| 
13215
 | 
     1  | 
(*  Title:      HOL/MicroJava/BV/JVM.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author:     Tobias Nipkow, Gerwin Klein
  | 
| 
 | 
     4  | 
    Copyright   2000 TUM
  | 
| 
 | 
     5  | 
*)
  | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
header {* \isaheader{LBV for the JVM}\label{sec:JVM} *}
 | 
| 
 | 
     8  | 
  | 
| 
13224
 | 
     9  | 
theory LBVJVM = LBVCorrect + LBVComplete + Typing_Framework_JVM:
  | 
| 
13215
 | 
    10  | 
  | 
| 
 | 
    11  | 
types prog_cert = "cname \<Rightarrow> sig \<Rightarrow> state list"
  | 
| 
 | 
    12  | 
  | 
| 
 | 
    13  | 
constdefs
  | 
| 
 | 
    14  | 
  check_cert :: "jvm_prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> state list \<Rightarrow> bool"
  | 
| 
 | 
    15  | 
  "check_cert G mxs mxr n cert \<equiv> check_types G mxs mxr cert \<and> length cert = n+1 \<and>
  | 
| 
 | 
    16  | 
                                 (\<forall>i<n. cert!i \<noteq> Err) \<and> cert!n = OK None"
  | 
| 
 | 
    17  | 
  | 
| 
 | 
    18  | 
  lbvjvm :: "jvm_prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> exception_table \<Rightarrow> 
  | 
| 
 | 
    19  | 
             state list \<Rightarrow> instr list \<Rightarrow> state \<Rightarrow> state"
  | 
| 
 | 
    20  | 
  "lbvjvm G maxs maxr rT et cert bs \<equiv>
  | 
| 
 | 
    21  | 
  wtl_inst_list bs cert  (JVMType.sup G maxs maxr) (JVMType.le G maxs maxr) Err (OK None) (exec G maxs rT et bs) 0"
  | 
| 
 | 
    22  | 
  | 
| 
 | 
    23  | 
  wt_lbv :: "jvm_prog \<Rightarrow> cname \<Rightarrow> ty list \<Rightarrow> ty \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 
  | 
| 
 | 
    24  | 
             exception_table \<Rightarrow> state list \<Rightarrow> instr list \<Rightarrow> bool"
  | 
| 
 | 
    25  | 
  "wt_lbv G C pTs rT mxs mxl et cert ins \<equiv>
  | 
| 
 | 
    26  | 
   check_bounded ins et \<and> 
  | 
| 
 | 
    27  | 
   check_cert G mxs (1+size pTs+mxl) (length ins) cert \<and>
  | 
| 
 | 
    28  | 
   0 < size ins \<and> 
  | 
| 
 | 
    29  | 
   (let start  = Some ([],(OK (Class C))#((map OK pTs))@(replicate mxl Err));
  | 
| 
 | 
    30  | 
        result = lbvjvm G mxs (1+size pTs+mxl) rT et cert ins (OK start)
  | 
| 
 | 
    31  | 
    in result \<noteq> Err)"
  | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
  wt_jvm_prog_lbv :: "jvm_prog \<Rightarrow> prog_cert \<Rightarrow> bool"
  | 
| 
 | 
    34  | 
  "wt_jvm_prog_lbv G cert \<equiv>
  | 
| 
 | 
    35  | 
  wf_prog (\<lambda>G C (sig,rT,(maxs,maxl,b,et)). wt_lbv G C (snd sig) rT maxs maxl et (cert C sig) b) G"
  | 
| 
 | 
    36  | 
  | 
| 
 | 
    37  | 
