| author | wenzelm | 
| Fri, 27 Jan 2006 19:03:19 +0100 | |
| changeset 18812 | a4554848b59e | 
| parent 17719 | 2e75155c5ed5 | 
| child 19022 | 0e6ec4fd204c | 
| permissions | -rw-r--r-- | 
| 8924 | 1 | (* Title: HOL/SetInterval.thy | 
| 2 | ID: $Id$ | |
| 13735 | 3 | Author: Tobias Nipkow and Clemens Ballarin | 
| 14485 | 4 | Additions by Jeremy Avigad in March 2004 | 
| 8957 | 5 | Copyright 2000 TU Muenchen | 
| 8924 | 6 | |
| 13735 | 7 | lessThan, greaterThan, atLeast, atMost and two-sided intervals | 
| 8924 | 8 | *) | 
| 9 | ||
| 14577 | 10 | header {* Set intervals *}
 | 
| 11 | ||
| 15131 | 12 | theory SetInterval | 
| 15140 | 13 | imports IntArith | 
| 15131 | 14 | begin | 
| 8924 | 15 | |
| 16 | constdefs | |
| 15045 | 17 |   lessThan    :: "('a::ord) => 'a set"	("(1{..<_})")
 | 
| 18 |   "{..<u} == {x. x<u}"
 | |
| 8924 | 19 | |
| 11609 
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
 wenzelm parents: 
10214diff
changeset | 20 |   atMost      :: "('a::ord) => 'a set"	("(1{.._})")
 | 
| 
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
 wenzelm parents: 
10214diff
changeset | 21 |   "{..u} == {x. x<=u}"
 | 
| 8924 | 22 | |
| 15045 | 23 |   greaterThan :: "('a::ord) => 'a set"	("(1{_<..})")
 | 
| 24 |   "{l<..} == {x. l<x}"
 | |
| 8924 | 25 | |
| 11609 
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
 wenzelm parents: 
10214diff
changeset | 26 |   atLeast     :: "('a::ord) => 'a set"	("(1{_..})")
 | 
| 
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
 wenzelm parents: 
10214diff
changeset | 27 |   "{l..} == {x. l<=x}"
 | 
| 8924 | 28 | |
| 15045 | 29 |   greaterThanLessThan :: "['a::ord, 'a] => 'a set"  ("(1{_<..<_})")
 | 
| 30 |   "{l<..<u} == {l<..} Int {..<u}"
 | |
| 13735 | 31 | |
| 15045 | 32 |   atLeastLessThan :: "['a::ord, 'a] => 'a set"      ("(1{_..<_})")
 | 
| 33 |   "{l..<u} == {l..} Int {..<u}"
 | |
| 13735 | 34 | |
| 15045 | 35 |   greaterThanAtMost :: "['a::ord, 'a] => 'a set"    ("(1{_<.._})")
 | 
| 36 |   "{l<..u} == {l<..} Int {..u}"
 | |
| 13735 | 37 | |
| 38 |   atLeastAtMost :: "['a::ord, 'a] => 'a set"        ("(1{_.._})")
 | |
| 39 |   "{l..u} == {l..} Int {..u}"
 | |
| 40 | ||
| 15045 | 41 | (* Old syntax, will disappear! *) | 
| 42 | syntax | |
| 43 |   "_lessThan"    :: "('a::ord) => 'a set"	("(1{.._'(})")
 | |
| 44 |   "_greaterThan" :: "('a::ord) => 'a set"	("(1{')_..})")
 | |
| 45 |   "_greaterThanLessThan" :: "['a::ord, 'a] => 'a set"  ("(1{')_.._'(})")
 | |
| 46 |   "_atLeastLessThan" :: "['a::ord, 'a] => 'a set"      ("(1{_.._'(})")
 | |
| 47 |   "_greaterThanAtMost" :: "['a::ord, 'a] => 'a set"    ("(1{')_.._})")
 | |
| 48 | translations | |
| 49 |   "{..m(}" => "{..<m}"
 | |
| 50 |   "{)m..}" => "{m<..}"
 | |
| 51 |   "{)m..n(}" => "{m<..<n}"
 | |
| 52 |   "{m..n(}" => "{m..<n}"
 | |
| 53 |   "{)m..n}" => "{m<..n}"
 | |
| 54 | ||
| 15048 | 55 | |
| 56 | text{* A note of warning when using @{term"{..<n}"} on type @{typ
 | |
| 57 | nat}: it is equivalent to @{term"{0::nat..<n}"} but some lemmas involving
 | |
| 15052 | 58 | @{term"{m..<n}"} may not exist in @{term"{..<n}"}-form as well. *}
 | 
| 15048 | 59 | |
| 14418 | 60 | syntax | 
| 61 |   "@UNION_le"   :: "nat => nat => 'b set => 'b set"       ("(3UN _<=_./ _)" 10)
 | |
| 62 |   "@UNION_less" :: "nat => nat => 'b set => 'b set"       ("(3UN _<_./ _)" 10)
 | |
| 63 |   "@INTER_le"   :: "nat => nat => 'b set => 'b set"       ("(3INT _<=_./ _)" 10)
 | |
| 64 |   "@INTER_less" :: "nat => nat => 'b set => 'b set"       ("(3INT _<_./ _)" 10)
 | |
| 65 | ||
| 66 | syntax (input) | |
| 67 |   "@UNION_le"   :: "nat => nat => 'b set => 'b set"       ("(3\<Union> _\<le>_./ _)" 10)
 | |
| 68 |   "@UNION_less" :: "nat => nat => 'b set => 'b set"       ("(3\<Union> _<_./ _)" 10)
 | |
| 69 |   "@INTER_le"   :: "nat => nat => 'b set => 'b set"       ("(3\<Inter> _\<le>_./ _)" 10)
 | |
| 70 |   "@INTER_less" :: "nat => nat => 'b set => 'b set"       ("(3\<Inter> _<_./ _)" 10)
 | |
| 71 | ||
| 72 | syntax (xsymbols) | |
| 14846 | 73 |   "@UNION_le"   :: "nat \<Rightarrow> nat => 'b set => 'b set"       ("(3\<Union>(00\<^bsub>_ \<le> _\<^esub>)/ _)" 10)
 | 
| 74 |   "@UNION_less" :: "nat \<Rightarrow> nat => 'b set => 'b set"       ("(3\<Union>(00\<^bsub>_ < _\<^esub>)/ _)" 10)
 | |
| 75 |   "@INTER_le"   :: "nat \<Rightarrow> nat => 'b set => 'b set"       ("(3\<Inter>(00\<^bsub>_ \<le> _\<^esub>)/ _)" 10)
 | |
| 76 |   "@INTER_less" :: "nat \<Rightarrow> nat => 'b set => 'b set"       ("(3\<Inter>(00\<^bsub>_ < _\<^esub>)/ _)" 10)
 | |
| 14418 | 77 | |
| 78 | translations | |
| 79 |   "UN i<=n. A"  == "UN i:{..n}. A"
 | |
| 15045 | 80 |   "UN i<n. A"   == "UN i:{..<n}. A"
 | 
| 14418 | 81 |   "INT i<=n. A" == "INT i:{..n}. A"
 | 
| 15045 | 82 |   "INT i<n. A"  == "INT i:{..<n}. A"
 | 
| 14418 | 83 | |
| 84 | ||
| 14485 | 85 | subsection {* Various equivalences *}
 | 
| 13735 | 86 | |
| 13850 | 87 | lemma lessThan_iff [iff]: "(i: lessThan k) = (i<k)" | 
| 88 | by (simp add: lessThan_def) | |
| 13735 | 89 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 90 | lemma Compl_lessThan [simp]: | 
