author | paulson |
Tue, 20 May 1997 11:44:25 +0200 | |
changeset 3243 | a42653373043 |
parent 297 | 5ef75ff3baeb |
permissions | -rw-r--r-- |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
1 |
(* Title: HOLCF/stream.ML |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
2 |
ID: $Id$ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
3 |
Author: Franz Regensburger |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
4 |
Copyright 1993 Technische Universitaet Muenchen |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
5 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
6 |
Lemmas for stream.thy |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
7 |
*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
8 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
9 |
open Stream; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
10 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
11 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
12 |
(* The isomorphisms stream_rep_iso and stream_abs_iso are strict *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
13 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
14 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
15 |
val stream_iso_strict= stream_rep_iso RS (stream_abs_iso RS |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
16 |
(allI RSN (2,allI RS iso_strict))); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
17 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
18 |
val stream_rews = [stream_iso_strict RS conjunct1, |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
19 |
stream_iso_strict RS conjunct2]; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
20 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
21 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
22 |
(* Properties of stream_copy *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
23 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
24 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
25 |
fun prover defs thm = prove_goalw Stream.thy defs thm |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
26 |
(fn prems => |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
27 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
28 |
(cut_facts_tac prems 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
29 |
(asm_simp_tac (HOLCF_ss addsimps |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
30 |
(stream_rews @ [stream_abs_iso,stream_rep_iso])) 1) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
31 |
]); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
32 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
33 |
val stream_copy = |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
34 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
35 |
prover [stream_copy_def] "stream_copy[f][UU]=UU", |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
36 |
prover [stream_copy_def,scons_def] |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
37 |
"x~=UU ==> stream_copy[f][scons[x][xs]]= scons[x][f[xs]]" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
38 |
]; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
39 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
40 |
val stream_rews = stream_copy @ stream_rews; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
41 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
42 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
43 |
(* Exhaustion and elimination for streams *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
44 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
45 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
46 |
val Exh_stream = prove_goalw Stream.thy [scons_def] |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
47 |
"s = UU | (? x xs. x~=UU & s = scons[x][xs])" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
48 |
(fn prems => |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
49 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
50 |
(simp_tac HOLCF_ss 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
51 |
(rtac (stream_rep_iso RS subst) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
52 |
(res_inst_tac [("p","stream_rep[s]")] sprodE 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
53 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
54 |
(asm_simp_tac HOLCF_ss 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
55 |
(res_inst_tac [("p","y")] liftE1 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
56 |
(contr_tac 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
57 |
(rtac disjI2 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
58 |
(rtac exI 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
59 |
(rtac exI 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
60 |
(etac conjI 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
61 |
(asm_simp_tac HOLCF_ss 1) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
62 |
]); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
63 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
64 |
val streamE = prove_goal Stream.thy |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
65 |
"[| s=UU ==> Q; !!x xs.[|s=scons[x][xs];x~=UU|]==>Q|]==>Q" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
66 |
(fn prems => |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
67 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
68 |
(rtac (Exh_stream RS disjE) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
69 |
(eresolve_tac prems 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
70 |
(etac exE 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
71 |
(etac exE 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
72 |
(resolve_tac prems 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