  mk_cert :: "jvm_prog \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> exception_table \<Rightarrow> instr list 
  | 
| 
 | 
    38  | 
              \<Rightarrow> method_type \<Rightarrow> state list"
  | 
| 
 | 
    39  | 
  "mk_cert G maxs rT et bs phi \<equiv> make_cert (exec G maxs rT et bs) (map OK phi) (OK None)"
  | 
| 
 | 
    40  | 
  | 
| 
 | 
    41  | 
  prg_cert :: "jvm_prog \<Rightarrow> prog_type \<Rightarrow> prog_cert"
  | 
| 
 | 
    42  | 
  "prg_cert G phi C sig \<equiv> let (C,rT,(maxs,maxl,ins,et)) = the (method (G,C) sig) in 
  | 
| 
 | 
    43  | 
                           mk_cert G maxs rT et ins (phi C sig)"
  | 
| 
 | 
    44  | 
 
  | 
| 
 | 
    45  | 
  
  | 
| 
 | 
    46  | 
lemma wt_method_def2:
  | 
| 
 | 
    47  | 
  fixes pTs and mxl and G and mxs and rT and et and bs and phi 
  | 
| 
 | 
    48  | 
  defines [simp]: "mxr   \<equiv> 1 + length pTs + mxl"
  | 
| 
 | 
    49  | 
  defines [simp]: "r     \<equiv> sup_state_opt G"
  | 
| 
 | 
    50  | 
  defines [simp]: "app0  \<equiv> \<lambda>pc. app (bs!pc) G mxs rT pc et"
  | 
| 
 | 
    51  | 
  defines [simp]: "step0 \<equiv> \<lambda>pc. eff (bs!pc) G pc et"
  | 
| 
 | 
    52  | 
  | 
| 
 | 
    53  | 
  shows
  | 
| 
 | 
    54  | 
  "wt_method G C pTs rT mxs mxl bs et phi = 
  | 
| 
 | 
    55  | 
  (bs \<noteq> [] \<and> 
  | 
| 
 | 
    56  | 
   length phi = length bs \<and>
  | 
| 
 | 
    57  | 
   check_bounded bs et \<and> 
  | 
| 
 | 
    58  | 
   check_types G mxs mxr (map OK phi) \<and>   
  | 
| 
 | 
    59  | 
   wt_start G C pTs mxl phi \<and> 
  | 
| 
 | 
    60  | 
   wt_app_eff r app0 step0 phi)"
  | 
| 
 | 
    61  | 
  by (auto simp add: wt_method_def wt_app_eff_def wt_instr_def lesub_def
  | 
| 
 | 
    62  | 
           dest: check_bounded_is_bounded boundedD)
  | 
| 
 | 
    63  | 
  | 
| 
 | 
    64  | 
  | 
| 
13224
 | 
    65  | 
lemma check_certD:
  | 
| 
 | 
    66  | 
  "check_cert G mxs mxr n cert \<Longrightarrow> cert_ok cert n Err (OK None) (states G mxs mxr)"
  | 
| 
 | 
    67  | 
  apply (unfold cert_ok_def check_cert_def check_types_def)
  | 
| 
 | 
    68  | 
  apply (auto simp add: list_all_ball)
  | 
| 
 | 
    69  | 
  done
  | 
| 
 | 
    70  | 
  | 
| 
13215
 | 
    71  | 
  | 
| 
 | 
    72  | 
lemma wt_lbv_wt_step:
  | 
| 
 | 
    73  | 
  assumes wf:  "wf_prog wf_mb G"
  | 
| 
 | 
    74  | 
  assumes lbv: "wt_lbv G C pTs rT mxs mxl et cert ins"
  | 
| 
 | 
    75  | 
  assumes C:   "is_class G C" 
  | 
| 
 | 
    76  | 
  assumes pTs: "set pTs \<subseteq> types G"
  | 
| 
 | 
    77  | 
  
  | 
| 
 | 
    78  | 
  defines [simp]: "mxr \<equiv> 1+length pTs+mxl"
  | 
| 
 | 
    79  | 
  | 
| 
 | 
    80  | 
  shows "\<exists>ts \<in> list (size ins) (states G mxs mxr). 
