author | paulson |
Tue, 20 May 1997 11:44:25 +0200 | |
changeset 3243 | a42653373043 |
parent 243 | c22b85994e17 |
permissions | -rw-r--r-- |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
1 |
(* Title: HOLCF/one.thy |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
2 |
ID: $Id$ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
3 |
Author: Franz Regensburger |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
4 |
Copyright 1993 Technische Universitaet Muenchen |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
5 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
6 |
Lemmas for one.thy |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
7 |
*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
8 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
9 |
open One; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
10 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
11 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
12 |
(* Exhaustion and Elimination for type one *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
13 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
14 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
15 |
val Exh_one = prove_goalw One.thy [one_def] "z=UU | z = one" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
16 |
(fn prems => |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
17 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
18 |
(res_inst_tac [("p","rep_one[z]")] liftE1 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
19 |
(rtac disjI1 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
20 |
(rtac ((abs_one_iso RS allI) RS ((rep_one_iso RS allI) RS iso_strict ) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
21 |
RS conjunct2 RS subst) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
22 |
(rtac (abs_one_iso RS subst) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
23 |
(etac cfun_arg_cong 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
24 |
(rtac disjI2 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
25 |
(rtac (abs_one_iso RS subst) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
26 |
(rtac cfun_arg_cong 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
27 |
(rtac (unique_void2 RS subst) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
28 |
(atac 1) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
29 |
]); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
30 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
31 |
val oneE = prove_goal One.thy |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
32 |
"[| p=UU ==> Q; p = one ==>Q|] ==>Q" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
33 |
(fn prems => |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
34 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
35 |
(rtac (Exh_one RS disjE) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
36 |
(eresolve_tac prems 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
37 |
(eresolve_tac prems 1) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
38 |
]); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
39 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
40 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
41 |
(* distinctness for type one : stored in a list *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
42 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
43 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
44 |
val dist_less_one = [ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
45 |
prove_goalw One.thy [one_def] "~one << UU" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
46 |
(fn prems => |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
47 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
48 |
(rtac classical3 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
49 |
(rtac less_lift4b 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
50 |
(rtac (rep_one_iso RS subst) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
51 |
(rtac (rep_one_iso RS subst) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
52 |
(rtac monofun_cfun_arg 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
53 |
(etac ((abs_one_iso RS allI) RS ((rep_one_iso RS allI) RS iso_strict ) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
54 |
RS conjunct2 RS ssubst) 1) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
55 |
]) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
56 |
]; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
57 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
58 |
val dist_eq_one = [prove_goal One.thy "~one=UU" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
59 |
(fn prems => |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
60 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
61 |
(rtac not_less2not_eq 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
62 |
(resolve_tac dist_less_one 1) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
63 |
])]; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
64 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
65 |
val dist_eq_one = dist_eq_one @ (map (fn thm => (thm RS not_sym)) dist_eq_one); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
66 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
67 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
68 |
(* one is flat *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
69 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
70 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
71 |
val prems = goalw One.thy [flat_def] "flat(one)"; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
72 |
by (rtac allI 1); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
73 |
by (rtac allI 1); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
74 |
by (res_inst_tac [("p","x")] oneE 1); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
75 |
by (asm_simp_tac ccc1_ss 1); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
76 |
by (res_inst_tac [("p","y")] oneE 1); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
77 |
by (asm_simp_tac (ccc1_ss addsimps dist_less_one) 1); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
78 |
by (asm_simp_tac ccc1_ss 1); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
79 |
val flat_one = result(); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
80 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
81 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
82 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
83 |
(* properties of one_when *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
84 |
(* here I tried a generic prove procedure *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
85 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
86 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
87 |
fun prover s = prove_goalw One.thy [one_when_def,one_def] s |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
88 |
(fn prems => |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
89 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
90 |
(simp_tac (ccc1_ss addsimps [(rep_one_iso ), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
91 |
(abs_one_iso RS allI) RS ((rep_one_iso RS allI) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
92 |
RS iso_strict) RS conjunct1] )1) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
93 |
]); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
94 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
95 |
val one_when = map prover ["one_when[x][UU] = UU","one_when[x][one] = x"]; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
96 |