73 |
(fast_tac HOL_cs 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
74 |
(fast_tac HOL_cs 1) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
75 |
]); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
76 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
77 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
78 |
(* Properties of stream_when *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
79 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
80 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
81 |
fun prover defs thm = prove_goalw Stream.thy defs thm |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
82 |
(fn prems => |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
83 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
84 |
(cut_facts_tac prems 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
85 |
(asm_simp_tac (HOLCF_ss addsimps |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
86 |
(stream_rews @ [stream_abs_iso,stream_rep_iso])) 1) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
87 |
]); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
88 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
89 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
90 |
val stream_when = [ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
91 |
prover [stream_when_def] "stream_when[f][UU]=UU", |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
92 |
prover [stream_when_def,scons_def] |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
93 |
"x~=UU ==> stream_when[f][scons[x][xs]]= f[x][xs]" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
94 |
]; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
95 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
96 |
val stream_rews = stream_when @ stream_rews; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
97 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
98 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
99 |
(* Rewrites for discriminators and selectors *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
100 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
101 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
102 |
fun prover defs thm = prove_goalw Stream.thy defs thm |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
103 |
(fn prems => |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
104 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
105 |
(simp_tac (HOLCF_ss addsimps stream_rews) 1) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
106 |
]); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
107 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
108 |
val stream_discsel = [ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
109 |
prover [is_scons_def] "is_scons[UU]=UU", |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
110 |
prover [shd_def] "shd[UU]=UU", |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
111 |
prover [stl_def] "stl[UU]=UU" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
112 |
]; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
113 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
114 |
fun prover defs thm = prove_goalw Stream.thy defs thm |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
115 |
(fn prems => |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
116 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
117 |
(cut_facts_tac prems 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
118 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
119 |
]); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
120 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
121 |
val stream_discsel = [ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
122 |
prover [is_scons_def,shd_def,stl_def] "x~=UU ==> is_scons[scons[x][xs]]=TT", |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
123 |
prover [is_scons_def,shd_def,stl_def] "x~=UU ==> shd[scons[x][xs]]=x", |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
124 |
prover [is_scons_def,shd_def,stl_def] "x~=UU ==> stl[scons[x][xs]]=xs" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
125 |
] @ stream_discsel; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
126 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
127 |
val stream_rews = stream_discsel @ stream_rews; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
128 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
129 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
130 |
(* Definedness and strictness *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
131 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
132 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
133 |
fun prover contr thm = prove_goal Stream.thy thm |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
134 |
(fn prems => |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
135 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
136 |
(res_inst_tac [("P1",contr)] classical3 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
137 |
(simp_tac (HOLCF_ss addsimps stream_rews) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
138 |
(dtac sym 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
139 |
(asm_simp_tac HOLCF_ss 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
140 |
(simp_tac (HOLCF_ss addsimps (prems @ stream_rews)) 1) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
141 |
]); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
142 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
143 |
val stream_constrdef = [ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
144 |
prover "is_scons[UU] ~= UU" "x~=UU ==> scons[x][xs]~=UU" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
145 |
]; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