  | 
| 
 | 
    81  | 
            wt_step (JVMType.le G mxs mxr) Err (exec G mxs rT et ins) ts
  | 
| 
 | 
    82  | 
          \<and> OK (Some ([],(OK (Class C))#((map OK pTs))@(replicate mxl Err))) <=_(JVMType.le G mxs mxr) ts!0"
  | 
| 
 | 
    83  | 
proof -
  | 
| 
 | 
    84  | 
  let ?step = "exec G mxs rT et ins"
  | 
| 
 | 
    85  | 
  let ?r    = "JVMType.le G mxs mxr"
  | 
| 
 | 
    86  | 
  let ?f    = "JVMType.sup G mxs mxr"
  | 
| 
 | 
    87  | 
  let ?A    = "states G mxs mxr"
  | 
| 
 | 
    88  | 
  | 
| 
14045
 | 
    89  | 
  have "semilat (JVMType.sl G mxs mxr)" 
  | 
| 
 | 
    90  | 
    by (rule semilat_JVM_slI, rule wf_prog_ws_prog)
  | 
| 
13215
 | 
    91  | 
  hence "semilat (?A, ?r, ?f)" by (unfold sl_triple_conv)
  | 
| 
 | 
    92  | 
  moreover
  | 
| 
 | 
    93  | 
  have "top ?r Err"  by (simp add: JVM_le_unfold)
  | 
| 
 | 
    94  | 
  moreover
  | 
| 
 | 
    95  | 
  have "Err \<in> ?A" by (simp add: JVM_states_unfold)
  | 
| 
 | 
    96  | 
  moreover
  | 
| 
 | 
    97  | 
  have "bottom ?r (OK None)" 
  | 
| 
 | 
    98  | 
    by (simp add: JVM_le_unfold bottom_def)
  | 
| 
 | 
    99  | 
  moreover
  | 
| 
 | 
   100  | 
  have "OK None \<in> ?A" by (simp add: JVM_states_unfold)
  | 
| 
 | 
   101  | 
  moreover
  | 
| 
 | 
   102  | 
  from lbv
  | 
| 
 | 
   103  | 
  have "bounded ?step (length ins)" 
  | 
| 
 | 
   104  | 
    by (clarsimp simp add: wt_lbv_def exec_def) 
  | 
| 
 | 
   105  | 
       (intro bounded_lift check_bounded_is_bounded) 
  | 
| 
 | 
   106  | 
  moreover
  | 
| 
 | 
   107  | 
  from lbv
  | 
| 
 | 
   108  | 
  have "cert_ok cert (length ins) Err (OK None) ?A" 
  | 
| 
 | 
   109  | 
    by (unfold wt_lbv_def) (auto dest: check_certD)
  | 
| 
 | 
   110  | 
  moreover
  | 
| 
13224
 | 
   111  | 
  have "pres_type ?step (length ins) ?A" by (rule exec_pres_type)
  | 
| 
13215
 | 
   112  | 
  moreover
  | 
| 
 | 
   113  | 
  let ?start = "OK (Some ([],(OK (Class C))#(map OK pTs)@(replicate mxl Err)))"
  | 
| 
 | 
   114  | 
  from lbv
  | 
| 
 | 
   115  | 
  have "wtl_inst_list ins cert ?f ?r Err (OK None) ?step 0 ?start \<noteq> Err"
  | 
| 
 | 
   116  | 
    by (simp add: wt_lbv_def lbvjvm_def)    
  | 
| 
 | 
   117  | 
  moreover
  | 
| 
 | 
   118  | 
  from C pTs have "?start \<in> ?A"
  | 
| 
 | 
   119  | 
    by (unfold JVM_states_unfold) (auto intro: list_appendI, force)
  | 
| 
 | 
   120  | 
  moreover
  | 
| 
 | 
   121  | 
  from lbv have "0 < length ins" by (simp add: wt_lbv_def)
  | 
| 
 | 
   122  | 
  ultimately
  | 
| 
 | 
   123  | 
  show ?thesis by (rule lbvs.wtl_sound_strong)
