| author | haftmann | 
| Thu, 06 Apr 2006 16:08:22 +0200 | |
| changeset 19340 | a4fe025ecd90 | 
| parent 18728 | 6790126ab5f6 | 
| child 20046 | 9c8909fc5865 | 
| permissions | -rw-r--r-- | 
| 12191 | 1 | (* Title: ZF/Tools/inductive_package.ML | 
| 6051 | 2 | ID: $Id$ | 
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 1994 University of Cambridge | |
| 5 | ||
| 6 | Fixedpoint definition module -- for Inductive/Coinductive Definitions | |
| 7 | ||
| 8 | The functor will be instantiated for normal sums/products (inductive defs) | |
| 9 | and non-standard sums/products (coinductive defs) | |
| 10 | ||
| 11 | Sums are used only for mutual recursion; | |
| 12 | Products are used only to derive "streamlined" induction rules for relations | |
| 13 | *) | |
| 14 | ||
| 15 | type inductive_result = | |
| 16 |    {defs       : thm list,             (*definitions made in thy*)
 | |
| 17 | bnd_mono : thm, (*monotonicity for the lfp definition*) | |
| 18 | dom_subset : thm, (*inclusion of recursive set in dom*) | |
| 19 | intrs : thm list, (*introduction rules*) | |
| 20 | elim : thm, (*case analysis theorem*) | |
| 6141 | 21 | mk_cases : string -> thm, (*generates case theorems*) | 
| 6051 | 22 | induct : thm, (*main induction rule*) | 
| 23 | mutual_induct : thm}; (*mutual induction rule*) | |
| 24 | ||
| 25 | ||
| 26 | (*Functor's result signature*) | |
| 27 | signature INDUCTIVE_PACKAGE = | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 28 | sig | 
| 6051 | 29 | (*Insert definitions for the recursive sets, which | 
| 30 | must *already* be declared as constants in parent theory!*) | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 31 | val add_inductive_i: bool -> term list * term -> | 
| 18728 | 32 | ((bstring * term) * attribute list) list -> | 
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 33 | thm list * thm list * thm list * thm list -> theory -> theory * inductive_result | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 34 | val add_inductive: string list * string -> | 
| 15703 | 35 | ((bstring * string) * Attrib.src list) list -> | 
| 36 | (thmref * Attrib.src list) list * (thmref * Attrib.src list) list * | |
| 37 | (thmref * Attrib.src list) list * (thmref * Attrib.src list) list -> | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 38 | theory -> theory * inductive_result | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 39 | end; | 
| 6051 | 40 | |
| 41 | ||
| 42 | (*Declares functions to add fixedpoint/constructor defs to a theory. | |
| 43 | Recursive sets must *already* be declared as constants.*) | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 44 | functor Add_inductive_def_Fun | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 45 | (structure Fp: FP and Pr : PR and CP: CARTPROD and Su : SU val coind: bool) | 
| 6051 | 46 | : INDUCTIVE_PACKAGE = | 
| 47 | struct | |
| 12183 | 48 | |
| 16855 | 49 | open Ind_Syntax; | 
| 6051 | 50 | |
| 12227 | 51 | val co_prefix = if coind then "co" else ""; | 
| 52 | ||
| 7695 | 53 | |
| 54 | (* utils *) | |
| 55 | ||
| 56 | (*make distinct individual variables a1, a2, a3, ..., an. *) | |
| 57 | fun mk_frees a [] = [] | |
| 12902 | 58 | | mk_frees a (T::Ts) = Free(a,T) :: mk_frees (Symbol.bump_string a) Ts; | 
| 7695 | 59 | |
| 60 | ||
| 61 | (* add_inductive(_i) *) | |
| 62 | ||
| 6051 | 63 | (*internal version, accepting terms*) | 
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 64 | fun add_inductive_i verbose (rec_tms, dom_sum) | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 65 | intr_specs (monos, con_defs, type_intrs, type_elims) thy = | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 66 | let | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 67 | val _ = Theory.requires thy "Inductive" "(co)inductive definitions"; | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 68 | val sign = sign_of thy; | 
| 6051 | 69 | |
| 12191 | 70 | val (intr_names, intr_tms) = split_list (map fst intr_specs); | 
| 71 | val case_names = RuleCases.case_names intr_names; | |
| 6051 | 72 | |
| 73 | (*recT and rec_params should agree for all mutually recursive components*) | |
| 74 | val rec_hds = map head_of rec_tms; | |
| 75 | ||
| 76 | val dummy = assert_all is_Const rec_hds | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 77 | (fn t => "Recursive set not previously declared as constant: " ^ | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 78 | Sign.string_of_term sign t); | 
| 6051 | 79 | |
| 80 | (*Now we know they are all Consts, so get their names, type and params*) | |
| 81 | val rec_names = map (#1 o dest_Const) rec_hds | |
| 82 | and (Const(_,recT),rec_params) = strip_comb (hd rec_tms); | |
| 83 | ||
| 84 | val rec_base_names = map Sign.base_name rec_names; | |
| 85 | val dummy = assert_all Syntax.is_identifier rec_base_names | |
| 86 | (fn a => "Base name of recursive set not an identifier: " ^ a); | |
| 87 | ||
| 88 | local (*Checking the introduction rules*) | |
| 89 | val intr_sets = map (#2 o rule_concl_msg sign) intr_tms; | |
| 90 | fun intr_ok set = | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 91 | case head_of set of Const(a,recT) => a mem rec_names | _ => false; | 
| 6051 | 92 | in | 
| 93 | val dummy = assert_all intr_ok intr_sets | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 94 | (fn t => "Conclusion of rule does not name a recursive set: " ^ | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 95 | Sign.string_of_term sign t); | 
| 6051 | 96 | end; | 
| 97 | ||
| 98 | val dummy = assert_all is_Free rec_params | |
| 99 | (fn t => "Param in recursion term not a free variable: " ^ | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 100 | Sign.string_of_term sign t); | 
| 6051 | 101 | |
| 102 | (*** Construct the fixedpoint definition ***) | |
| 15574 
b1d1b5bfc464
Removed practically all references to Library.foldr.