146 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
147 |
fun prover defs thm = prove_goalw Stream.thy defs thm |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
148 |
(fn prems => |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
149 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
150 |
(simp_tac (HOLCF_ss addsimps stream_rews) 1) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
151 |
]); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
152 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
153 |
val stream_constrdef = [ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
154 |
prover [scons_def] "scons[UU][xs]=UU" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
155 |
] @ stream_constrdef; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
156 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
157 |
val stream_rews = stream_constrdef @ stream_rews; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
158 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
159 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
160 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
161 |
(* Distinctness wrt. << and = *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
162 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
163 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
164 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
165 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
166 |
(* Invertibility *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
167 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
168 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
169 |
val stream_invert = |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
170 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
171 |
prove_goal Stream.thy "[|x1~=UU; y1~=UU;\ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
172 |
\ scons[x1][x2] << scons[y1][y2]|] ==> x1<< y1 & x2 << y2" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
173 |
(fn prems => |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
174 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
175 |
(cut_facts_tac prems 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
176 |
(rtac conjI 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
177 |
(dres_inst_tac [("fo5","stream_when[LAM x l.x]")] monofun_cfun_arg 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
178 |
(etac box_less 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
179 |
(asm_simp_tac (HOLCF_ss addsimps stream_when) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
180 |
(asm_simp_tac (HOLCF_ss addsimps stream_when) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
181 |
(dres_inst_tac [("fo5","stream_when[LAM x l.l]")] monofun_cfun_arg 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
182 |
(etac box_less 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
183 |
(asm_simp_tac (HOLCF_ss addsimps stream_when) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
184 |
(asm_simp_tac (HOLCF_ss addsimps stream_when) 1) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
185 |
]) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
186 |
]; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
187 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
188 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
189 |
(* Injectivity *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
190 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
191 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
192 |
val stream_inject = |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
193 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
194 |
prove_goal Stream.thy "[|x1~=UU; y1~=UU;\ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
195 |
\ scons[x1][x2] = scons[y1][y2]|] ==> x1= y1 & x2 = y2" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
196 |
(fn prems => |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
197 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
198 |
(cut_facts_tac prems 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
199 |
(rtac conjI 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
200 |
(dres_inst_tac [("f","stream_when[LAM x l.x]")] cfun_arg_cong 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
201 |
(etac box_equals 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
202 |
(asm_simp_tac (HOLCF_ss addsimps stream_when) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
203 |
(asm_simp_tac (HOLCF_ss addsimps stream_when) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
204 |
(dres_inst_tac [("f","stream_when[LAM x l.l]")] cfun_arg_cong 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
205 |
(etac box_equals 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
206 |
(asm_simp_tac (HOLCF_ss addsimps stream_when) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
207 |
(asm_simp_tac (HOLCF_ss addsimps stream_when) 1) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
208 |
]) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
209 |
]; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
210 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
211 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
212 |
(* definedness for discriminators and selectors *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
213 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
214 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
215 |
fun prover thm = prove_goal Stream.thy thm |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
216 |
(fn prems => |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
217 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
218 |
(cut_facts_tac prems 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
