author | haftmann |
Wed, 28 Oct 2009 19:09:47 +0100 | |
changeset 33296 | a3924d1069e5 |
parent 33004 | 715566791eb0 |
child 35625 | 9c818cab0dd0 |
permissions | -rw-r--r-- |
30439 | 1 |
(* Title: HOL/Decision_Procs/cooper_tac.ML |
29788 | 2 |
Author: Amine Chaieb, TU Muenchen |
3 |
*) |
|
4 |
||
31240 | 5 |
signature COOPER_TAC = |
6 |
sig |
|
32740 | 7 |
val trace: bool Unsynchronized.ref |
31240 | 8 |
val linz_tac: Proof.context -> bool -> int -> tactic |
9 |
val setup: theory -> theory |
|
10 |
end |
|
11 |
||
12 |
structure Cooper_Tac: COOPER_TAC = |
|
23274 | 13 |
struct |
14 |
||
32740 | 15 |
val trace = Unsynchronized.ref false; |
23274 | 16 |
fun trace_msg s = if !trace then tracing s else (); |
17 |
||
18 |
val cooper_ss = @{simpset}; |
|
19 |
||
20 |
val nT = HOLogic.natT; |
|
26075
815f3ccc0b45
added lemma lists {normalize,succ,pred,minus,add,mult}_bin_simps
huffman
parents:
25985
diff
changeset
|
21 |
val binarith = @{thms normalize_bin_simps}; |
23318 | 22 |
val comp_arith = binarith @ simp_thms |
23274 | 23 |
|
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
24 |
val zdvd_int = @{thm zdvd_int}; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
25 |
val zdiff_int_split = @{thm zdiff_int_split}; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
26 |
val all_nat = @{thm all_nat}; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
27 |
val ex_nat = @{thm ex_nat}; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
28 |
val number_of1 = @{thm number_of1}; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
29 |
val number_of2 = @{thm number_of2}; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
30 |
val split_zdiv = @{thm split_zdiv}; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
31 |
val split_zmod = @{thm split_zmod}; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
32 |
val mod_div_equality' = @{thm mod_div_equality'}; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
33 |
val split_div' = @{thm split_div'}; |
31790 | 34 |
val Suc_eq_plus1 = @{thm Suc_eq_plus1}; |
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
35 |
val imp_le_cong = @{thm imp_le_cong}; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
36 |
val conj_le_cong = @{thm conj_le_cong}; |
30034 | 37 |
val mod_add_left_eq = @{thm mod_add_left_eq} RS sym; |
38 |
val mod_add_right_eq = @{thm mod_add_right_eq} RS sym; |
|
30224 | 39 |
val mod_add_eq = @{thm mod_add_eq} RS sym; |
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
40 |
val nat_div_add_eq = @{thm div_add1_eq} RS sym; |
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
41 |
val int_div_add_eq = @{thm zdiv_zadd1_eq} RS sym; |
23274 | 42 |
|
31240 | 43 |
fun prepare_for_linz q fm = |
23274 | 44 |
let |
45 |
val ps = Logic.strip_params fm |
|
46 |
val hs = map HOLogic.dest_Trueprop (Logic.strip_assums_hyp fm) |
|
47 |
val c = HOLogic.dest_Trueprop (Logic.strip_assums_concl fm) |
|
48 |
fun mk_all ((s, T), (P,n)) = |
|
49 |
if 0 mem loose_bnos P then |
|
50 |
(HOLogic.all_const T $ Abs (s, T, P), n) |
|
51 |
else (incr_boundvars ~1 P, n-1) |
|
52 |
fun mk_all2 (v, t) = HOLogic.all_const (fastype_of v) $ lambda v t; |
|
27651
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents:
26075
diff
changeset
|
53 |
val rhs = hs |
23274 | 54 |
val np = length ps |
33004
715566791eb0
always qualify NJ's old List.foldl/foldr in Isabelle/ML;
wenzelm
parents:
32960
diff
changeset
|
55 |
val (fm',np) = List.foldr (fn ((x, T), (fm,n)) => mk_all ((x, T), (fm,n))) |
715566791eb0
always qualify NJ's old List.foldl/foldr in Isabelle/ML;
wenzelm
parents:
32960
diff
changeset
|
56 |
(List.foldr HOLogic.mk_imp c rhs, np) ps |
23274 | 57 |
val (vs, _) = List.partition (fn t => q orelse (type_of t) = nT) |
29265
5b4247055bd7
moved old add_term_vars, add_term_frees etc. to structure OldTerm;
wenzelm
parents:
28290
diff
changeset
|
58 |
(OldTerm.term_frees fm' @ OldTerm.term_vars fm'); |
33004
715566791eb0
always qualify NJ's old List.foldl/foldr in Isabelle/ML;
wenzelm
parents:
32960
diff
changeset
|
59 |
val fm2 = List.foldr mk_all2 fm' vs |
23274 | 60 |
in (fm2, np + length vs, length rhs) end; |
61 |
||
62 |
(*Object quantifier to meta --*) |
|
63 |
fun spec_step n th = if (n=0) then th else (spec_step (n-1) th) RS spec ; |
|
64 |