 skalberg parents: 
15570diff
changeset | 103 | val mk_variant = variant (foldr add_term_names [] intr_tms); | 
| 6051 | 104 | |
| 105 | val z' = mk_variant"z" and X' = mk_variant"X" and w' = mk_variant"w"; | |
| 106 | ||
| 107 |   fun dest_tprop (Const("Trueprop",_) $ P) = P
 | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 108 |     | dest_tprop Q = error ("Ill-formed premise of introduction rule: " ^
 | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 109 | Sign.string_of_term sign Q); | 
| 6051 | 110 | |
| 111 | (*Makes a disjunct from an introduction rule*) | |
| 112 | fun fp_part intr = (*quantify over rule's free vars except parameters*) | |
| 16855 | 113 | let val prems = map dest_tprop (Logic.strip_imp_prems intr) | 
| 15570 | 114 | val dummy = List.app (fn rec_hd => List.app (chk_prem rec_hd) prems) rec_hds | 
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 115 | val exfrees = term_frees intr \\ rec_params | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 116 | val zeq = FOLogic.mk_eq (Free(z',iT), #1 (rule_concl intr)) | 
| 15574 
b1d1b5bfc464
Removed practically all references to Library.foldr.
 skalberg parents: 
15570diff
changeset | 117 | in foldr FOLogic.mk_exists | 
| 
b1d1b5bfc464
Removed practically all references to Library.foldr.
 skalberg parents: 
15570diff
changeset | 118 | (fold_bal FOLogic.mk_conj (zeq::prems)) exfrees | 
| 6051 | 119 | end; | 
| 120 | ||
| 121 | (*The Part(A,h) terms -- compose injections to make h*) | |
| 122 | fun mk_Part (Bound 0) = Free(X',iT) (*no mutual rec, no Part needed*) | |
| 123 | | mk_Part h = Part_const $ Free(X',iT) $ Abs(w',iT,h); | |
| 124 | ||
| 125 | (*Access to balanced disjoint sums via injections*) | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 126 | val parts = | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 127 | map mk_Part (accesses_bal (fn t => Su.inl $ t, fn t => Su.inr $ t, Bound 0) | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 128 | (length rec_tms)); | 
| 6051 | 129 | |
| 130 | (*replace each set by the corresponding Part(A,h)*) | |
| 131 | val part_intrs = map (subst_free (rec_tms ~~ parts) o fp_part) intr_tms; | |
| 132 | ||
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 133 | val fp_abs = absfree(X', iT, | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 134 | mk_Collect(z', dom_sum, | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 135 | fold_bal FOLogic.mk_disj part_intrs)); | 
| 6051 | 136 | |
| 137 | val fp_rhs = Fp.oper $ dom_sum $ fp_abs | |
| 138 | ||
| 16855 | 139 | val dummy = List.app (fn rec_hd => deny (Logic.occs (rec_hd, fp_rhs)) | 
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 140 | "Illegal occurrence of recursion operator") | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 141 | rec_hds; | 
| 6051 | 142 | |
| 143 | (*** Make the new theory ***) | |
| 144 | ||
| 145 | (*A key definition: | |
| 146 | If no mutual recursion then it equals the one recursive set. | |
| 147 | If mutual recursion then it differs from all the recursive sets. *) | |
| 148 | val big_rec_base_name = space_implode "_" rec_base_names; | |
| 149 | val big_rec_name = Sign.intern_const sign big_rec_base_name; | |
| 150 | ||
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 151 | |
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 152 | val dummy = conditional verbose (fn () => | 
| 12243 | 153 | writeln ((if coind then "Coind" else "Ind") ^ "uctive definition " ^ quote big_rec_name)); | 
| 6051 | 154 | |
| 155 | (*Forbid the inductive definition structure from clashing with a theory | |
| 156 | name. This restriction may become obsolete as ML is de-emphasized.*) | |
| 16457 | 157 | val dummy = deny (big_rec_base_name mem (Context.names_of sign)) | 
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 158 |                ("Definition " ^ big_rec_base_name ^
 | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 159 | " would clash with the theory of the same name!"); | 
| 6051 | 160 | |
| 161 | (*Big_rec... is the union of the mutually recursive sets*) | |
| 162 | val big_rec_tm = list_comb(Const(big_rec_name,recT), rec_params); | |
| 163 | ||