219 |
(rtac streamE 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
220 |
(contr_tac 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
221 |
(REPEAT (asm_simp_tac (HOLCF_ss addsimps stream_discsel) 1)) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
222 |
]); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
223 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
224 |
val stream_discsel_def = |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
225 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
226 |
prover "s~=UU ==> is_scons[s]~=UU", |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
227 |
prover "s~=UU ==> shd[s]~=UU" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
228 |
]; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
229 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
230 |
val stream_rews = stream_discsel_def @ stream_rews; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
231 |
|
297 | 232 |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
233 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
234 |
(* Properties stream_take *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
235 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
236 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
237 |
val stream_take = |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
238 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
239 |
prove_goalw Stream.thy [stream_take_def] "stream_take(n)[UU]=UU" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
240 |
(fn prems => |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
241 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
242 |
(res_inst_tac [("n","n")] natE 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
243 |
(asm_simp_tac iterate_ss 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
244 |
(asm_simp_tac iterate_ss 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
245 |
(simp_tac (HOLCF_ss addsimps stream_rews) 1) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
246 |
]), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
247 |
prove_goalw Stream.thy [stream_take_def] "stream_take(0)[xs]=UU" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
248 |
(fn prems => |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
249 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
250 |
(asm_simp_tac iterate_ss 1) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
251 |
])]; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
252 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
253 |
fun prover thm = prove_goalw Stream.thy [stream_take_def] thm |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
254 |
(fn prems => |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
255 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
256 |
(cut_facts_tac prems 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
257 |
(simp_tac iterate_ss 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
258 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
259 |
]); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
260 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
261 |
val stream_take = [ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
262 |
prover |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
263 |
"x~=UU ==> stream_take(Suc(n))[scons[x][xs]]=scons[x][stream_take(n)[xs]]" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
264 |
] @ stream_take; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
265 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
266 |
val stream_rews = stream_take @ stream_rews; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
267 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
268 |
(* ------------------------------------------------------------------------*) |
297 | 269 |
(* enhance the simplifier *) |
270 |
(* ------------------------------------------------------------------------*) |
|
271 |
||
272 |
val stream_copy2 = prove_goal Stream.thy |
|
273 |
"stream_copy[f][scons[x][xs]]= scons[x][f[xs]]" |
|
274 |
(fn prems => |
|
275 |
[ |
|
276 |
(res_inst_tac [("Q","x=UU")] classical2 1), |
|
277 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1), |
|
278 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1) |
|
279 |
]); |
|
280 |
||
281 |
val shd2 = prove_goal Stream.thy "shd[scons[x][xs]]=x" |
|
282 |
(fn prems => |
|
283 |
[ |
|
284 |
(res_inst_tac [("Q","x=UU")] classical2 1), |
|
285 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1), |
|
286 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1) |
|
287 |
]); |
|
288 |
||
289 |
val stream_take2 = prove_goal Stream.thy |
|
290 |
"stream_take(Suc(n))[scons[x][xs]]=scons[x][stream_take(n)[xs]]" |
|
291 |
(fn prems => |
|
292 |
[ |
|
293 |
(res_inst_tac [("Q","x=UU")] classical2 1), |
|
294 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1), |
|
295 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1) |
|
296 |
]); |
|
297 |
||
298 |
val stream_rews = [stream_iso_strict RS conjunct1, |
|
299 |
stream_iso_strict RS conjunct2, |
|
300 |
hd stream_copy, stream_copy2] |
|
301 |
@ stream_when |
|
302 |
@ [hd stream_discsel,shd2] @ (tl (tl stream_discsel)) |
|
303 |
@ stream_constrdef |
|
304 |
@ stream_discsel_def |
|
305 |
@ [ stream_take2] @ (tl stream_take); |
|
306 |
||
307 |
||
308 |
(* ------------------------------------------------------------------------*) |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
309 |
(* take lemma for streams *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
310 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
311 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
312 |