| 13735 | 91 | "!!k:: 'a::linorder. -lessThan k = atLeast k" | 
| 13850 | 92 | apply (auto simp add: lessThan_def atLeast_def) | 
| 13735 | 93 | done | 
| 94 | ||
| 13850 | 95 | lemma single_Diff_lessThan [simp]: "!!k:: 'a::order. {k} - lessThan k = {k}"
 | 
| 96 | by auto | |
| 13735 | 97 | |
| 13850 | 98 | lemma greaterThan_iff [iff]: "(i: greaterThan k) = (k<i)" | 
| 99 | by (simp add: greaterThan_def) | |
| 13735 | 100 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 101 | lemma Compl_greaterThan [simp]: | 
| 13735 | 102 | "!!k:: 'a::linorder. -greaterThan k = atMost k" | 
| 13850 | 103 | apply (simp add: greaterThan_def atMost_def le_def, auto) | 
| 13735 | 104 | done | 
| 105 | ||
| 13850 | 106 | lemma Compl_atMost [simp]: "!!k:: 'a::linorder. -atMost k = greaterThan k" | 
| 107 | apply (subst Compl_greaterThan [symmetric]) | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 108 | apply (rule double_complement) | 
| 13735 | 109 | done | 
| 110 | ||
| 13850 | 111 | lemma atLeast_iff [iff]: "(i: atLeast k) = (k<=i)" | 
| 112 | by (simp add: atLeast_def) | |
| 13735 | 113 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 114 | lemma Compl_atLeast [simp]: | 
| 13735 | 115 | "!!k:: 'a::linorder. -atLeast k = lessThan k" | 
| 13850 | 116 | apply (simp add: lessThan_def atLeast_def le_def, auto) | 
| 13735 | 117 | done | 
| 118 | ||
| 13850 | 119 | lemma atMost_iff [iff]: "(i: atMost k) = (i<=k)" | 
| 120 | by (simp add: atMost_def) | |
| 13735 | 121 | |
| 14485 | 122 | lemma atMost_Int_atLeast: "!!n:: 'a::order. atMost n Int atLeast n = {n}"
 | 
| 123 | by (blast intro: order_antisym) | |
| 13850 | 124 | |
| 125 | ||
| 14485 | 126 | subsection {* Logical Equivalences for Set Inclusion and Equality *}
 | 
| 13850 | 127 | |
| 128 | lemma atLeast_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 129 | "(atLeast x \<subseteq> atLeast y) = (y \<le> (x::'a::order))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 130 | by (blast intro: order_trans) | 
| 13850 | 131 | |
| 132 | lemma atLeast_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 133 | "(atLeast x = atLeast y) = (x = (y::'a::linorder))" | 
| 13850 | 134 | by (blast intro: order_antisym order_trans) | 
| 135 | ||
| 136 | lemma greaterThan_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 137 | "(greaterThan x \<subseteq> greaterThan y) = (y \<le> (x::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 138 | apply (auto simp add: greaterThan_def) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 139 | apply (subst linorder_not_less [symmetric], blast) | 
| 13850 | 140 | done | 
| 141 | ||
| 142 | lemma greaterThan_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 143 | "(greaterThan x = greaterThan y) = (x = (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 144 | apply (rule iffI) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 145 | apply (erule equalityE) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 146 | apply (simp_all add: greaterThan_subset_iff) | 
| 13850 | 147 | done | 
| 148 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 149 | lemma atMost_subset_iff [iff]: "(atMost x \<subseteq> atMost y) = (x \<le> (y::'a::order))" | 
| 13850 | 150 | by (blast intro: order_trans) | 
| 151 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 152 | lemma atMost_eq_iff [iff]: "(atMost x = atMost y) = (x = (y::'a::linorder))" | 
| 13850 | 153 | by (blast intro: order_antisym order_trans) | 
| 154 | ||
| 155 | lemma lessThan_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 156 | "(lessThan x \<subseteq> lessThan y) = (x \<le> (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 157 | apply (auto simp add: lessThan_def) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 158 | apply (subst linorder_not_less [symmetric], blast) | 
| 13850 | 159 | done | 
| 160 | ||
| 161 | lemma lessThan_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 162 | "(lessThan x = lessThan y) = (x = (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 163 | apply (rule iffI) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 164 | apply (erule equalityE) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 165 | apply (simp_all add: lessThan_subset_iff) | 
| 13735 | 166 | done | 
| 167 | ||
| 168 | ||
| 13850 | 169 | subsection {*Two-sided intervals*}
 | 
| 13735 | 170 | |
| 171 | lemma greaterThanLessThan_iff [simp]: | |
| 15045 | 172 |   "(i : {l<..<u}) = (l < i & i < u)"
 | 
| 13735 | 173 | by (simp add: greaterThanLessThan_def) | 
| 174 | ||
| 175 | lemma atLeastLessThan_iff [simp]: | |
| 15045 | 176 |   "(i : {l..<u}) = (l <= i & i < u)"
 | 
| 13735 | 177 | by (simp add: atLeastLessThan_def) | 
| 178 | ||
| 179 | lemma greaterThanAtMost_iff [simp]: | |
| 15045 | 180 |   "(i : {l<..u}) = (l < i & i <= u)"
 | 
| 13735 | 181 | by (simp add: greaterThanAtMost_def) | 
| 182 | ||
| 183 | lemma atLeastAtMost_iff [simp]: | |
| 184 |   "(i : {l..u}) = (l <= i & i <= u)"
 | |
| 185 | by (simp add: atLeastAtMost_def) | |
| 186 | ||
| 14577 | 187 | text {* The above four lemmas could be declared as iffs.