| 164 | (*The individual sets must already be declared*) | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 165 | val axpairs = map Logic.mk_defpair | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 166 | ((big_rec_tm, fp_rhs) :: | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 167 | (case parts of | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 168 | [_] => [] (*no mutual recursion*) | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 169 | | _ => rec_tms ~~ (*define the sets as Parts*) | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 170 | map (subst_atomic [(Free(X',iT),big_rec_tm)]) parts)); | 
| 6051 | 171 | |
| 172 | (*tracing: print the fixedpoint definition*) | |
| 173 | val dummy = if !Ind_Syntax.trace then | |
| 15570 | 174 | List.app (writeln o Sign.string_of_term sign o #2) axpairs | 
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 175 | else () | 
| 6051 | 176 | |
| 177 | (*add definitions of the inductive sets*) | |
| 18377 | 178 | val (_, thy1) = | 
| 179 | thy | |
| 180 | |> Theory.add_path big_rec_base_name | |
| 181 | |> PureThy.add_defs_i false (map Thm.no_attributes axpairs) | |
| 6051 | 182 | |
| 183 | ||
| 184 | (*fetch fp definitions from the theory*) | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 185 | val big_rec_def::part_rec_defs = | 
| 6051 | 186 | map (get_def thy1) | 
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 187 | (case rec_names of [_] => rec_names | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 188 | | _ => big_rec_base_name::rec_names); | 
| 6051 | 189 | |
| 190 | ||
| 191 | val sign1 = sign_of thy1; | |
| 192 | ||
| 193 | (********) | |
| 194 | val dummy = writeln " Proving monotonicity..."; | |
| 195 | ||
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 196 | val bnd_mono = | 
| 17985 | 197 | standard (Goal.prove sign1 [] [] (FOLogic.mk_Trueprop (Fp.bnd_mono $ dom_sum $ fp_abs)) | 
| 198 | (fn _ => EVERY | |
| 199 | [rtac (Collect_subset RS bnd_monoI) 1, | |
| 200 | REPEAT (ares_tac (basic_monos @ monos) 1)])); | |
| 6051 | 201 | |
| 202 | val dom_subset = standard (big_rec_def RS Fp.subs); | |
| 203 | ||
| 204 | val unfold = standard ([big_rec_def, bnd_mono] MRS Fp.Tarski); | |
| 205 | ||
| 206 | (********) | |
| 207 | val dummy = writeln " Proving the introduction rules..."; | |
| 208 | ||
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 209 | (*Mutual recursion? Helps to derive subset rules for the | 
| 6051 | 210 | individual sets.*) | 
| 211 | val Part_trans = | |
| 212 | case rec_names of | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 213 | [_] => asm_rl | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 214 | | _ => standard (Part_subset RS subset_trans); | 
| 6051 | 215 | |
| 216 | (*To type-check recursive occurrences of the inductive sets, possibly | |
| 217 | enclosed in some monotonic operator M.*) | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 218 | val rec_typechecks = | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 219 | [dom_subset] RL (asm_rl :: ([Part_trans] RL monos)) | 
| 6051 | 220 | RL [subsetD]; | 
| 221 | ||
| 222 | (*Type-checking is hardest aspect of proof; | |
| 223 | disjIn selects the correct disjunct after unfolding*) | |
| 17985 | 224 | fun intro_tacsf disjIn = | 
| 225 | [DETERM (stac unfold 1), | |
| 6051 | 226 | REPEAT (resolve_tac [Part_eqI,CollectI] 1), | 
| 227 | (*Now 2-3 subgoals: typechecking, the disjunction, perhaps equality.*) | |
| 228 | rtac disjIn 2, | |
| 229 | (*Not ares_tac, since refl must be tried before equality assumptions; | |
| 230 | backtracking may occur if the premises have extra variables!*) | |
| 231 | DEPTH_SOLVE_1 (resolve_tac [refl,exI,conjI] 2 APPEND assume_tac 2), | |
| 232 | (*Now solve the equations like Tcons(a,f) = Inl(?b4)*) | |
| 233 | rewrite_goals_tac con_defs, | |
| 234 | REPEAT (rtac refl 2), | |
| 235 | (*Typechecking; this can fail*) | |
| 6172 | 236 | if !Ind_Syntax.trace then print_tac "The type-checking subgoal:" | 
| 6051 | 237 | else all_tac, | 
| 238 | REPEAT (FIRSTGOAL ( dresolve_tac rec_typechecks | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 239 | ORELSE' eresolve_tac (asm_rl::PartE::SigmaE2:: | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 240 | type_elims) | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 241 | ORELSE' hyp_subst_tac)), | 
