isadigit{0}}{\isasymColon}{\isacharprime}a{\isacharparenright}\ {\isasymor}\ a\ {\isacharequal}\ b{\isacharparenright}% |
|
339 |
\end{isabelle} |
|
340 |
\rulename{mult_cancel_right} |
|
341 |
||
342 |
\begin{isabelle}% |
|
343 |
{\isacharparenleft}a\ {\isacharasterisk}\ c\ {\isacharequal}\ b\ {\isacharasterisk}\ c{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}c\ {\isacharequal}\ {\isacharparenleft}{\isadigit{0}}{\isasymColon}{\isacharprime}a{\isacharparenright}\ {\isasymor}\ a\ {\isacharequal}\ b{\isacharparenright}% |
|
344 |
\end{isabelle} |
|
345 |
\rulename{field_mult_cancel_right}% |
|
346 |
\end{isamarkuptext}% |
|
347 |
\isamarkuptrue% |
|
15481 | 348 |
\isamarkupfalse% |
14400 | 349 |
% |
350 |
\begin{isamarkuptext}% |
|
351 |
effect of show sorts on the above |
|
352 |
||
353 |
\begin{isabelle}% |
|
354 |
{\isacharparenleft}{\isacharparenleft}a{\isasymColon}{\isacharprime}a{\isasymColon}field{\isacharparenright}\ {\isacharasterisk}\ {\isacharparenleft}c{\isasymColon}{\isacharprime}a{\isasymColon}field{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}b{\isasymColon}{\isacharprime}a{\isasymColon}field{\isacharparenright}\ {\isacharasterisk}\ c{\isacharparenright}\ {\isacharequal}\isanewline |
|
355 |
{\isacharparenleft}c\ {\isacharequal}\ {\isacharparenleft}{\isadigit{0}}{\isasymColon}{\isacharprime}a{\isasymColon}field{\isacharparenright}\ {\isasymor}\ a\ {\isacharequal}\ b{\isacharparenright}% |
|
356 |
\end{isabelle} |
|
357 |
\rulename{field_mult_cancel_right}% |
|
358 |
\end{isamarkuptext}% |
|
359 |
\isamarkuptrue% |
|
15481 | 360 |
\isamarkupfalse% |
14400 | 361 |
% |
362 |
\begin{isamarkuptext}% |
|
363 |
absolute value |
|
364 |
||
365 |
\begin{isabelle}% |
|
366 |
{\isasymbar}a\ {\isacharasterisk}\ b{\isasymbar}\ {\isacharequal}\ {\isasymbar}a{\isasymbar}\ {\isacharasterisk}\ {\isasymbar}b{\isasymbar}% |
|
367 |
\end{isabelle} |
|
368 |
\rulename{abs_mult} |
|
369 |
||
370 |
\begin{isabelle}% |
|
371 |
{\isacharparenleft}{\isasymbar}a{\isasymbar}\ {\isasymle}\ b{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}a\ {\isasymle}\ b\ {\isasymand}\ {\isacharminus}\ a\ {\isasymle}\ b{\isacharparenright}% |
|
372 |
\end{isabelle} |
|
373 |
\rulename{abs_le_iff} |
|
374 |
||
375 |
\begin{isabelle}% |
|
376 |
{\isasymbar}a\ {\isacharplus}\ b{\isasymbar}\ {\isasymle}\ {\isasymbar}a{\isasymbar}\ {\isacharplus}\ {\isasymbar}b{\isasymbar}% |
|
377 |
\end{isabelle} |
|
378 |
\rulename{abs_triangle_ineq} |
|
379 |
||
380 |
\begin{isabelle}% |
|
381 |
a\ {\isacharcircum}\ {\isacharparenleft}m\ {\isacharplus}\ n{\isacharparenright}\ {\isacharequal}\ a\ {\isacharcircum}\ m\ {\isacharasterisk}\ a\ {\isacharcircum}\ n% |
|
382 |
\end{isabelle} |
|
383 |
\rulename{power_add} |
|
384 |
||
385 |
\begin{isabelle}% |
|
386 |
a\ {\isacharcircum}\ {\isacharparenleft}m\ {\isacharasterisk}\ n{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}a\ {\isacharcircum}\ m{\isacharparenright}\ {\isacharcircum}\ n% |
|
387 |
\end{isabelle} |
|
388 |
\rulename{power_mult} |
|
389 |
||
390 |
\begin{isabelle}% |
|
391 |
{\isasymbar}a\ {\isacharcircum}\ n{\isasymbar}\ {\isacharequal}\ {\isasymbar}a{\isasymbar}\ {\isacharcircum}\ n% |
|
392 |
\end{isabelle} |
|
393 |
\rulename{power_abs}% |
|
394 |
\end{isamarkuptext}% |
|
395 |
\isamarkuptrue% |
|
10602 | 396 |
\isacommand{end}\isanewline |
11866 | 397 |
\isamarkupfalse% |
11187 | 398 |
\end{isabellebody}% |
10602 | 399 |
%%% Local Variables: |
400 |
%%% mode: latex |
|
401 |
%%% TeX-master: "root" |
|
402 |
%%% End: |