fun prover reach defs thm = prove_goalw Stream.thy defs thm |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
313 |
(fn prems => |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
314 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
315 |
(res_inst_tac [("t","s1")] (reach RS subst) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
316 |
(res_inst_tac [("t","s2")] (reach RS subst) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
317 |
(rtac (fix_def2 RS ssubst) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
318 |
(rtac (contlub_cfun_fun RS ssubst) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
319 |
(rtac is_chain_iterate 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
320 |
(rtac (contlub_cfun_fun RS ssubst) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
321 |
(rtac is_chain_iterate 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
322 |
(rtac lub_equal 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
323 |
(rtac (is_chain_iterate RS ch2ch_fappL) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
324 |
(rtac (is_chain_iterate RS ch2ch_fappL) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
325 |
(rtac allI 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
326 |
(resolve_tac prems 1) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
327 |
]); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
328 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
329 |
val stream_take_lemma = prover stream_reach [stream_take_def] |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
330 |
"(!!n.stream_take(n)[s1]=stream_take(n)[s2]) ==> s1=s2"; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
331 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
332 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
333 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
334 |
(* Co -induction for streams *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
335 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
336 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
337 |
val stream_coind_lemma = prove_goalw Stream.thy [stream_bisim_def] |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
338 |
"stream_bisim(R) ==> ! p q.R(p,q) --> stream_take(n)[p]=stream_take(n)[q]" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
339 |
(fn prems => |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
340 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
341 |
(cut_facts_tac prems 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
342 |
(nat_ind_tac "n" 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
343 |
(simp_tac (HOLCF_ss addsimps stream_rews) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
344 |
(strip_tac 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
345 |
((etac allE 1) THEN (etac allE 1) THEN (etac (mp RS disjE) 1)), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
346 |
(atac 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
347 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
348 |
(etac exE 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
349 |
(etac exE 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
350 |
(etac exE 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
351 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
352 |
(REPEAT (etac conjE 1)), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
353 |
(rtac cfun_arg_cong 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
354 |
(fast_tac HOL_cs 1) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
355 |
]); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
356 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
357 |
val stream_coind = prove_goal Stream.thy "[|stream_bisim(R);R(p,q)|] ==> p = q" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
358 |
(fn prems => |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
359 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
360 |
(rtac stream_take_lemma 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
361 |
(rtac (stream_coind_lemma RS spec RS spec RS mp) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
362 |
(resolve_tac prems 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
363 |
(resolve_tac prems 1) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
364 |
]); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
365 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
366 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
367 |
(* structural induction for admissible predicates *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
368 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
369 |
|
297 | 370 |
val stream_finite_ind = prove_goal Stream.thy |
371 |
"[|P(UU);\ |
|
372 |
\ !! x s1.[|x~=UU;P(s1)|] ==> P(scons[x][s1])\ |
|
373 |
\ |] ==> !s.P(stream_take(n)[s])" |
|
374 |
(fn prems => |
|
375 |
[ |
|
376 |
(nat_ind_tac "n" 1), |
|
377 |
(simp_tac (HOLCF_ss addsimps stream_rews) 1), |
|
378 |
(resolve_tac prems 1), |
|
379 |
(rtac allI 1), |
|
380 |
(res_inst_tac [("s","s")] streamE 1), |
|
381 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1), |
|
382 |
(resolve_tac prems 1), |
|
383 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1), |
|
384 |
(resolve_tac prems 1), |
|
385 |
(atac 1), |
|
386 |
(etac spec 1) |
|
387 |
]); |
|
388 |
||
389 |
val stream_finite_ind2 = prove_goalw Stream.thy [stream_finite_def] |
|
390 |
"(!!n.P(stream_take(n)[s])) ==> stream_finite(s) -->P(s)" |
|
391 |
(fn prems => |
|
392 |
[ |
|
393 |
(strip_tac 1), |
|
394 |
(etac exE 1), |
|
395 |
(etac subst 1), |
|
396 |
(resolve_tac prems 1) |
|
397 |
]); |
|
398 |
||
399 |
val stream_finite_ind3 = prove_goal Stream.thy |
|
400 |
"[|P(UU);\ |
|
401 |
\ !! x s1.[|x~=UU;P(s1)|] ==> P(scons[x][s1])\ |
|
402 |
\ |] ==> stream_finite(s) --> P(s)" |
|
403 |
(fn prems => |
|