| 6051 | 242 | if !Ind_Syntax.trace then print_tac "The subgoal after monos, type_elims:" | 
| 243 | else all_tac, | |
| 244 | DEPTH_SOLVE (swap_res_tac (SigmaI::subsetI::type_intrs) 1)]; | |
| 245 | ||
| 246 | (*combines disjI1 and disjI2 to get the corresponding nested disjunct...*) | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 247 | val mk_disj_rls = | 
| 6051 | 248 | let fun f rl = rl RS disjI1 | 
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 249 | and g rl = rl RS disjI2 | 
| 6051 | 250 | in accesses_bal(f, g, asm_rl) end; | 
| 251 | ||
| 17985 | 252 | val intrs = | 
| 253 | (intr_tms, map intro_tacsf (mk_disj_rls (length intr_tms))) | |
| 254 | |> ListPair.map (fn (t, tacs) => | |
| 255 | standard (Goal.prove sign1 [] [] t | |
| 256 | (fn _ => EVERY (rewrite_goals_tac part_rec_defs :: tacs)))) | |
| 257 | handle MetaSimplifier.SIMPLIFIER (msg, thm) => (print_thm thm; error msg); | |
| 6051 | 258 | |
| 259 | (********) | |
| 260 | val dummy = writeln " Proving the elimination rule..."; | |
| 261 | ||
| 262 | (*Breaks down logical connectives in the monotonic function*) | |
| 263 | val basic_elim_tac = | |
| 264 | REPEAT (SOMEGOAL (eresolve_tac (Ind_Syntax.elim_rls @ Su.free_SEs) | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 265 | ORELSE' bound_hyp_subst_tac)) | 
| 6051 | 266 | THEN prune_params_tac | 
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 267 | (*Mutual recursion: collapse references to Part(D,h)*) | 
| 6051 | 268 | THEN fold_tac part_rec_defs; | 
| 269 | ||
| 270 | (*Elimination*) | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 271 | val elim = rule_by_tactic basic_elim_tac | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 272 | (unfold RS Ind_Syntax.equals_CollectD) | 
| 6051 | 273 | |
| 274 | (*Applies freeness of the given constructors, which *must* be unfolded by | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 275 | the given defs. Cannot simply use the local con_defs because | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 276 | con_defs=[] for inference systems. | 
| 12175 | 277 | Proposition A should have the form t:Si where Si is an inductive set*) | 
| 278 | fun make_cases ss A = | |
| 279 | rule_by_tactic | |
| 280 | (basic_elim_tac THEN ALLGOALS (asm_full_simp_tac ss) THEN basic_elim_tac) | |
| 281 | (Thm.assume A RS elim) | |
| 282 | |> Drule.standard'; | |
| 283 | fun mk_cases a = make_cases (*delayed evaluation of body!*) | |
| 284 | (simpset ()) (read_cterm (Thm.sign_of_thm elim) (a, propT)); | |
| 6051 | 285 | |
| 286 | fun induction_rules raw_induct thy = | |
| 287 | let | |
| 288 | val dummy = writeln " Proving the induction rule..."; | |
| 289 | ||
| 290 | (*** Prove the main induction rule ***) | |
| 291 | ||
| 292 | val pred_name = "P"; (*name for predicate variables*) | |
| 293 | ||
| 294 | (*Used to make induction rules; | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 295 | ind_alist = [(rec_tm1,pred1),...] associates predicates with rec ops | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 296 | prem is a premise of an intr rule*) | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 297 |      fun add_induct_prem ind_alist (prem as Const("Trueprop",_) $
 | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 298 |                       (Const("op :",_)$t$X), iprems) =
 | 
| 17314 | 299 | (case AList.lookup (op aconv) ind_alist X of | 
| 15531 | 300 | SOME pred => prem :: FOLogic.mk_Trueprop (pred $ t) :: iprems | 
| 301 | | NONE => (*possibly membership in M(rec_tm), for M monotone*) | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 302 | let fun mk_sb (rec_tm,pred) = | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 303 | (rec_tm, Ind_Syntax.Collect_const$rec_tm$pred) | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 304 | in subst_free (map mk_sb ind_alist) prem :: iprems end) | 
| 6051 | 305 | | add_induct_prem ind_alist (prem,iprems) = prem :: iprems; | 
| 306 | ||
| 307 | (*Make a premise of the induction rule.*) | |
| 308 | fun induct_prem ind_alist intr = | |
| 309 | let val quantfrees = map dest_Free (term_frees intr \\ rec_params) | |
| 15574 
b1d1b5bfc464
Removed practically all references to Library.foldr.