 | 
| 188 |   If we do so, a call to blast in Hyperreal/Star.ML, lemma @{text STAR_Int}
 | |
| 189 | seems to take forever (more than one hour). *} | |
| 13735 | 190 | |
| 15554 | 191 | subsubsection{* Emptyness and singletons *}
 | 
| 192 | ||
| 193 | lemma atLeastAtMost_empty [simp]: "n < m ==> {m::'a::order..n} = {}";
 | |
| 194 | by (auto simp add: atLeastAtMost_def atMost_def atLeast_def); | |
| 195 | ||
| 196 | lemma atLeastLessThan_empty[simp]: "n \<le> m ==> {m..<n::'a::order} = {}"
 | |
| 197 | by (auto simp add: atLeastLessThan_def) | |
| 198 | ||
| 17719 | 199 | lemma greaterThanAtMost_empty[simp]:"l \<le> k ==> {k<..(l::'a::order)} = {}"
 | 
| 200 | by(auto simp:greaterThanAtMost_def greaterThan_def atMost_def) | |
| 201 | ||
| 202 | lemma greaterThanLessThan_empty[simp]:"l \<le> k ==> {k<..(l::'a::order)} = {}"
 | |
| 203 | by(auto simp:greaterThanLessThan_def greaterThan_def lessThan_def) | |
| 204 | ||
| 15554 | 205 | lemma atLeastAtMost_singleton [simp]: "{a::'a::order..a} = {a}";
 | 
| 17719 | 206 | by (auto simp add: atLeastAtMost_def atMost_def atLeast_def); | 
| 14485 | 207 | |
| 208 | subsection {* Intervals of natural numbers *}
 | |
| 209 | ||
| 15047 | 210 | subsubsection {* The Constant @{term lessThan} *}
 | 
| 211 | ||
| 14485 | 212 | lemma lessThan_0 [simp]: "lessThan (0::nat) = {}"
 | 
| 213 | by (simp add: lessThan_def) | |
| 214 | ||
| 215 | lemma lessThan_Suc: "lessThan (Suc k) = insert k (lessThan k)" | |
| 216 | by (simp add: lessThan_def less_Suc_eq, blast) | |
| 217 | ||
| 218 | lemma lessThan_Suc_atMost: "lessThan (Suc k) = atMost k" | |
| 219 | by (simp add: lessThan_def atMost_def less_Suc_eq_le) | |
| 220 | ||
| 221 | lemma UN_lessThan_UNIV: "(UN m::nat. lessThan m) = UNIV" | |
| 222 | by blast | |
| 223 | ||
| 15047 | 224 | subsubsection {* The Constant @{term greaterThan} *}
 | 
| 225 | ||
| 14485 | 226 | lemma greaterThan_0 [simp]: "greaterThan 0 = range Suc" | 
| 227 | apply (simp add: greaterThan_def) | |
| 228 | apply (blast dest: gr0_conv_Suc [THEN iffD1]) | |
| 229 | done | |
| 230 | ||
| 231 | lemma greaterThan_Suc: "greaterThan (Suc k) = greaterThan k - {Suc k}"
 | |
| 232 | apply (simp add: greaterThan_def) | |
| 233 | apply (auto elim: linorder_neqE) | |
| 234 | done | |
| 235 | ||
| 236 | lemma INT_greaterThan_UNIV: "(INT m::nat. greaterThan m) = {}"
 | |
| 237 | by blast | |
| 238 | ||
| 15047 | 239 | subsubsection {* The Constant @{term atLeast} *}
 | 
| 240 | ||
| 14485 | 241 | lemma atLeast_0 [simp]: "atLeast (0::nat) = UNIV" | 
| 242 | by (unfold atLeast_def UNIV_def, simp) | |
| 243 | ||
| 244 | lemma atLeast_Suc: "atLeast (Suc k) = atLeast k - {k}"
 | |
| 245 | apply (simp add: atLeast_def) | |
| 246 | apply (simp add: Suc_le_eq) | |
| 247 | apply (simp add: order_le_less, blast) | |
| 248 | done | |
| 249 | ||
| 250 | lemma atLeast_Suc_greaterThan: "atLeast (Suc k) = greaterThan k" | |
| 251 | by (auto simp add: greaterThan_def atLeast_def less_Suc_eq_le) | |
| 252 | ||
| 253 | lemma UN_atLeast_UNIV: "(UN m::nat. atLeast m) = UNIV" | |
| 254 | by blast | |
| 255 | ||
| 15047 | 256 | subsubsection {* The Constant @{term atMost} *}
 | 
| 257 | ||
| 14485 | 258 | lemma atMost_0 [simp]: "atMost (0::nat) = {0}"
 | 
| 259 | by (simp add: atMost_def) | |
| 260 | ||
| 261 | lemma atMost_Suc: "atMost (Suc k) = insert (Suc k) (atMost k)" | |
| 262 | apply (simp add: atMost_def) | |
| 263 | apply (simp add: less_Suc_eq order_le_less, blast) | |
| 264 | done | |
| 265 | ||
| 266 | lemma UN_atMost_UNIV: "(UN m::nat. atMost m) = UNIV" | |
| 267 | by blast | |
| 268 | ||
| 15047 | 269 | subsubsection {* The Constant @{term atLeastLessThan} *}
 | 
| 270 | ||
| 271 | text{*But not a simprule because some concepts are better left in terms
 | |
| 272 |   of @{term atLeastLessThan}*}
 | |
| 273 | lemma atLeast0LessThan: "{0::nat..<n} = {..<n}"
 | |
| 15042 | 274 | by(simp add:lessThan_def atLeastLessThan_def) | 
| 16041 | 275 | (* | 
| 15047 | 276 | lemma atLeastLessThan0 [simp]: "{m..<0::nat} = {}"
 | 
| 277 | by (simp add: atLeastLessThan_def) | |
| 16041 | 278 | *) | 
| 15047 | 279 | subsubsection {* Intervals of nats with @{term Suc} *}
 | 
| 280 | ||
| 281 | text{*Not a simprule because the RHS is too messy.*}
 | |
| 282 | lemma atLeastLessThanSuc: | |
| 283 |     "{m..<Suc n} = (if m \<le> n then insert n {m..<n} else {})"
 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 284 | by (auto simp add: atLeastLessThan_def) | 
| 15047 | 285 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 286 | lemma atLeastLessThan_singleton [simp]: "{m..<Suc m} = {m}"
 | 
| 15047 | 287 | by (auto simp add: atLeastLessThan_def) | 
| 16041 | 288 | (* | 
| 15047 | 289 | lemma atLeast_sum_LessThan [simp]: "{m + k..<k::nat} = {}"
 | 
| 290 | by (induct k, simp_all add: atLeastLessThanSuc) | |
| 291 | ||
| 292 | lemma atLeastSucLessThan [simp]: "{Suc n..<n} = {}"
 | |
| 293 | by (auto simp add: atLeastLessThan_def) | |
| 16041 | 294 | *) | 
| 15045 | 295 | lemma atLeastLessThanSuc_atLeastAtMost: "{l..<Suc u} = {l..u}"
 | 
| 14485 | 296 | by (simp add: lessThan_Suc_atMost atLeastAtMost_def atLeastLessThan_def) | 
| 297 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 298 | lemma atLeastSucAtMost_greaterThanAtMost: "{Suc l..u} = {l<..u}"
 | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 299 | by (simp add: atLeast_Suc_greaterThan atLeastAtMost_def | 
| 14485 | 300 | greaterThanAtMost_def) | 
| 301 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 302 | lemma atLeastSucLessThan_greaterThanLessThan: "{Suc l..<u} = {l<..<u}"
 | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 303 | by (simp add: atLeast_Suc_greaterThan atLeastLessThan_def | 
