19761
|
1 |
(* Title: CTT/ex/Typechecking.thy
|
|
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
3 |
Copyright 1991 University of Cambridge
|
|
4 |
*)
|
|
5 |
|
|
6 |
header "Easy examples: type checking and type deduction"
|
|
7 |
|
|
8 |
theory Typechecking
|
|
9 |
imports CTT
|
|
10 |
begin
|
|
11 |
|
|
12 |
subsection {* Single-step proofs: verifying that a type is well-formed *}
|
|
13 |
|
36319
|
14 |
schematic_lemma "?A type"
|
19761
|
15 |
apply (rule form_rls)
|
|
16 |
done
|
|
17 |
|
36319
|
18 |
schematic_lemma "?A type"
|
19761
|
19 |
apply (rule form_rls)
|
|
20 |
back
|
|
21 |
apply (rule form_rls)
|
|
22 |
apply (rule form_rls)
|
|
23 |
done
|
|
24 |
|
36319
|
25 |
schematic_lemma "PROD z:?A . N + ?B(z) type"
|
19761
|
26 |
apply (rule form_rls)
|
|
27 |
apply (rule form_rls)
|
|
28 |
apply (rule form_rls)
|
|
29 |
apply (rule form_rls)
|
|
30 |
apply (rule form_rls)
|
|
31 |
done
|
|
32 |
|
|
33 |
|
|
34 |
subsection {* Multi-step proofs: Type inference *}
|
|
35 |
|
|
36 |
lemma "PROD w:N. N + N type"
|
|
37 |
apply (tactic form_tac)
|
|
38 |
done
|
|
39 |
|
36319
|
40 |
schematic_lemma "<0, succ(0)> : ?A"
|
19761
|
41 |
apply (tactic "intr_tac []")
|
|
42 |
done
|
|
43 |
|
36319
|
44 |
schematic_lemma "PROD w:N . Eq(?A,w,w) type"
|
19761
|
45 |
apply (tactic "typechk_tac []")
|
|
46 |
done
|
|
47 |
|
36319
|
48 |
schematic_lemma "PROD x:N . PROD y:N . Eq(?A,x,y) type"
|
19761
|
49 |
apply (tactic "typechk_tac []")
|
|
50 |
done
|
|
51 |
|
|
52 |
text "typechecking an application of fst"
|
36319
|
53 |
schematic_lemma "(lam u. split(u, %v w. v)) ` <0, succ(0)> : ?A"
|
19761
|
54 |
apply (tactic "typechk_tac []")
|
|
55 |
done
|
|
56 |
|
|
57 |
text "typechecking the predecessor function"
|
36319
|
58 |
schematic_lemma "lam n. rec(n, 0, %x y. x) : ?A"
|
19761
|
59 |
apply (tactic "typechk_tac []")
|
|
60 |
done
|
|
61 |
|
|
62 |
text "typechecking the addition function"
|
36319
|
63 |
schematic_lemma "lam n. lam m. rec(n, m, %x y. succ(y)) : ?A"
|
19761
|
64 |
apply (tactic "typechk_tac []")
|
|
65 |
done
|
|
66 |
|
|
67 |
(*Proofs involving arbitrary types.
|
|
68 |
For concreteness, every type variable left over is forced to be N*)
|
39159
|
69 |
ML {* val N_tac = TRYALL (rtac @{thm NF}) *}
|
19761
|
70 |
|
36319
|
71 |
schematic_lemma "lam w. <w,w> : ?A"
|
19761
|
72 |
apply (tactic "typechk_tac []")
|
|
73 |
apply (tactic N_tac)
|
|
74 |
done
|
|
75 |
|
36319
|
76 |
schematic_lemma "lam x. lam y. x : ?A"
|
19761
|
77 |
apply (tactic "typechk_tac []")
|
|
78 |
apply (tactic N_tac)
|
|
79 |
done
|
|
80 |
|
|
81 |
text "typechecking fst (as a function object)"
|
36319
|
82 |
schematic_lemma "lam i. split(i, %j k. j) : ?A"
|
19761
|
83 |
apply (tactic "typechk_tac []")
|
|
84 |
apply (tactic N_tac)
|
|
85 |
done
|
|
86 |
|
|
87 |
end
|