 skalberg parents: 
15570diff
changeset | 310 | val iprems = foldr (add_induct_prem ind_alist) [] | 
| 
b1d1b5bfc464
Removed practically all references to Library.foldr.
 skalberg parents: 
15570diff
changeset | 311 | (Logic.strip_imp_prems intr) | 
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 312 | val (t,X) = Ind_Syntax.rule_concl intr | 
| 17314 | 313 | val (SOME pred) = AList.lookup (op aconv) ind_alist X | 
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 314 | val concl = FOLogic.mk_Trueprop (pred $ t) | 
| 6051 | 315 | in list_all_free (quantfrees, Logic.list_implies (iprems,concl)) end | 
| 316 | handle Bind => error"Recursion term not found in conclusion"; | |
| 317 | ||
| 318 | (*Minimizes backtracking by delivering the correct premise to each goal. | |
| 319 | Intro rules with extra Vars in premises still cause some backtracking *) | |
| 320 | fun ind_tac [] 0 = all_tac | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 321 | | ind_tac(prem::prems) i = | 
| 13747 
bf308fcfd08e
Better treatment of equality in premises of inductive definitions.  Less
 paulson parents: 
13627diff
changeset | 322 | DEPTH_SOLVE_1 (ares_tac [prem, refl] i) THEN ind_tac prems (i-1); | 
| 6051 | 323 | |
| 324 | val pred = Free(pred_name, Ind_Syntax.iT --> FOLogic.oT); | |
| 325 | ||
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 326 | val ind_prems = map (induct_prem (map (rpair pred) rec_tms)) | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 327 | intr_tms; | 
| 6051 | 328 | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 329 | val dummy = if !Ind_Syntax.trace then | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 330 | (writeln "ind_prems = "; | 
| 15570 | 331 | List.app (writeln o Sign.string_of_term sign1) ind_prems; | 
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 332 | writeln "raw_induct = "; print_thm raw_induct) | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 333 | else (); | 
| 6051 | 334 | |
| 335 | ||
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 336 | (*We use a MINIMAL simpset. Even FOL_ss contains too many simpules. | 
| 6051 | 337 | If the premises get simplified, then the proofs could fail.*) | 
| 17892 | 338 | val min_ss = Simplifier.theory_context thy empty_ss | 
| 12725 | 339 | setmksimps (map mk_eq o ZF_atomize o gen_all) | 
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 340 | setSolver (mk_solver "minimal" | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 341 | (fn prems => resolve_tac (triv_rls@prems) | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 342 | ORELSE' assume_tac | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 343 | ORELSE' etac FalseE)); | 
| 6051 | 344 | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 345 | val quant_induct = | 
| 17985 | 346 | standard (Goal.prove sign1 [] ind_prems | 
| 347 | (FOLogic.mk_Trueprop (Ind_Syntax.mk_all_imp (big_rec_tm, pred))) | |
| 348 | (fn prems => EVERY | |
| 349 | [rewrite_goals_tac part_rec_defs, | |
| 350 | rtac (impI RS allI) 1, | |
| 351 | DETERM (etac raw_induct 1), | |
| 352 | (*Push Part inside Collect*) | |
| 353 | full_simp_tac (min_ss addsimps [Part_Collect]) 1, | |
| 354 | (*This CollectE and disjE separates out the introduction rules*) | |
| 355 | REPEAT (FIRSTGOAL (eresolve_tac [CollectE, disjE])), | |
| 356 | (*Now break down the individual cases. No disjE here in case | |
| 357 | some premise involves disjunction.*) | |
| 358 | REPEAT (FIRSTGOAL (eresolve_tac [CollectE, exE, conjE] | |
| 359 | ORELSE' bound_hyp_subst_tac)), | |
| 360 | ind_tac (rev (map (rewrite_rule part_rec_defs) prems)) (length prems)])); | |
| 6051 | 361 | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 362 | val dummy = if !Ind_Syntax.trace then | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 363 | (writeln "quant_induct = "; print_thm quant_induct) | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 364 | else (); | 
| 6051 | 365 | |
| 366 | ||
| 367 | (*** Prove the simultaneous induction rule ***) | |
| 368 | ||
| 369 | (*Make distinct predicates for each inductive set*) | |
| 370 | ||
| 371 | (*The components of the element type, several if it is a product*) | |
| 372 | val elem_type = CP.pseudo_type dom_sum; | |
| 373 | val elem_factors = CP.factors elem_type; | |
| 374 | val elem_frees = mk_frees "za" elem_factors; | |
| 375 | val elem_tuple = CP.mk_tuple Pr.pair elem_type elem_frees; | |
| 376 | ||
| 377 | (*Given a recursive set and its domain, return the "fsplit" predicate | |
| 378 | and a conclusion for the simultaneous induction rule. | |
| 379 | NOTE. This will not work for mutually recursive predicates. Previously | |
| 380 | a summand 'domt' was also an argument, but this required the domain of | |
| 381 | mutual recursion to invariably be a disjoint sum.*) | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 382 | fun mk_predpair rec_tm = | 
| 6051 | 383 | let val rec_name = (#1 o dest_Const o head_of) rec_tm | 
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 384 | val pfree = Free(pred_name ^ "_" ^ Sign.base_name rec_name, | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 385 | elem_factors ---> FOLogic.oT) | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 386 | val qconcl = | 
| 15574 
b1d1b5bfc464
Removed practically all references to Library.foldr.