  | 
| 
 | 
   124  | 
qed
  | 
| 
 | 
   125  | 
  
  | 
| 
 | 
   126  | 
lemma wt_lbv_wt_method:
  | 
| 
 | 
   127  | 
  assumes wf:  "wf_prog wf_mb G"
  | 
| 
 | 
   128  | 
  assumes lbv: "wt_lbv G C pTs rT mxs mxl et cert ins"
  | 
| 
 | 
   129  | 
  assumes C:   "is_class G C" 
  | 
| 
 | 
   130  | 
  assumes pTs: "set pTs \<subseteq> types G"
  | 
| 
 | 
   131  | 
  
  | 
| 
 | 
   132  | 
  shows "\<exists>phi. wt_method G C pTs rT mxs mxl ins et phi"
  | 
| 
 | 
   133  | 
proof -
  | 
| 
 | 
   134  | 
  let ?mxr   = "1 + length pTs + mxl"
  | 
| 
 | 
   135  | 
  let ?step  = "exec G mxs rT et ins"
  | 
| 
 | 
   136  | 
  let ?r     = "JVMType.le G mxs ?mxr"
  | 
| 
 | 
   137  | 
  let ?f     = "JVMType.sup G mxs ?mxr"
  | 
| 
 | 
   138  | 
  let ?A     = "states G mxs ?mxr"
  | 
| 
 | 
   139  | 
  let ?start = "OK (Some ([],(OK (Class C))#(map OK pTs)@(replicate mxl Err)))"
  | 
| 
 | 
   140  | 
  
  | 
| 
 | 
   141  | 
  from lbv have l: "ins \<noteq> []" by (simp add: wt_lbv_def)
  | 
| 
 | 
   142  | 
  moreover
  | 
| 
 | 
   143  | 
  from wf lbv C pTs
  | 
| 
 | 
   144  | 
  obtain phi where 
  | 
| 
 | 
   145  | 
    list:  "phi \<in> list (length ins) ?A" and
  | 
| 
 | 
   146  | 
    step:  "wt_step ?r Err ?step phi" and    
  | 
| 
 | 
   147  | 
    start: "?start <=_?r phi!0" 
  | 
| 
 | 
   148  | 
    by (blast dest: wt_lbv_wt_step)
  | 
| 
 | 
   149  | 
  from list have [simp]: "length phi = length ins" by simp
  | 
| 
 | 
   150  | 
  have "length (map ok_val phi) = length ins" by simp  
  | 
| 
 | 
   151  | 
  moreover
  | 
| 
 | 
   152  | 
  from l have 0: "0 < length phi" by simp
  | 
| 
 | 
   153  | 
  with step obtain phi0 where "phi!0 = OK phi0"
  | 
| 
 | 
   154  | 
    by (unfold wt_step_def) blast
  | 
| 
 | 
   155  | 
  with start 0
  | 
| 
 | 
   156  | 
  have "wt_start G C pTs mxl (map ok_val phi)"
  | 
| 
 | 
   157  | 
    by (simp add: wt_start_def JVM_le_Err_conv lesub_def)
  | 
| 
 | 
   158  | 
  moreover
  | 
| 
 | 
   159  | 
  from lbv  have chk_bounded: "check_bounded ins et"
  | 
| 
 | 
   160  | 
    by (simp add: wt_lbv_def)
  | 
| 
 | 
   161  | 
  moreover {
 | 
| 
 | 
   162  | 
    from list
  | 
| 
 | 
   163  | 
    have "check_types G mxs ?mxr phi"
  | 
| 
 | 
   164  | 
      by (simp add: check_types_def)
  | 
| 
 | 
   165  | 
    also from step
  | 
| 
13224
 | 
   166  | 
    have [symmetric]: "map OK (map ok_val phi) = phi" 
  | 
| 
 | 
   167  | 
      by (auto intro!: map_id simp add: wt_step_def)
  | 
| 
13215
 | 
   168  | 
    finally have "check_types G mxs ?mxr (map OK (map ok_val phi))" .