| 14485 | 304 | greaterThanLessThan_def) | 
| 305 | ||
| 15554 | 306 | lemma atLeastAtMostSuc_conv: "m \<le> Suc n \<Longrightarrow> {m..Suc n} = insert (Suc n) {m..n}"
 | 
| 307 | by (auto simp add: atLeastAtMost_def) | |
| 308 | ||
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 309 | subsubsection {* Image *}
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 310 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 311 | lemma image_add_atLeastAtMost: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 312 |   "(%n::nat. n+k) ` {i..j} = {i+k..j+k}" (is "?A = ?B")
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 313 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 314 | show "?A \<subseteq> ?B" by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 315 | next | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 316 | show "?B \<subseteq> ?A" | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 317 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 318 | fix n assume a: "n : ?B" | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 319 |     hence "n - k : {i..j}" by auto arith+
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 320 | moreover have "n = (n - k) + k" using a by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 321 | ultimately show "n : ?A" by blast | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 322 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 323 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 324 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 325 | lemma image_add_atLeastLessThan: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 326 |   "(%n::nat. n+k) ` {i..<j} = {i+k..<j+k}" (is "?A = ?B")
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 327 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 328 | show "?A \<subseteq> ?B" by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 329 | next | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 330 | show "?B \<subseteq> ?A" | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 331 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 332 | fix n assume a: "n : ?B" | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 333 |     hence "n - k : {i..<j}" by auto arith+
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 334 | moreover have "n = (n - k) + k" using a by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 335 | ultimately show "n : ?A" by blast | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 336 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 337 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 338 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 339 | corollary image_Suc_atLeastAtMost[simp]: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 340 |   "Suc ` {i..j} = {Suc i..Suc j}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 341 | using image_add_atLeastAtMost[where k=1] by simp | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 342 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 343 | corollary image_Suc_atLeastLessThan[simp]: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 344 |   "Suc ` {i..<j} = {Suc i..<Suc j}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 345 | using image_add_atLeastLessThan[where k=1] by simp | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 346 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 347 | lemma image_add_int_atLeastLessThan: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 348 |     "(%x. x + (l::int)) ` {0..<u-l} = {l..<u}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 349 | apply (auto simp add: image_def) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 350 | apply (rule_tac x = "x - l" in bexI) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 351 | apply auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 352 | done | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 353 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 354 | |
| 14485 | 355 | subsubsection {* Finiteness *}
 | 
| 356 | ||
| 15045 | 357 | lemma finite_lessThan [iff]: fixes k :: nat shows "finite {..<k}"
 | 
| 14485 | 358 | by (induct k) (simp_all add: lessThan_Suc) | 
| 359 | ||
| 360 | lemma finite_atMost [iff]: fixes k :: nat shows "finite {..k}"
 | |
| 361 | by (induct k) (simp_all add: atMost_Suc) | |
| 362 | ||
| 363 | lemma finite_greaterThanLessThan [iff]: | |
| 15045 | 364 |   fixes l :: nat shows "finite {l<..<u}"
 | 
| 14485 | 365 | by (simp add: greaterThanLessThan_def) | 
| 366 | ||
| 367 | lemma finite_atLeastLessThan [iff]: | |
| 15045 | 368 |   fixes l :: nat shows "finite {l..<u}"
 | 
| 14485 | 369 | by (simp add: atLeastLessThan_def) | 
| 370 | ||
| 371 | lemma finite_greaterThanAtMost [iff]: | |
| 15045 | 372 |   fixes l :: nat shows "finite {l<..u}"
 | 
| 14485 | 373 | by (simp add: greaterThanAtMost_def) | 
| 374 | ||
| 375 | lemma finite_atLeastAtMost [iff]: | |
| 376 |   fixes l :: nat shows "finite {l..u}"
 | |
| 377 | by (simp add: atLeastAtMost_def) | |
| 378 | ||
| 379 | lemma bounded_nat_set_is_finite: | |
| 380 | "(ALL i:N. i < (n::nat)) ==> finite N" | |
| 381 |   -- {* A bounded set of natural numbers is finite. *}
 | |
| 382 | apply (rule finite_subset) | |
| 383 | apply (rule_tac [2] finite_lessThan, auto) | |
| 384 | done | |
| 385 | ||
| 386 | subsubsection {* Cardinality *}
 | |
| 387 | ||
| 15045 | 388 | lemma card_lessThan [simp]: "card {..<u} = u"
 | 
| 15251 | 389 | by (induct u, simp_all add: lessThan_Suc) | 
| 14485 | 390 | |
| 391 | lemma card_atMost [simp]: "card {..u} = Suc u"