||
65 |
(* object implication to meta---*) |
|
66 |
fun mp_step n th = if (n=0) then th else (mp_step (n-1) th) RS mp; |
|
67 |
||
68 |
||
23590
ad95084a5c63
renamed ObjectLogic.atomize_tac to ObjectLogic.atomize_prems_tac;
wenzelm
parents:
23469
diff
changeset
|
69 |
fun linz_tac ctxt q i = ObjectLogic.atomize_prems_tac i THEN (fn st => |
23274 | 70 |
let |
71 |
val g = List.nth (prems_of st, i - 1) |
|
72 |
val thy = ProofContext.theory_of ctxt |
|
73 |
(* Transform the term*) |
|
74 |
val (t,np,nh) = prepare_for_linz q g |
|
75 |
(* Some simpsets for dealing with mod div abs and nat*) |
|
31240 | 76 |
val mod_div_simpset = HOL_basic_ss |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
77 |
addsimps [refl,mod_add_eq, mod_add_left_eq, |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
78 |
mod_add_right_eq, |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
79 |
nat_div_add_eq, int_div_add_eq, |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
80 |
@{thm mod_self}, @{thm "zmod_self"}, |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
81 |
@{thm mod_by_0}, @{thm div_by_0}, |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
82 |
@{thm "zdiv_zero"}, @{thm "zmod_zero"}, @{thm "div_0"}, @{thm "mod_0"}, |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
83 |
@{thm "div_by_1"}, @{thm "mod_by_1"}, @{thm "div_1"}, @{thm "mod_1"}, |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
84 |
Suc_eq_plus1] |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
85 |
addsimps @{thms add_ac} |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
86 |
addsimprocs [cancel_div_mod_nat_proc, cancel_div_mod_int_proc] |
23274 | 87 |
val simpset0 = HOL_basic_ss |
31790 | 88 |
addsimps [mod_div_equality', Suc_eq_plus1] |
23274 | 89 |
addsimps comp_arith |
90 |
addsplits [split_zdiv, split_zmod, split_div', @{thm "split_min"}, @{thm "split_max"}] |
|
91 |
(* Simp rules for changing (n::int) to int n *) |
|
92 |
val simpset1 = HOL_basic_ss |
|
31070 | 93 |
addsimps [@{thm nat_number_of_def}, zdvd_int] @ map (fn r => r RS sym) |
23364 | 94 |
[@{thm int_int_eq}, @{thm zle_int}, @{thm zless_int}, @{thm zadd_int}, @{thm zmult_int}] |
23274 | 95 |
addsplits [zdiff_int_split] |
96 |
(*simp rules for elimination of int n*) |
|
97 |
||
98 |
val simpset2 = HOL_basic_ss |
|
23364 | 99 |
addsimps [@{thm nat_0_le}, @{thm all_nat}, @{thm ex_nat}, @{thm number_of1}, @{thm number_of2}, @{thm int_0}, @{thm int_1}] |
100 |
addcongs [@{thm conj_le_cong}, @{thm imp_le_cong}] |
|
23274 | 101 |
(* simp rules for elimination of abs *) |
23364 | 102 |
val simpset3 = HOL_basic_ss addsplits [@{thm abs_split}] |
23274 | 103 |
val ct = cterm_of thy (HOLogic.mk_Trueprop t) |
104 |
(* Theorem for the nat --> int transformation *) |
|
105 |
val pre_thm = Seq.hd (EVERY |
|
106 |
[simp_tac mod_div_simpset 1, simp_tac simpset0 1, |
|
107 |
TRY (simp_tac simpset1 1), TRY (simp_tac simpset2 1), |
|
108 |
TRY (simp_tac simpset3 1), TRY (simp_tac cooper_ss 1)] |
|
109 |
(trivial ct)) |
|
110 |
fun assm_tac i = REPEAT_DETERM_N nh (assume_tac i) |
|
111 |
(* The result of the quantifier elimination *) |
|
112 |
val (th, tac) = case (prop_of pre_thm) of |
|
113 |
Const ("==>", _) $ (Const ("Trueprop", _) $ t1) $ _ => |
|
28290 | 114 |
let val pth = linzqe_oracle (cterm_of thy (Pattern.eta_long [] t1)) |
31240 | 115 |
in |
23274 | 116 |
((pth RS iffD2) RS pre_thm, |
117 |
assm_tac (i + 1) THEN (if q then I else TRY) (rtac TrueI i)) |
|
118 |
end |
|
119 |
| _ => (pre_thm, assm_tac i) |
|
31240 | 120 |
in (rtac (((mp_step nh) o (spec_step np)) th) i |
23274 | 121 |
THEN tac) st |
122 |
end handle Subscript => no_tac st); |
|
123 |
||
124 |
val setup = |
|
31240 | 125 |
Method.setup @{binding cooper} |
126 |
let |
|
127 |
val parse_flag = Args.$$$ "no_quantify" >> K (K false) |
|
128 |
in |
|
129 |
Scan.lift (Scan.optional (Args.$$$ "(" |-- Scan.repeat1 parse_flag --| Args.$$$ ")") [] >> |
|
130 |
curry (Library.foldl op |>) true) >> |
|
131 |
(fn q => fn ctxt => SIMPLE_METHOD' (linz_tac ctxt q)) |
|
132 |
end |
|
133 |
"decision procedure for linear integer arithmetic"; |
|
23274 | 134 |
|
23590
ad95084a5c63
renamed ObjectLogic.atomize_tac to ObjectLogic.atomize_prems_tac;
wenzelm
parents:
23469
diff
changeset
|
135 |
end |