  | 
| 
 | 
   169  | 
  }
  | 
| 
 | 
   170  | 
  moreover {  
 | 
| 
 | 
   171  | 
    let ?app = "\<lambda>pc. app (ins!pc) G mxs rT pc et"
  | 
| 
 | 
   172  | 
    let ?eff = "\<lambda>pc. eff (ins!pc) G pc et"
  | 
| 
 | 
   173  | 
  | 
| 
 | 
   174  | 
    from chk_bounded
  | 
| 
 | 
   175  | 
    have "bounded (err_step (length ins) ?app ?eff) (length ins)"
  | 
| 
 | 
   176  | 
      by (blast dest: check_bounded_is_bounded boundedD intro: bounded_err_stepI)
  | 
| 
 | 
   177  | 
    moreover
  | 
| 
 | 
   178  | 
    from step
  | 
| 
 | 
   179  | 
    have "wt_err_step (sup_state_opt G) ?step phi"
  | 
| 
 | 
   180  | 
      by (simp add: wt_err_step_def JVM_le_Err_conv)
  | 
| 
 | 
   181  | 
    ultimately
  | 
| 
 | 
   182  | 
    have "wt_app_eff (sup_state_opt G) ?app ?eff (map ok_val phi)"
  | 
| 
 | 
   183  | 
      by (auto intro: wt_err_imp_wt_app_eff simp add: exec_def)
  | 
| 
 | 
   184  | 
  }    
  | 
| 
 | 
   185  | 
  ultimately
  | 
| 
 | 
   186  | 
  have "wt_method G C pTs rT mxs mxl ins et (map ok_val phi)"
  | 
| 
 | 
   187  | 
    by - (rule wt_method_def2 [THEN iffD2], simp)
  | 
| 
 | 
   188  | 
  thus ?thesis ..
  | 
| 
 | 
   189  | 
qed
  | 
| 
 | 
   190  | 
  | 
| 
 | 
   191  | 
  | 
| 
 | 
   192  | 
lemma wt_method_wt_lbv:
  | 
| 
 | 
   193  | 
  assumes wf:  "wf_prog wf_mb G"
  | 
| 
 | 
   194  | 
  assumes wt:  "wt_method G C pTs rT mxs mxl ins et phi"
  | 
| 
 | 
   195  | 
  assumes C:   "is_class G C" 
  | 
| 
 | 
   196  | 
  assumes pTs: "set pTs \<subseteq> types G"
  | 
| 
 | 
   197  | 
  
  | 
| 
 | 
   198  | 
  defines [simp]: "cert \<equiv> mk_cert G mxs rT et ins phi"
  | 
| 
 | 
   199  | 
  | 
| 
 | 
   200  | 
  shows "wt_lbv G C pTs rT mxs mxl et cert ins"
  | 
| 
 | 
   201  | 
proof -
  | 
| 
 | 
   202  | 
  let ?mxr  = "1 + length pTs + mxl"
  | 
| 
 | 
   203  | 
  let ?step = "exec G mxs rT et ins"
  | 
| 
 | 
   204  | 
  let ?app  = "\<lambda>pc. app (ins!pc) G mxs rT pc et"
  | 
| 
 | 
   205  | 
  let ?eff  = "\<lambda>pc. eff (ins!pc) G pc et"
  | 
| 
 | 
   206  | 
  let ?r    = "JVMType.le G mxs ?mxr"
  | 
| 
 | 
   207  | 
  let ?f    = "JVMType.sup G mxs ?mxr"
  | 
| 
 | 
   208  | 
  let ?A    = "states G mxs ?mxr"
  | 
| 
 | 
   209  | 
  let ?phi  = "map OK phi"
  | 
| 
 | 
   210  | 
  let ?cert = "make_cert ?step ?phi (OK None)"
  | 
| 
 | 
   211  | 
  | 
| 
 | 
   212  | 
  from wt obtain 
  | 
| 
 | 
   213  | 
    0:          "0 < length ins" and
  | 
| 
 | 
   214  | 
    length:     "length ins = length ?phi" and
  | 
| 
 | 
   215  | 
    ck_bounded: "check_bounded ins et" and
  | 
| 
 | 
   216  | 
    ck_types:   "check_types G mxs ?mxr ?phi" and
  | 
| 
 | 
   217  | 
    wt_start:   "wt_start G C pTs mxl phi" and
  | 
| 
 | 
   218  | 