 | |
| 392 | by (simp add: lessThan_Suc_atMost [THEN sym]) | |
| 393 | ||
| 15045 | 394 | lemma card_atLeastLessThan [simp]: "card {l..<u} = u - l"
 | 
| 395 |   apply (subgoal_tac "card {l..<u} = card {..<u-l}")
 | |
| 14485 | 396 | apply (erule ssubst, rule card_lessThan) | 
| 15045 | 397 |   apply (subgoal_tac "(%x. x + l) ` {..<u-l} = {l..<u}")
 | 
| 14485 | 398 | apply (erule subst) | 
| 399 | apply (rule card_image) | |
| 400 | apply (simp add: inj_on_def) | |
| 401 | apply (auto simp add: image_def atLeastLessThan_def lessThan_def) | |
| 402 | apply arith | |
| 403 | apply (rule_tac x = "x - l" in exI) | |
| 404 | apply arith | |
| 405 | done | |
| 406 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 407 | lemma card_atLeastAtMost [simp]: "card {l..u} = Suc u - l"
 | 
| 14485 | 408 | by (subst atLeastLessThanSuc_atLeastAtMost [THEN sym], simp) | 
| 409 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 410 | lemma card_greaterThanAtMost [simp]: "card {l<..u} = u - l"
 | 
| 14485 | 411 | by (subst atLeastSucAtMost_greaterThanAtMost [THEN sym], simp) | 
| 412 | ||
| 15045 | 413 | lemma card_greaterThanLessThan [simp]: "card {l<..<u} = u - Suc l"
 | 
| 14485 | 414 | by (subst atLeastSucLessThan_greaterThanLessThan [THEN sym], simp) | 
| 415 | ||
| 416 | subsection {* Intervals of integers *}
 | |
| 417 | ||
| 15045 | 418 | lemma atLeastLessThanPlusOne_atLeastAtMost_int: "{l..<u+1} = {l..(u::int)}"
 | 
| 14485 | 419 | by (auto simp add: atLeastAtMost_def atLeastLessThan_def) | 
| 420 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 421 | lemma atLeastPlusOneAtMost_greaterThanAtMost_int: "{l+1..u} = {l<..(u::int)}"
 | 
| 14485 | 422 | by (auto simp add: atLeastAtMost_def greaterThanAtMost_def) | 
| 423 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 424 | lemma atLeastPlusOneLessThan_greaterThanLessThan_int: | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 425 |     "{l+1..<u} = {l<..<u::int}"
 | 
| 14485 | 426 | by (auto simp add: atLeastLessThan_def greaterThanLessThan_def) | 
| 427 | ||
| 428 | subsubsection {* Finiteness *}
 | |
| 429 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 430 | lemma image_atLeastZeroLessThan_int: "0 \<le> u ==> | 
| 15045 | 431 |     {(0::int)..<u} = int ` {..<nat u}"
 | 
| 14485 | 432 | apply (unfold image_def lessThan_def) | 
| 433 | apply auto | |
| 434 | apply (rule_tac x = "nat x" in exI) | |
| 435 | apply (auto simp add: zless_nat_conj zless_nat_eq_int_zless [THEN sym]) | |
| 436 | done | |
| 437 | ||
| 15045 | 438 | lemma finite_atLeastZeroLessThan_int: "finite {(0::int)..<u}"
 | 
| 14485 | 439 | apply (case_tac "0 \<le> u") | 
| 440 | apply (subst image_atLeastZeroLessThan_int, assumption) | |
| 441 | apply (rule finite_imageI) | |
| 442 | apply auto | |
| 443 | done | |
| 444 | ||
| 15045 | 445 | lemma finite_atLeastLessThan_int [iff]: "finite {l..<u::int}"
 | 
| 446 |   apply (subgoal_tac "(%x. x + l) ` {0..<u-l} = {l..<u}")
 | |
| 14485 | 447 | apply (erule subst) | 
| 448 | apply (rule finite_imageI) | |
| 449 | apply (rule finite_atLeastZeroLessThan_int) | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 450 | apply (rule image_add_int_atLeastLessThan) | 
| 14485 | 451 | done | 
| 452 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 453 | lemma finite_atLeastAtMost_int [iff]: "finite {l..(u::int)}"
 | 
| 14485 | 454 | by (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym], simp) | 
| 455 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 456 | lemma finite_greaterThanAtMost_int [iff]: "finite {l<..(u::int)}"
 | 
| 14485 | 457 | by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp) | 
| 458 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 459 | lemma finite_greaterThanLessThan_int [iff]: "finite {l<..<u::int}"
 | 
| 14485 | 460 | by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp) | 
| 461 | ||
| 462 | subsubsection {* Cardinality *}
 | |
| 463 | ||
| 15045 | 464 | lemma card_atLeastZeroLessThan_int: "card {(0::int)..<u} = nat u"
 | 
| 14485 | 465 | apply (case_tac "0 \<le> u") | 
| 466 | apply (subst image_atLeastZeroLessThan_int, assumption) | |
| 467 | apply (subst card_image) | |
| 468 | apply (auto simp add: inj_on_def) | |
| 469 | done | |
| 470 | ||
| 15045 | 471 | lemma card_atLeastLessThan_int [simp]: "card {l..<u} = nat (u - l)"
 | 
| 472 |   apply (subgoal_tac "card {l..<u} = card {0..<u-l}")
 | |
| 14485 | 473 | apply (erule ssubst, rule card_atLeastZeroLessThan_int) | 
| 15045 | 474 |   apply (subgoal_tac "(%x. x + l) ` {0..<u-l} = {l..<u}")
 | 
| 14485 | 475 | apply (erule subst) | 
| 476 | apply (rule card_image) | |
| 477 | apply (simp add: inj_on_def) | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 478 | apply (rule image_add_int_atLeastLessThan) | 
| 14485 | 479 | done | 
| 480 | ||
| 481 | lemma card_atLeastAtMost_int [simp]: "card {l..u} = nat (u - l + 1)"
 | |
| 482 | apply (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym]) | |
| 483 | apply (auto simp add: compare_rls) | |
| 484 | done | |
| 485 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 486 | lemma card_greaterThanAtMost_int [simp]: "card {l<..u} = nat (u - l)"
 | 
| 14485 | 487 | by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp) | 
| 488 | ||
| 15045 | 489 | lemma card_greaterThanLessThan_int [simp]: "card {l<..<u} = nat (u - (l + 1))"
 | 
| 14485 | 490 | by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp) | 
| 491 | ||
| 492 | ||
| 13850 | 493 | subsection {*Lemmas useful with the summation operator setsum*}
 | 
| 494 | ||
| 16102 
c5f6726d9bb1
Locale expressions: rename with optional mixfix syntax.