404 |
[ |
|
405 |
(rtac stream_finite_ind2 1), |
|
406 |
(rtac (stream_finite_ind RS spec) 1), |
|
407 |
(REPEAT (resolve_tac prems 1)), |
|
408 |
(REPEAT (atac 1)) |
|
409 |
]); |
|
410 |
||
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
411 |
val stream_ind = prove_goal Stream.thy |
297 | 412 |
"[|adm(P);\ |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
413 |
\ P(UU);\ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
414 |
\ !! x s1.[|x~=UU;P(s1)|] ==> P(scons[x][s1])\ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
415 |
\ |] ==> P(s)" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
416 |
(fn prems => |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
417 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
418 |
(rtac (stream_reach RS subst) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
419 |
(res_inst_tac [("x","s")] spec 1), |
297 | 420 |
(rtac wfix_ind 1), |
421 |
(rtac adm_impl_admw 1), |
|
422 |
(REPEAT (resolve_tac adm_thms 1)), |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
423 |
(rtac adm_subst 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
424 |
(contX_tacR 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
425 |
(resolve_tac prems 1), |
297 | 426 |
(rtac allI 1), |
427 |
(rtac (rewrite_rule [stream_take_def] stream_finite_ind) 1), |
|
428 |
(REPEAT (resolve_tac prems 1)), |
|
429 |
(REPEAT (atac 1)) |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
430 |
]); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
431 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
432 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
433 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
434 |
(* simplify use of Co-induction *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
435 |
(* ------------------------------------------------------------------------*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
436 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
437 |
val surjectiv_scons = prove_goal Stream.thy "scons[shd[s]][stl[s]]=s" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
438 |
(fn prems => |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
439 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
440 |
(res_inst_tac [("s","s")] streamE 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
441 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
442 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
443 |
]); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
444 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
445 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
446 |
val stream_coind_lemma2 = prove_goalw Stream.thy [stream_bisim_def] |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
447 |
"!s1 s2. R(s1, s2)-->shd[s1]=shd[s2] & R(stl[s1],stl[s2]) ==>stream_bisim(R)" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
448 |
(fn prems => |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
449 |
[ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
450 |
(cut_facts_tac prems 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
451 |
(strip_tac 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
452 |
(etac allE 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
453 |
(etac allE 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
454 |
(dtac mp 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
455 |
(atac 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
456 |
(etac conjE 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
457 |
(res_inst_tac [("Q","s1 = UU & s2 = UU")] classical2 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
458 |
(rtac disjI1 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
459 |
(fast_tac HOL_cs 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
460 |
(rtac disjI2 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
461 |
(rtac disjE 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
462 |
(etac (de_morgan2 RS ssubst) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
463 |
(res_inst_tac [("x","shd[s1]")] exI 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
464 |
(res_inst_tac [("x","stl[s1]")] exI 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
465 |
(res_inst_tac [("x","stl[s2]")] exI 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
466 |
(rtac conjI 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
467 |
(eresolve_tac stream_discsel_def 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
468 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews addsimps [surjectiv_scons]) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
469 |
(eres_inst_tac [("s","shd[s1]"),("t","shd[s2]")] subst 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
470 |
(simp_tac (HOLCF_ss addsimps stream_rews addsimps [surjectiv_scons]) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
471 |
(res_inst_tac [("x","shd[s2]")] exI 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
472 |
(res_inst_tac [("x","stl[s1]")] exI 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
473 |
(res_inst_tac [("x","stl[s2]")] exI 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
474 |
(rtac conjI 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
475 |
(eresolve_tac stream_discsel_def 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
476 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews addsimps [surjectiv_scons]) 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
477 |
(res_inst_tac [("s","shd[s1]"),("t","shd[s2]")] ssubst 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
478 |
(etac sym 1), |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
479 |
(simp_tac (HOLCF_ss addsimps stream_rews addsimps [surjectiv_scons]) 1) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
480 |
]); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
481 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
482 |
|
297 | 483 |
(* ------------------------------------------------------------------------*) |
484 |
(* theorems about finite and infinite streams *) |
|
485 |
(* ------------------------------------------------------------------------*) |
|
486 |
||
487 |
(* ----------------------------------------------------------------------- *) |
|
488 |
(* 2 lemmas about stream_finite *) |
|
489 |
(* ----------------------------------------------------------------------- *) |
|
490 |
||
491 |
val stream_finite_UU = prove_goalw Stream.thy [stream_finite_def] |
|
492 |
"stream_finite(UU)" |
|
493 |
(fn prems => |
|
494 |
[ |
|
495 |
(rtac exI 1), |
|
496 |
(simp_tac (HOLCF_ss addsimps stream_rews) 1) |
|
497 |
]); |
|
498 |
||
499 |
val inf_stream_not_UU = prove_goal Stream.thy "~stream_finite(s) ==> s ~= UU" |
|
500 |
(fn prems => |
|
501 |
[ |
|
502 |
(cut_facts_tac prems 1), |
|
503 |
(etac swap 1), |
|
504 |
(dtac notnotD 1), |
|
505 |
(hyp_subst_tac 1), |
|
506 |
(rtac stream_finite_UU 1) |
|
507 |
]); |
|
508 |
||
509 |
(* ----------------------------------------------------------------------- *) |
|
510 |
(* a lemma about shd *) |
|
511 |
(* ----------------------------------------------------------------------- *) |
|
512 |
||
513 |
val stream_shd_lemma1 = prove_goal Stream.thy "shd[s]=UU --> s=UU" |
|
514 |
(fn prems => |
|
515 |
[ |
|
516 |
(res_inst_tac [("s","s")] streamE 1), |
|
517 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1), |
|
518 |
(hyp_subst_tac 1), |
|
519 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1) |
|
520 |
]); |
|
521 |
||
522 |
||
523 |
(* ----------------------------------------------------------------------- *) |
|
524 |
(* lemmas about stream_take *) |
|
525 |
(* ----------------------------------------------------------------------- *) |
|
526 |
||
527 |
val stream_take_lemma1 = prove_goal Stream.thy |
|
528 |
"!x xs.x~=UU --> \ |
|
529 |
\ stream_take(Suc(n))[scons[x][xs]] = scons[x][xs] --> stream_take(n)[xs]=xs" |
|
530 |
(fn prems => |
|
531 |
[ |
|
532 |
(rtac allI 1), |
|
533 |
(rtac allI 1), |
|
534 |
(rtac impI 1), |
|
535 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1), |
|
536 |
(strip_tac 1), |
|
537 |
(rtac ((hd stream_inject) RS conjunct2) 1), |
|
538 |
(atac 1), |
|
539 |
(atac 1), |
|
540 |
(atac 1) |
|
541 |
]); |
|
542 |
||
543 |
||
544 |
val stream_take_lemma2 = prove_goal Stream.thy |
|
545 |
"! s2. stream_take(n)[s2] = s2 --> stream_take(Suc(n))[s2]=s2" |
|
546 |
(fn prems => |
|
547 |
[ |
|
548 |
(nat_ind_tac "n" 1), |
|
549 |
(simp_tac (HOLCF_ss addsimps stream_rews) 1), |
|
550 |
(strip_tac 1 ), |
|
551 |
(hyp_subst_tac 1), |
|
552 |
(simp_tac (HOLCF_ss addsimps stream_rews) 1), |
|
553 |
(rtac allI 1), |
|
554 |
(res_inst_tac [("s","s2")] streamE 1), |
|
555 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1), |
|
556 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1), |
|
557 |
(strip_tac 1 ), |
|
558 |
(subgoal_tac "stream_take(n1)[xs] = xs" 1), |
|
559 |
(rtac ((hd stream_inject) RS conjunct2) 2), |
|
560 |
(atac 4), |
|
561 |
(atac 2), |
|
562 |
(atac 2), |
|
563 |
(rtac cfun_arg_cong 1), |
|
564 |
(fast_tac HOL_cs 1) |
|
565 |
]); |
|
566 |
||
567 |
val stream_take_lemma3 = prove_goal Stream.thy |
|
568 |
"!x xs.x~=UU --> \ |
|
569 |
\ stream_take(n)[scons[x][xs]] = scons[x][xs] --> stream_take(n)[xs]=xs" |
|
570 |
(fn prems => |
|
571 |
[ |
|
572 |
(nat_ind_tac "n" 1), |
|
573 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1), |
|
574 |
(strip_tac 1 ), |
|
575 |
(res_inst_tac [("P","scons[x][xs]=UU")] notE 1), |
|
576 |
(eresolve_tac stream_constrdef 1), |
|
577 |
(etac sym 1), |
|
578 |
(strip_tac 1 ), |
|
579 |
(rtac (stream_take_lemma2 RS spec RS mp) 1), |
|
580 |
(res_inst_tac [("x1.1","x")] ((hd stream_inject) RS conjunct2) 1), |
|
581 |
(atac 1), |
|
582 |
(atac 1), |
|
583 |
(etac (stream_take2 RS subst) 1) |
|
584 |
]); |
|
585 |
||
586 |
val stream_take_lemma4 = prove_goal Stream.thy |
|
587 |
"!x xs.\ |
|
588 |
\stream_take(n)[xs]=xs --> stream_take(Suc(n))[scons[x][xs]] = scons[x][xs]" |
|
589 |
(fn prems => |
|
590 |
[ |
|
591 |
(nat_ind_tac "n" 1), |
|
592 |
(simp_tac (HOLCF_ss addsimps stream_rews) 1), |
|
593 |
(simp_tac (HOLCF_ss addsimps stream_rews) 1) |
|
594 |
]); |
|
595 |
||
596 |
(* ---- *) |
|
597 |
||
598 |
val stream_take_lemma5 = prove_goal Stream.thy |
|
599 |
"!s. stream_take(n)[s]=s --> iterate(n,stl,s)=UU" |
|
600 |
(fn prems => |
|
601 |
[ |
|
602 |
(nat_ind_tac "n" 1), |
|
603 |
(simp_tac iterate_ss 1), |
|
604 |
(simp_tac (HOLCF_ss addsimps stream_rews) 1), |
|
605 |
(strip_tac 1), |
|
606 |
(res_inst_tac [("s","s")] streamE 1), |
|
607 |
(hyp_subst_tac 1), |
|
608 |
(rtac (iterate_Suc2 RS ssubst) 1), |
|
609 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1), |
|
610 |
(rtac (iterate_Suc2 RS ssubst) 1), |
|
611 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1), |
|
612 |
(etac allE 1), |
|
613 |
(etac mp 1), |
|
614 |
(hyp_subst_tac 1), |
|
615 |
(etac (stream_take_lemma1 RS spec RS spec RS mp RS mp) 1), |
|
616 |
(atac 1) |
|
617 |
]); |
|
618 |
||
619 |
val stream_take_lemma6 = prove_goal Stream.thy |
|
620 |
"!s.iterate(n,stl,s)=UU --> stream_take(n)[s]=s" |
|
621 |
(fn prems => |
|
622 |
[ |
|
623 |
(nat_ind_tac "n" 1), |
|
624 |
(simp_tac iterate_ss 1), |
|
625 |
(strip_tac 1), |
|
626 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1), |
|
627 |
(rtac allI 1), |
|
628 |
(res_inst_tac [("s","s")] streamE 1), |
|
629 |
(hyp_subst_tac 1), |
|
630 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1), |
|
631 |
(hyp_subst_tac 1), |
|
632 |
(rtac (iterate_Suc2 RS ssubst) 1), |
|
633 |