    app_eff:    "wt_app_eff (sup_state_opt G) ?app ?eff phi"
  | 
| 
13601
 | 
   219  | 
    by (simp (asm_lr) add: wt_method_def2)
  | 
| 
13215
 | 
   220  | 
  
  | 
| 
14045
 | 
   221  | 
  have "semilat (JVMType.sl G mxs ?mxr)" 
  | 
| 
 | 
   222  | 
    by (rule semilat_JVM_slI, rule wf_prog_ws_prog)
  | 
| 
13215
 | 
   223  | 
  hence "semilat (?A, ?r, ?f)" by (unfold sl_triple_conv)
  | 
| 
 | 
   224  | 
  moreover
  | 
| 
 | 
   225  | 
  have "top ?r Err"  by (simp add: JVM_le_unfold)
  | 
| 
 | 
   226  | 
  moreover
  | 
| 
 | 
   227  | 
  have "Err \<in> ?A" by (simp add: JVM_states_unfold)
  | 
| 
 | 
   228  | 
  moreover
  | 
| 
 | 
   229  | 
  have "bottom ?r (OK None)" 
  | 
| 
 | 
   230  | 
    by (simp add: JVM_le_unfold bottom_def)
  | 
| 
 | 
   231  | 
  moreover
  | 
| 
 | 
   232  | 
  have "OK None \<in> ?A" by (simp add: JVM_states_unfold)
  | 
| 
 | 
   233  | 
  moreover
  | 
| 
 | 
   234  | 
  from ck_bounded
  | 
| 
 | 
   235  | 
  have bounded: "bounded ?step (length ins)" 
  | 
| 
 | 
   236  | 
    by (clarsimp simp add: exec_def) 
  | 
| 
 | 
   237  | 
       (intro bounded_lift check_bounded_is_bounded)
  | 
| 
 | 
   238  | 
  with wf
  | 
| 
14045
 | 
   239  | 
  have "mono ?r ?step (length ins) ?A"
  | 
| 
 | 
   240  | 
    by (rule wf_prog_ws_prog [THEN exec_mono])
  | 
| 
13215
 | 
   241  | 
  hence "mono ?r ?step (length ?phi) ?A" by (simp add: length)
  | 
| 
 | 
   242  | 
  moreover
  | 
| 
13224
 | 
   243  | 
  have "pres_type ?step (length ins) ?A" by (rule exec_pres_type)
  | 
| 
13215
 | 
   244  | 
  hence "pres_type ?step (length ?phi) ?A" by (simp add: length)
  | 
| 
 | 
   245  | 
  moreover
  | 
| 
 | 
   246  | 
  from ck_types
  | 
| 
 | 
   247  | 
  have "set ?phi \<subseteq> ?A" by (simp add: check_types_def) 
  | 
| 
 | 
   248  | 
  hence "\<forall>pc. pc < length ?phi \<longrightarrow> ?phi!pc \<in> ?A \<and> ?phi!pc \<noteq> Err" by auto
  | 
| 
 | 
   249  | 
  moreover 
  | 
| 
 | 
   250  | 
  from bounded 
  | 
| 
 | 
   251  | 
  have "bounded (exec G mxs rT et ins) (length ?phi)" by (simp add: length)
  | 
| 
 | 
   252  | 
  moreover
  | 
| 
 | 
   253  | 
  have "OK None \<noteq> Err" by simp
  | 
| 
 | 
   254  | 
  moreover
  | 
| 
 | 
   255  | 
  from bounded length app_eff
  | 
| 
 | 
   256  | 
  have "wt_err_step (sup_state_opt G) ?step ?phi"
  | 
| 
 | 
   257  | 
    by (auto intro: wt_app_eff_imp_wt_err simp add: exec_def)
  | 
| 
 | 
   258  | 
  hence "wt_step ?r Err ?step ?phi"
  | 
| 
 | 
   259  | 
    by (simp add: wt_err_step_def JVM_le_Err_conv)
  | 
| 
 | 
   260  | 
  moreover 
  | 
| 
 | 
   261  | 
  let ?start = "OK (Some ([],(OK (Class C))#(map OK pTs)@(replicate mxl Err)))"  
  | 
| 
 | 
   262  | 
  from 0 length have "0 < length phi" by auto
  | 
| 
 | 
   263  | 