 ballarin parents: 
16052diff
changeset | 495 | text {* For examples, see Algebra/poly/UnivPoly2.thy *}
 | 
| 13735 | 496 | |
| 14577 | 497 | subsubsection {* Disjoint Unions *}
 | 
| 13735 | 498 | |
| 14577 | 499 | text {* Singletons and open intervals *}
 | 
| 13735 | 500 | |
| 501 | lemma ivl_disj_un_singleton: | |
| 15045 | 502 |   "{l::'a::linorder} Un {l<..} = {l..}"
 | 
| 503 |   "{..<u} Un {u::'a::linorder} = {..u}"
 | |
| 504 |   "(l::'a::linorder) < u ==> {l} Un {l<..<u} = {l..<u}"
 | |
| 505 |   "(l::'a::linorder) < u ==> {l<..<u} Un {u} = {l<..u}"
 | |
| 506 |   "(l::'a::linorder) <= u ==> {l} Un {l<..u} = {l..u}"
 | |
| 507 |   "(l::'a::linorder) <= u ==> {l..<u} Un {u} = {l..u}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 508 | by auto | 
| 13735 | 509 | |
| 14577 | 510 | text {* One- and two-sided intervals *}
 | 
| 13735 | 511 | |
| 512 | lemma ivl_disj_un_one: | |
| 15045 | 513 |   "(l::'a::linorder) < u ==> {..l} Un {l<..<u} = {..<u}"
 | 
| 514 |   "(l::'a::linorder) <= u ==> {..<l} Un {l..<u} = {..<u}"
 | |
| 515 |   "(l::'a::linorder) <= u ==> {..l} Un {l<..u} = {..u}"
 | |
| 516 |   "(l::'a::linorder) <= u ==> {..<l} Un {l..u} = {..u}"
 | |
| 517 |   "(l::'a::linorder) <= u ==> {l<..u} Un {u<..} = {l<..}"
 | |
| 518 |   "(l::'a::linorder) < u ==> {l<..<u} Un {u..} = {l<..}"
 | |
| 519 |   "(l::'a::linorder) <= u ==> {l..u} Un {u<..} = {l..}"
 | |
| 520 |   "(l::'a::linorder) <= u ==> {l..<u} Un {u..} = {l..}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 521 | by auto | 
| 13735 | 522 | |
| 14577 | 523 | text {* Two- and two-sided intervals *}
 | 
| 13735 | 524 | |
| 525 | lemma ivl_disj_un_two: | |
| 15045 | 526 |   "[| (l::'a::linorder) < m; m <= u |] ==> {l<..<m} Un {m..<u} = {l<..<u}"
 | 
| 527 |   "[| (l::'a::linorder) <= m; m < u |] ==> {l<..m} Un {m<..<u} = {l<..<u}"
 | |
| 528 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..<m} Un {m..<u} = {l..<u}"
 | |
| 529 |   "[| (l::'a::linorder) <= m; m < u |] ==> {l..m} Un {m<..<u} = {l..<u}"
 | |
| 530 |   "[| (l::'a::linorder) < m; m <= u |] ==> {l<..<m} Un {m..u} = {l<..u}"
 | |
| 531 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l<..m} Un {m<..u} = {l<..u}"
 | |
| 532 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..<m} Un {m..u} = {l..u}"
 | |
| 533 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..m} Un {m<..u} = {l..u}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 534 | by auto | 
| 13735 | 535 | |
| 536 | lemmas ivl_disj_un = ivl_disj_un_singleton ivl_disj_un_one ivl_disj_un_two | |
| 537 | ||
| 14577 | 538 | subsubsection {* Disjoint Intersections *}
 | 
| 13735 | 539 | |
| 14577 | 540 | text {* Singletons and open intervals *}
 | 
| 13735 | 541 | |
| 542 | lemma ivl_disj_int_singleton: | |
| 15045 | 543 |   "{l::'a::order} Int {l<..} = {}"
 | 
| 544 |   "{..<u} Int {u} = {}"
 | |
| 545 |   "{l} Int {l<..<u} = {}"
 | |
| 546 |   "{l<..<u} Int {u} = {}"
 | |
| 547 |   "{l} Int {l<..u} = {}"
 | |
| 548 |   "{l..<u} Int {u} = {}"
 | |
| 13735 | 549 | by simp+ | 
| 550 | ||
| 14577 | 551 | text {* One- and two-sided intervals *}
 | 
| 13735 | 552 | |
| 553 | lemma ivl_disj_int_one: | |
| 15045 | 554 |   "{..l::'a::order} Int {l<..<u} = {}"
 | 
| 555 |   "{..<l} Int {l..<u} = {}"
 | |
| 556 |   "{..l} Int {l<..u} = {}"
 | |
| 557 |   "{..<l} Int {l..u} = {}"
 | |
| 558 |   "{l<..u} Int {u<..} = {}"
 | |
| 559 |   "{l<..<u} Int {u..} = {}"
 | |
| 560 |   "{l..u} Int {u<..} = {}"
 | |
| 561 |   "{l..<u} Int {u..} = {}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 562 | by auto | 
| 13735 | 563 | |
| 14577 | 564 | text {* Two- and two-sided intervals *}
 | 
| 13735 | 565 | |
| 566 | lemma ivl_disj_int_two: | |
| 15045 | 567 |   "{l::'a::order<..<m} Int {m..<u} = {}"
 | 
| 568 |   "{l<..m} Int {m<..<u} = {}"
 | |
| 569 |   "{l..<m} Int {m..<u} = {}"
 | |
| 570 |   "{l..m} Int {m<..<u} = {}"
 | |
| 571 |   "{l<..<m} Int {m..u} = {}"
 | |
| 572 |   "{l<..m} Int {m<..u} = {}"
 | |
| 573 |   "{l..<m} Int {m..u} = {}"
 | |
| 574 |   "{l..m} Int {m<..u} = {}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 575 | by auto | 
| 13735 | 576 | |
| 577 | lemmas ivl_disj_int = ivl_disj_int_singleton ivl_disj_int_one ivl_disj_int_two | |
| 578 | ||
| 15542 | 579 | subsubsection {* Some Differences *}
 | 
| 580 | ||
| 581 | lemma ivl_diff[simp]: | |
| 582 |  "i \<le> n \<Longrightarrow> {i..<m} - {i..<n} = {n..<(m::'a::linorder)}"
 | |
| 583 | by(auto) | |
| 584 | ||
| 585 | ||
| 586 | subsubsection {* Some Subset Conditions *}
 | |
| 587 | ||
| 588 | lemma ivl_subset[simp]: | |
| 589 |  "({i..<j} \<subseteq> {m..<n}) = (j \<le> i | m \<le> i & j \<le> (n::'a::linorder))"
 | |
| 590 | apply(auto simp:linorder_not_le) | |
| 591 | apply(rule ccontr) | |
| 592 | apply(insert linorder_le_less_linear[of i n]) | |
| 593 | apply(clarsimp simp:linorder_not_le) | |
| 594 | apply(fastsimp) | |
| 595 | done | |
| 596 | ||
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 597 | |
| 15042 | 598 | subsection {* Summation indexed over intervals *}
 | 
| 599 | ||
| 600 | syntax | |
| 601 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _ = _.._./ _)" [0,0,0,10] 10)
 | |
| 15048 | 602 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 16052 | 603 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _<_./ _)" [0,0,10] 10)
 | 
| 604 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _<=_./ _)" [0,0,10] 10)
 | |
| 15042 | 605 | syntax (xsymbols) | 
| 606 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _.._./ _)" [0,0,0,10] 10)
 | |
| 15048 | 607 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 16052 | 608 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_<_./ _)" [0,0,10] 10)
 | 
| 609 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_\<le>_./ _)" [0,0,10] 10)
 | |
| 15042 | 610 | syntax (HTML output) | 
| 611 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _.._./ _)" [0,0,0,10] 10)
 | |
| 15048 | 612 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 16052 | 613 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_<_./ _)" [0,0,10] 10)
 | 
| 614 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_\<le>_./ _)" [0,0,10] 10)
 | |
| 15056 | 615 | syntax (latex_sum output) | 
| 15052 | 616 | "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 617 |  ("(3\<^raw:$\sum_{>_ = _\<^raw:}^{>_\<^raw:}$> _)" [0,0,0,10] 10)
 | |
| 618 | "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | |
| 619 |  ("(3\<^raw:$\sum_{>_ = _\<^raw:}^{<>_\<^raw:}$> _)" [0,0,0,10] 10)
 | |
| 16052 | 620 | "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 621 |  ("(3\<^raw:$\sum_{>_ < _\<^raw:}$> _)" [0,0,10] 10)
 | |
| 15052 | 622 | "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 16052 | 623 |  ("(3\<^raw:$\sum_{>_ \<le> _\<^raw:}$> _)" [0,0,10] 10)
 | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 624 | |
| 15048 | 625 | translations | 
| 626 |   "\<Sum>x=a..b. t" == "setsum (%x. t) {a..b}"
 | |
| 627 |   "\<Sum>x=a..<b. t" == "setsum (%x. t) {a..<b}"
 | |
| 16052 | 628 |   "\<Sum>i\<le>n. t" == "setsum (\<lambda>i. t) {..n}"
 | 
| 15048 | 629 |   "\<Sum>i<n. t" == "setsum (\<lambda>i. t) {..<n}"
 | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 630 | |
| 15052 | 631 | text{* The above introduces some pretty alternative syntaxes for
 | 
| 15056 | 632 | summation over intervals: | 
| 15052 | 633 | \begin{center}
 | 
| 634 | \begin{tabular}{lll}
 | |
| 15056 | 635 | Old & New & \LaTeX\\ | 
| 636 | @{term[source]"\<Sum>x\<in>{a..b}. e"} & @{term"\<Sum>x=a..b. e"} & @{term[mode=latex_sum]"\<Sum>x=a..b. e"}\\
 | |
| 637 | @{term[source]"\<Sum>x\<in>{a..<b}. e"} & @{term"\<Sum>x=a..<b. e"} & @{term[mode=latex_sum]"\<Sum>x=a..<b. e"}\\
 | |
| 16052 | 638 | @{term[source]"\<Sum>x\<in>{..b}. e"} & @{term"\<Sum>x\<le>b. e"} & @{term[mode=latex_sum]"\<Sum>x\<le>b. e"}\\
 | 
| 15056 | 639 | @{term[source]"\<Sum>x\<in>{..<b}. e"} & @{term"\<Sum>x<b. e"} & @{term[mode=latex_sum]"\<Sum>x<b. e"}
 | 
| 15052 | 640 | \end{tabular}
 | 
| 641 | \end{center}
 | |
| 15056 | 642 | The left column shows the term before introduction of the new syntax, | 
| 643 | the middle column shows the new (default) syntax, and the right column | |
| 644 | shows a special syntax. The latter is only meaningful for latex output | |
| 645 | and has to be activated explicitly by setting the print mode to | |
| 646 | \texttt{latex\_sum} (e.g.\ via \texttt{mode=latex\_sum} in
 | |
| 647 | antiquotations). It is not the default \LaTeX\ output because it only | |
| 648 | works well with italic-style formulae, not tt-style. | |
| 15052 | 649 | |
| 650 | Note that for uniformity on @{typ nat} it is better to use
 | |
| 651 | @{term"\<Sum>x::nat=0..<n. e"} rather than @{text"\<Sum>x<n. e"}: @{text setsum} may
 | |
| 652 | not provide all lemmas available for @{term"{m..<n}"} also in the
 | |
| 653 | special form for @{term"{..<n}"}. *}
 | |
| 654 | ||
| 15542 | 655 | text{* This congruence rule should be used for sums over intervals as
 | 
| 656 | the standard theorem @{text[source]setsum_cong} does not work well
 | |
| 657 | with the simplifier who adds the unsimplified premise @{term"x:B"} to
 | |
| 658 | the context. *} | |
| 659 | ||
| 660 | lemma setsum_ivl_cong: | |
| 661 | "\<lbrakk>a = c; b = d; !!x. \<lbrakk> c \<le> x; x < d \<rbrakk> \<Longrightarrow> f x = g x \<rbrakk> \<Longrightarrow> | |
| 662 |  setsum f {a..<b} = setsum g {c..<d}"
 | |
| 663 | by(rule setsum_cong, simp_all) | |
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 664 | |
| 16041 | 665 | (* FIXME why are the following simp rules but the corresponding eqns | 
| 666 | on intervals are not? *) | |
| 667 | ||
| 16052 | 668 | lemma setsum_atMost_Suc[simp]: "(\<Sum>i \<le> Suc n. f i) = (\<Sum>i \<le> n. f i) + f(Suc n)" | 
| 669 | by (simp add:atMost_Suc add_ac) | |
| 670 | ||
| 16041 | 671 | lemma setsum_lessThan_Suc[simp]: "(\<Sum>i < Suc n. f i) = (\<Sum>i < n. f i) + f n" | 
| 672 | by (simp add:lessThan_Suc add_ac) | |
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 673 | |
| 15911 | 674 | lemma setsum_cl_ivl_Suc[simp]: | 
| 15561 | 675 |   "setsum f {m..Suc n} = (if Suc n < m then 0 else setsum f {m..n} + f(Suc n))"
 | 
| 676 | by (auto simp:add_ac atLeastAtMostSuc_conv) | |
| 677 | ||
| 15911 | 678 | lemma setsum_op_ivl_Suc[simp]: | 
| 15561 | 679 |   "setsum f {m..<Suc n} = (if n < m then 0 else setsum f {m..<n} + f(n))"
 | 
| 680 | by (auto simp:add_ac atLeastLessThanSuc) | |
| 16041 | 681 | (* | 
| 15561 | 682 | lemma setsum_cl_ivl_add_one_nat: "(n::nat) <= m + 1 ==> | 
| 683 | (\<Sum>i=n..m+1. f i) = (\<Sum>i=n..m. f i) + f(m + 1)" | |
| 684 | by (auto simp:add_ac atLeastAtMostSuc_conv) | |
| 16041 | 685 | *) | 
| 15539 | 686 | lemma setsum_add_nat_ivl: "\<lbrakk> m \<le> n; n \<le> p \<rbrakk> \<Longrightarrow> | 
| 687 |   setsum f {m..<n} + setsum f {n..<p} = setsum f {m..<p::nat}"
 | |
| 688 | by (simp add:setsum_Un_disjoint[symmetric] ivl_disj_int ivl_disj_un) | |
| 689 | ||
| 690 | lemma setsum_diff_nat_ivl: | |
| 691 | fixes f :: "nat \<Rightarrow> 'a::ab_group_add" | |
| 692 | shows "\<lbrakk> m \<le> n; n \<le> p \<rbrakk> \<Longrightarrow> | |
| 693 |   setsum f {m..<p} - setsum f {m..<n} = setsum f {n..<p}"
 | |
| 694 | using setsum_add_nat_ivl [of m n p f,symmetric] | |
| 695 | apply (simp add: add_ac) | |
| 696 | done | |
| 697 | ||
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 698 | subsection{* Shifting bounds *}
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 699 | |
| 15539 | 700 | lemma setsum_shift_bounds_nat_ivl: | 
| 701 |   "setsum f {m+k..<n+k} = setsum (%i. f(i + k)){m..<n::nat}"
 | |
| 702 | by (induct "n", auto simp:atLeastLessThanSuc) | |
| 703 | ||
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 704 | lemma setsum_shift_bounds_cl_nat_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 705 |   "setsum f {m+k..n+k} = setsum (%i. f(i + k)){m..n::nat}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 706 | apply (insert setsum_reindex[OF inj_on_add_nat, where h=f and B = "{m..n}"])
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 707 | apply (simp add:image_add_atLeastAtMost o_def) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 708 | done | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 709 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 710 | corollary setsum_shift_bounds_cl_Suc_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 711 |   "setsum f {Suc m..Suc n} = setsum (%i. f(Suc i)){m..n}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 712 | by (simp add:setsum_shift_bounds_cl_nat_ivl[where k=1,simplified]) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 713 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 714 | corollary setsum_shift_bounds_Suc_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 715 |   "setsum f {Suc m..<Suc n} = setsum (%i. f(Suc i)){m..<n}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 716 | by (simp add:setsum_shift_bounds_nat_ivl[where k=1,simplified]) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 717 | |