(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1) |
|
634 |
]); |
|
635 |
||
636 |
val stream_take_lemma7 = prove_goal Stream.thy |
|
637 |
"(iterate(n,stl,s)=UU) = (stream_take(n)[s]=s)" |
|
638 |
(fn prems => |
|
639 |
[ |
|
640 |
(rtac iffI 1), |
|
641 |
(etac (stream_take_lemma6 RS spec RS mp) 1), |
|
642 |
(etac (stream_take_lemma5 RS spec RS mp) 1) |
|
643 |
]); |
|
644 |
||
645 |
||
646 |
(* ----------------------------------------------------------------------- *) |
|
647 |
(* lemmas stream_finite *) |
|
648 |
(* ----------------------------------------------------------------------- *) |
|
649 |
||
650 |
val stream_finite_lemma1 = prove_goalw Stream.thy [stream_finite_def] |
|
651 |
"stream_finite(xs) ==> stream_finite(scons[x][xs])" |
|
652 |
(fn prems => |
|
653 |
[ |
|
654 |
(cut_facts_tac prems 1), |
|
655 |
(etac exE 1), |
|
656 |
(rtac exI 1), |
|
657 |
(etac (stream_take_lemma4 RS spec RS spec RS mp) 1) |
|
658 |
]); |
|
659 |
||
660 |
val stream_finite_lemma2 = prove_goalw Stream.thy [stream_finite_def] |
|
661 |
"[|x~=UU; stream_finite(scons[x][xs])|] ==> stream_finite(xs)" |
|
662 |
(fn prems => |
|
663 |
[ |
|
664 |
(cut_facts_tac prems 1), |
|
665 |
(etac exE 1), |
|
666 |
(rtac exI 1), |
|
667 |
(etac (stream_take_lemma3 RS spec RS spec RS mp RS mp) 1), |
|
668 |
(atac 1) |
|
669 |
]); |
|
670 |
||
671 |
val stream_finite_lemma3 = prove_goal Stream.thy |
|
672 |
"x~=UU ==> stream_finite(scons[x][xs]) = stream_finite(xs)" |
|
673 |
(fn prems => |
|
674 |
[ |
|
675 |
(cut_facts_tac prems 1), |
|
676 |
(rtac iffI 1), |
|
677 |
(etac stream_finite_lemma2 1), |
|
678 |
(atac 1), |
|
679 |
(etac stream_finite_lemma1 1) |
|
680 |
]); |
|
681 |
||
682 |
||
683 |
val stream_finite_lemma5 = prove_goalw Stream.thy [stream_finite_def] |
|
684 |
"(!n. s1 << s2 --> stream_take(n)[s2] = s2 --> stream_finite(s1))\ |
|
685 |
\=(s1 << s2 --> stream_finite(s2) --> stream_finite(s1))" |
|
686 |
(fn prems => |
|
687 |
[ |
|
688 |
(rtac iffI 1), |
|
689 |
(fast_tac HOL_cs 1), |
|
690 |
(fast_tac HOL_cs 1) |
|
691 |
]); |
|
692 |
||
693 |
val stream_finite_lemma6 = prove_goal Stream.thy |
|
694 |
"!s1 s2. s1 << s2 --> stream_take(n)[s2] = s2 --> stream_finite(s1)" |
|
695 |
(fn prems => |
|
696 |
[ |
|
697 |
(nat_ind_tac "n" 1), |
|
698 |
(simp_tac (HOLCF_ss addsimps stream_rews) 1), |
|
699 |
(strip_tac 1 ), |
|
700 |
(hyp_subst_tac 1), |
|
701 |
(dtac UU_I 1), |
|
702 |
(hyp_subst_tac 1), |
|
703 |
(rtac stream_finite_UU 1), |
|
704 |
(rtac allI 1), |
|
705 |
(rtac allI 1), |
|
706 |
(res_inst_tac [("s","s1")] streamE 1), |
|
707 |
(hyp_subst_tac 1), |
|
708 |
(strip_tac 1 ), |
|
709 |
(rtac stream_finite_UU 1), |
|
710 |
(hyp_subst_tac 1), |
|
711 |
(res_inst_tac [("s","s2")] streamE 1), |
|
712 |
(hyp_subst_tac 1), |
|
713 |
(strip_tac 1 ), |
|
714 |
(dtac UU_I 1), |
|
715 |
(asm_simp_tac(HOLCF_ss addsimps (stream_rews @ [stream_finite_UU])) 1), |
|
716 |
(hyp_subst_tac 1), |
|
717 |
(simp_tac (HOLCF_ss addsimps stream_rews) 1), |
|
718 |
(strip_tac 1 ), |
|
719 |
(rtac stream_finite_lemma1 1), |
|
720 |
(subgoal_tac "xs << xsa" 1), |
|
721 |
(subgoal_tac "stream_take(n1)[xsa] = xsa" 1), |
|
722 |
(fast_tac HOL_cs 1), |
|
723 |
(res_inst_tac [("x1.1","xa"),("y1.1","xa")] |
|
724 |
((hd stream_inject) RS conjunct2) 1), |
|
725 |
(atac 1), |
|
726 |
(atac 1), |
|
727 |
(atac 1), |
|
728 |
(res_inst_tac [("x1.1","x"),("y1.1","xa")] |
|
729 |
((hd stream_invert) RS conjunct2) 1), |
|
730 |
(atac 1), |
|
731 |
(atac 1), |
|
732 |
(atac 1) |
|
733 |
]); |
|
734 |
||
735 |
val stream_finite_lemma7 = prove_goal Stream.thy |
|
736 |
"s1 << s2 --> stream_finite(s2) --> stream_finite(s1)" |
|
737 |
(fn prems => |
|
738 |
[ |
|
739 |
(rtac (stream_finite_lemma5 RS iffD1) 1), |
|
740 |
(rtac allI 1), |
|
741 |
(rtac (stream_finite_lemma6 RS spec RS spec) 1) |
|
742 |
]); |
|
743 |
||
744 |
val stream_finite_lemma8 = prove_goalw Stream.thy [stream_finite_def] |
|
745 |
"stream_finite(s) = (? n. iterate(n,stl,s)=UU)" |
|
746 |
(fn prems => |
|
747 |
[ |
|
748 |
(simp_tac (HOL_ss addsimps [stream_take_lemma7]) 1) |
|
749 |
]); |
|
750 |
||
751 |
||
752 |
(* ----------------------------------------------------------------------- *) |
|
753 |
(* admissibility of ~stream_finite *) |
|
754 |
(* ----------------------------------------------------------------------- *) |
|
755 |
||
756 |
val adm_not_stream_finite = prove_goalw Stream.thy [adm_def] |
|
757 |
"adm(%s. ~ stream_finite(s))" |
|
758 |
(fn prems => |
|
759 |
[ |
|
760 |
(strip_tac 1 ), |
|
761 |
(res_inst_tac [("P1","!i. ~ stream_finite(Y(i))")] classical3 1), |
|
762 |
(atac 2), |
|
763 |
(subgoal_tac "!i.stream_finite(Y(i))" 1), |
|
764 |
(fast_tac HOL_cs 1), |
|
765 |
(rtac allI 1), |
|
766 |
(rtac (stream_finite_lemma7 RS mp RS mp) 1), |
|
767 |
(etac is_ub_thelub 1), |
|
768 |
(atac 1) |
|
769 |
]); |
|
770 |
||
771 |
(* ----------------------------------------------------------------------- *) |
|
772 |
(* alternative prove for admissibility of ~stream_finite *) |
|
773 |
(* show that stream_finite(s) = (? n. iterate(n, stl, s) = UU) *) |
|
774 |
(* and prove adm. of ~(? n. iterate(n, stl, s) = UU) *) |
|
775 |
(* proof uses theorems stream_take_lemma5-7; stream_finite_lemma8 *) |
|
776 |
(* ----------------------------------------------------------------------- *) |
|
777 |
||
778 |
||
779 |
val adm_not_stream_finite2=prove_goal Stream.thy "adm(%s. ~ stream_finite(s))" |
|
780 |
(fn prems => |
|
781 |
[ |
|
782 |
(subgoal_tac "(!s.(~stream_finite(s))=(!n.iterate(n,stl,s)~=UU))" 1), |
|
783 |
(etac (adm_cong RS iffD2)1), |
|
784 |
(REPEAT(resolve_tac adm_thms 1)), |
|
785 |
(rtac contX_iterate2 1), |
|
786 |
(rtac allI 1), |
|
787 |
(rtac (stream_finite_lemma8 RS ssubst) 1), |
|
788 |
(fast_tac HOL_cs 1) |
|
789 |
]); |
|
790 |
||
791 |