 skalberg parents: 
15570diff
changeset | 387 | foldr FOLogic.mk_all | 
| 
b1d1b5bfc464
Removed practically all references to Library.foldr.
 skalberg parents: 
15570diff
changeset | 388 | (FOLogic.imp $ | 
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 389 | (Ind_Syntax.mem_const $ elem_tuple $ rec_tm) | 
| 15574 
b1d1b5bfc464
Removed practically all references to Library.foldr.
 skalberg parents: 
15570diff
changeset | 390 | $ (list_comb (pfree, elem_frees))) elem_frees | 
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 391 | in (CP.ap_split elem_type FOLogic.oT pfree, | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 392 | qconcl) | 
| 6051 | 393 | end; | 
| 394 | ||
| 395 | val (preds,qconcls) = split_list (map mk_predpair rec_tms); | |
| 396 | ||
| 397 | (*Used to form simultaneous induction lemma*) | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 398 | fun mk_rec_imp (rec_tm,pred) = | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 399 | FOLogic.imp $ (Ind_Syntax.mem_const $ Bound 0 $ rec_tm) $ | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 400 | (pred $ Bound 0); | 
| 6051 | 401 | |
| 402 | (*To instantiate the main induction rule*) | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 403 | val induct_concl = | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 404 | FOLogic.mk_Trueprop | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 405 | (Ind_Syntax.mk_all_imp | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 406 | (big_rec_tm, | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 407 |              Abs("z", Ind_Syntax.iT,
 | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 408 | fold_bal FOLogic.mk_conj | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 409 | (ListPair.map mk_rec_imp (rec_tms, preds))))) | 
| 6051 | 410 | and mutual_induct_concl = | 
| 7695 | 411 | FOLogic.mk_Trueprop(fold_bal FOLogic.mk_conj qconcls); | 
| 6051 | 412 | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 413 | val dummy = if !Ind_Syntax.trace then | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 414 |                  (writeln ("induct_concl = " ^
 | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 415 | Sign.string_of_term sign1 induct_concl); | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 416 |                   writeln ("mutual_induct_concl = " ^
 | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 417 | Sign.string_of_term sign1 mutual_induct_concl)) | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 418 | else (); | 
| 6051 | 419 | |
| 420 | ||
| 421 | val lemma_tac = FIRST' [eresolve_tac [asm_rl, conjE, PartE, mp], | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 422 | resolve_tac [allI, impI, conjI, Part_eqI], | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 423 | dresolve_tac [spec, mp, Pr.fsplitD]]; | 
| 6051 | 424 | |
| 425 | val need_mutual = length rec_names > 1; | |
| 426 | ||
| 427 | val lemma = (*makes the link between the two induction rules*) | |
| 428 | if need_mutual then | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 429 | (writeln " Proving the mutual induction rule..."; | 
| 17985 | 430 | standard (Goal.prove sign1 [] [] | 
| 431 | (Logic.mk_implies (induct_concl, mutual_induct_concl)) | |
| 432 | (fn _ => EVERY | |
| 433 | [rewrite_goals_tac part_rec_defs, | |
| 434 | REPEAT (rewrite_goals_tac [Pr.split_eq] THEN lemma_tac 1)]))) | |
| 435 | else (writeln " [ No mutual induction rule needed ]"; TrueI); | |
| 6051 | 436 | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 437 | val dummy = if !Ind_Syntax.trace then | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 438 | (writeln "lemma = "; print_thm lemma) | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 439 | else (); | 
| 6051 | 440 | |
| 441 | ||
| 442 | (*Mutual induction follows by freeness of Inl/Inr.*) | |
| 443 | ||
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 444 | (*Simplification largely reduces the mutual induction rule to the | 
| 6051 | 445 | standard rule*) | 
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 446 | val mut_ss = | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 447 | min_ss addsimps [Su.distinct, Su.distinct', Su.inl_iff, Su.inr_iff]; | 
| 6051 | 448 | |
| 449 | val all_defs = con_defs @ part_rec_defs; | |
| 450 | ||
| 451 | (*Removes Collects caused by M-operators in the intro rules. It is very | |
| 452 | hard to simplify | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 453 |          list({v: tf. (v : t --> P_t(v)) & (v : f --> P_f(v))})
 | 
| 6051 | 454 |        where t==Part(tf,Inl) and f==Part(tf,Inr) to  list({v: tf. P_t(v)}).