  hence "?phi!0 = OK (phi!0)" by simp
  | 
| 
 | 
   264  | 
  with wt_start have "?start <=_?r ?phi!0"
  | 
| 
 | 
   265  | 
    by (clarsimp simp add: wt_start_def lesub_def JVM_le_Err_conv)
  | 
| 
 | 
   266  | 
  moreover
  | 
| 
 | 
   267  | 
  from C pTs have "?start \<in> ?A"
  | 
| 
 | 
   268  | 
    by (unfold JVM_states_unfold) (auto intro: list_appendI, force)
  | 
| 
 | 
   269  | 
  moreover
  | 
| 
 | 
   270  | 
  have "?start \<noteq> Err" by simp
  | 
| 
 | 
   271  | 
  moreover
  | 
| 
 | 
   272  | 
  note length 
  | 
| 
 | 
   273  | 
  ultimately
  | 
| 
 | 
   274  | 
  have "wtl_inst_list ins ?cert ?f ?r Err (OK None) ?step 0 ?start \<noteq> Err"
  | 
| 
 | 
   275  | 
    by (rule lbvc.wtl_complete)
  | 
| 
 | 
   276  | 
  moreover
  | 
| 
 | 
   277  | 
  from 0 length have "phi \<noteq> []" by auto
  | 
| 
 | 
   278  | 
  moreover
  | 
| 
 | 
   279  | 
  from ck_types
  | 
| 
 | 
   280  | 
  have "check_types G mxs ?mxr ?cert"
  | 
| 
 | 
   281  | 
    by (auto simp add: make_cert_def check_types_def JVM_states_unfold)
  | 
| 
 | 
   282  | 
  moreover
  | 
| 
 | 
   283  | 
  note ck_bounded 0 length
  | 
| 
 | 
   284  | 
  ultimately 
  | 
| 
 | 
   285  | 
  show ?thesis 
  | 
| 
 | 
   286  | 
    by (simp add: wt_lbv_def lbvjvm_def mk_cert_def 
  | 
| 
 | 
   287  | 
      check_cert_def make_cert_def nth_append)
  | 
| 
 | 
   288  | 
qed  
  | 
| 
 | 
   289  | 
  | 
| 
 | 
   290  | 
  | 
| 
13224
 | 
   291  | 
  | 
| 
 | 
   292  | 
theorem jvm_lbv_correct:
  | 
| 
 | 
   293  | 
  "wt_jvm_prog_lbv G Cert \<Longrightarrow> \<exists>Phi. wt_jvm_prog G Phi"
  | 
| 
 | 
   294  | 
proof -  
  | 
| 
 | 
   295  | 
  let ?Phi = "\<lambda>C sig. let (C,rT,(maxs,maxl,ins,et)) = the (method (G,C) sig) in 
  | 
| 
 | 
   296  | 
              SOME phi. wt_method G C (snd sig) rT maxs maxl ins et phi"
  | 
| 
 | 
   297  | 
    
  | 
| 
 | 
   298  | 
  assume "wt_jvm_prog_lbv G Cert"
  | 
| 
 | 
   299  | 
  hence "wt_jvm_prog G ?Phi"
  | 
| 
 | 
   300  | 
    apply (unfold wt_jvm_prog_def wt_jvm_prog_lbv_def)
  | 
| 
 | 
   301  | 
    apply (erule jvm_prog_lift)
  | 
| 
 | 
   302  | 
    apply (auto dest: wt_lbv_wt_method intro: someI)
  | 
| 
 | 
   303  | 
    done
  | 
| 
 | 
   304  | 
  thus ?thesis by blast
  | 
| 
 | 
   305  | 
qed
  | 
| 
 | 
   306  | 
  | 
| 
13215
 | 
   307  | 
theorem jvm_lbv_complete:
  | 
| 
 | 
   308  | 
  "wt_jvm_prog G Phi \<Longrightarrow> wt_jvm_prog_lbv G (prg_cert G Phi)"
  | 
| 
13224
 | 
   309  | 
  apply (unfold wt_jvm_prog_def wt_jvm_prog_lbv_def)
  | 
| 
 | 
   310  | 
  apply (erule jvm_prog_lift)
  | 
| 
 | 
   311  | 
  apply (auto simp add: prg_cert_def intro wt_method_wt_lbv)
  | 
| 
 | 
   312  | 
  done  
  | 
| 
13215
 | 
   313  | 
  | 
| 
 | 
   314  | 
end
  |