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 718 | subsection {* The formula for geometric sums *}
 | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 719 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 720 | lemma geometric_sum: | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 721 | "x ~= 1 ==> (\<Sum>i=0..<n. x ^ i) = | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 722 |   (x ^ n - 1) / (x - 1::'a::{field, recpower, division_by_zero})"
 | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 723 | apply (induct "n", auto) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 724 | apply (rule_tac c = "x - 1" in field_mult_cancel_right_lemma) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 725 | apply (auto simp add: mult_assoc left_distrib) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 726 | apply (simp add: right_distrib diff_minus mult_commute power_Suc) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 727 | done | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 728 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 729 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 730 | |
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 731 | ML | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 732 | {*
 | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 733 | val Compl_atLeast = thm "Compl_atLeast"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 734 | val Compl_atMost = thm "Compl_atMost"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 735 | val Compl_greaterThan = thm "Compl_greaterThan"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 736 | val Compl_lessThan = thm "Compl_lessThan"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 737 | val INT_greaterThan_UNIV = thm "INT_greaterThan_UNIV"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 738 | val UN_atLeast_UNIV = thm "UN_atLeast_UNIV"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 739 | val UN_atMost_UNIV = thm "UN_atMost_UNIV"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 740 | val UN_lessThan_UNIV = thm "UN_lessThan_UNIV"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 741 | val atLeastAtMost_def = thm "atLeastAtMost_def"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 742 | val atLeastAtMost_iff = thm "atLeastAtMost_iff"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 743 | val atLeastLessThan_def = thm "atLeastLessThan_def"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 744 | val atLeastLessThan_iff = thm "atLeastLessThan_iff"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 745 | val atLeast_0 = thm "atLeast_0"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 746 | val atLeast_Suc = thm "atLeast_Suc"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 747 | val atLeast_def = thm "atLeast_def"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 748 | val atLeast_iff = thm "atLeast_iff"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 749 | val atMost_0 = thm "atMost_0"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 750 | val atMost_Int_atLeast = thm "atMost_Int_atLeast"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 751 | val atMost_Suc = thm "atMost_Suc"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 752 | val atMost_def = thm "atMost_def"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 753 | val atMost_iff = thm "atMost_iff"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 754 | val greaterThanAtMost_def = thm "greaterThanAtMost_def"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 755 | val greaterThanAtMost_iff = thm "greaterThanAtMost_iff"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 756 | val greaterThanLessThan_def = thm "greaterThanLessThan_def"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 757 | val greaterThanLessThan_iff = thm "greaterThanLessThan_iff"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 758 | val greaterThan_0 = thm "greaterThan_0"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 759 | val greaterThan_Suc = thm "greaterThan_Suc"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 760 | val greaterThan_def = thm "greaterThan_def"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 761 | val greaterThan_iff = thm "greaterThan_iff"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 762 | val ivl_disj_int = thms "ivl_disj_int"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 763 | val ivl_disj_int_one = thms "ivl_disj_int_one"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 764 | val ivl_disj_int_singleton = thms "ivl_disj_int_singleton"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 765 | val ivl_disj_int_two = thms "ivl_disj_int_two"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 766 | val ivl_disj_un = thms "ivl_disj_un"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 767 | val ivl_disj_un_one = thms "ivl_disj_un_one"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 768 | val ivl_disj_un_singleton = thms "ivl_disj_un_singleton"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 769 | val ivl_disj_un_two = thms "ivl_disj_un_two"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 770 | val lessThan_0 = thm "lessThan_0"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 771 | val lessThan_Suc = thm "lessThan_Suc"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 772 | val lessThan_Suc_atMost = thm "lessThan_Suc_atMost"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 773 | val lessThan_def = thm "lessThan_def"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 774 | val lessThan_iff = thm "lessThan_iff"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 775 | val single_Diff_lessThan = thm "single_Diff_lessThan"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 776 | |
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 777 | val bounded_nat_set_is_finite = thm "bounded_nat_set_is_finite"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 778 | val finite_atMost = thm "finite_atMost"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 779 | val finite_lessThan = thm "finite_lessThan"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 780 | *} | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 781 | |
| 8924 | 782 | end |