 | 
| 455 | Instead the following rules extract the relevant conjunct. | |
| 456 | *) | |
| 457 | val cmonos = [subset_refl RS Collect_mono] RL monos | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 458 | RLN (2,[rev_subsetD]); | 
| 6051 | 459 | |
| 460 | (*Minimizes backtracking by delivering the correct premise to each goal*) | |
| 461 | fun mutual_ind_tac [] 0 = all_tac | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 462 | | mutual_ind_tac(prem::prems) i = | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 463 | DETERM | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 464 | (SELECT_GOAL | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 465 | ( | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 466 | (*Simplify the assumptions and goal by unfolding Part and | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 467 | using freeness of the Sum constructors; proves all but one | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 468 | conjunct by contradiction*) | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 469 | rewrite_goals_tac all_defs THEN | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 470 | simp_tac (mut_ss addsimps [Part_iff]) 1 THEN | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 471 | IF_UNSOLVED (*simp_tac may have finished it off!*) | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 472 | ((*simplify assumptions*) | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 473 | (*some risk of excessive simplification here -- might have | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 474 | to identify the bare minimum set of rewrites*) | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 475 | full_simp_tac | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 476 | (mut_ss addsimps conj_simps @ imp_simps @ quant_simps) 1 | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 477 | THEN | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 478 | (*unpackage and use "prem" in the corresponding place*) | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 479 | REPEAT (rtac impI 1) THEN | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 480 | rtac (rewrite_rule all_defs prem) 1 THEN | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 481 | (*prem must not be REPEATed below: could loop!*) | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 482 | DEPTH_SOLVE (FIRSTGOAL (ares_tac [impI] ORELSE' | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 483 | eresolve_tac (conjE::mp::cmonos)))) | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 484 | ) i) | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 485 | THEN mutual_ind_tac prems (i-1); | 
| 6051 | 486 | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 487 | val mutual_induct_fsplit = | 
| 6051 | 488 | if need_mutual then | 
| 17985 | 489 | standard (Goal.prove sign1 [] (map (induct_prem (rec_tms~~preds)) intr_tms) | 
| 490 | mutual_induct_concl | |
| 491 | (fn prems => EVERY | |
| 492 | [rtac (quant_induct RS lemma) 1, | |
| 493 | mutual_ind_tac (rev prems) (length prems)])) | |
| 6051 | 494 | else TrueI; | 
| 495 | ||
| 496 | (** Uncurrying the predicate in the ordinary induction rule **) | |
| 497 | ||
| 498 | (*instantiate the variable to a tuple, if it is non-trivial, in order to | |
| 499 | allow the predicate to be "opened up". | |
| 500 | The name "x.1" comes from the "RS spec" !*) | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 501 | val inst = | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 502 | case elem_frees of [_] => I | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 503 |             | _ => instantiate ([], [(cterm_of sign1 (Var(("x",1), Ind_Syntax.iT)),
 | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 504 | cterm_of sign1 elem_tuple)]); | 
| 6051 | 505 | |
| 506 | (*strip quantifier and the implication*) | |
| 507 | val induct0 = inst (quant_induct RS spec RSN (2,rev_mp)); | |
| 508 | ||
| 509 |      val Const ("Trueprop", _) $ (pred_var $ _) = concl_of induct0
 | |
| 510 | ||
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 511 | val induct = CP.split_rule_var(pred_var, elem_type-->FOLogic.oT, induct0) | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 512 | |> standard | 
| 6051 | 513 | and mutual_induct = CP.remove_split mutual_induct_fsplit | 
| 8438 | 514 | |
| 18377 | 515 | val ([induct', mutual_induct'], thy') = | 
| 516 | thy | |
| 18643 | 517 | |> PureThy.add_thms [((co_prefix ^ "induct", induct), | 
| 18728 | 518 | [case_names, InductAttrib.induct_set big_rec_name]), | 
| 18643 | 519 |            (("mutual_induct", mutual_induct), [case_names])];
 | 
| 12227 | 520 | in ((thy', induct'), mutual_induct') | 
| 6051 | 521 | end; (*of induction_rules*) | 
| 522 | ||
| 523 | val raw_induct = standard ([big_rec_def, bnd_mono] MRS Fp.induct) | |
| 524 | ||
| 12227 | 525 | val ((thy2, induct), mutual_induct) = | 
| 526 | if not coind then induction_rules raw_induct thy1 | |
| 18377 | 527 | else | 
| 528 | (thy1 | |
| 529 | |> PureThy.add_thms [((co_prefix ^ "induct", raw_induct), [])] | |
| 530 | |> apfst hd |> Library.swap, TrueI) | |
| 6051 | 531 | and defs = big_rec_def :: part_rec_defs | 
| 532 | ||
| 533 | ||
| 18377 | 534 | val (([bnd_mono', dom_subset', elim'], [defs', intrs']), thy3) = | 
| 8438 | 535 | thy2 | 
| 12183 | 536 | |> IndCases.declare big_rec_name make_cases | 
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 537 | |> PureThy.add_thms | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 538 |       [(("bnd_mono", bnd_mono), []),
 | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 539 |        (("dom_subset", dom_subset), []),
 | 
| 18728 | 540 |        (("cases", elim), [case_names, InductAttrib.cases_set big_rec_name])]
 | 
| 18377 | 541 | ||>> (PureThy.add_thmss o map Thm.no_attributes) | 
| 8438 | 542 |         [("defs", defs),
 | 
| 12175 | 543 |          ("intros", intrs)];
 | 
| 18377 | 544 | val (intrs'', thy4) = | 
| 545 | thy3 | |
| 546 | |> PureThy.add_thms ((intr_names ~~ intrs') ~~ map #2 intr_specs) | |
| 547 | ||> Theory.parent_path; | |
| 8438 | 548 | in | 
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 549 | (thy4, | 
| 8438 | 550 |       {defs = defs',
 | 
| 551 | bnd_mono = bnd_mono', | |
| 552 | dom_subset = dom_subset', | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 553 | intrs = intrs'', | 
| 8438 | 554 | elim = elim', | 
| 555 | mk_cases = mk_cases, | |
| 556 | induct = induct, | |
| 557 | mutual_induct = mutual_induct}) | |
| 558 | end; | |
| 6051 | 559 | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 560 | (*source version*) | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 561 | fun add_inductive (srec_tms, sdom_sum) intr_srcs | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 562 | (raw_monos, raw_con_defs, raw_type_intrs, raw_type_elims) thy = | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 563 | let | 
| 18728 | 564 | val intr_atts = map (map (Attrib.attribute thy) o snd) intr_srcs; | 
| 17937 | 565 | val sintrs = map fst intr_srcs ~~ intr_atts; | 
| 566 | val read = Sign.simple_read_term thy; | |
| 567 | val rec_tms = map (read Ind_Syntax.iT) srec_tms; | |
| 568 | val dom_sum = read Ind_Syntax.iT sdom_sum; | |
| 569 | val intr_tms = map (read propT o snd o fst) sintrs; | |
| 570 | val intr_specs = (map (fst o fst) sintrs ~~ intr_tms) ~~ map snd sintrs; | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 571 | in | 
| 18418 
bf448d999b7e
re-arranged tuples (theory * 'a) to ('a * theory) in Pure
 haftmann parents: 
18377diff
changeset | 572 | thy | 
| 
bf448d999b7e
re-arranged tuples (theory * 'a) to ('a * theory) in Pure
 haftmann parents: 
18377diff
changeset | 573 | |> IsarThy.apply_theorems raw_monos | 
| 
bf448d999b7e
re-arranged tuples (theory * 'a) to ('a * theory) in Pure
 haftmann parents: 
18377diff
changeset | 574 | ||>> IsarThy.apply_theorems raw_con_defs | 
| 
bf448d999b7e
re-arranged tuples (theory * 'a) to ('a * theory) in Pure
 haftmann parents: 
18377diff
changeset | 575 | ||>> IsarThy.apply_theorems raw_type_intrs | 
| 
bf448d999b7e
re-arranged tuples (theory * 'a) to ('a * theory) in Pure
 haftmann parents: 
18377diff
changeset | 576 | ||>> IsarThy.apply_theorems raw_type_elims | 
| 
bf448d999b7e
re-arranged tuples (theory * 'a) to ('a * theory) in Pure
 haftmann parents: 
18377diff
changeset | 577 | |-> (fn (((monos, con_defs), type_intrs), type_elims) => | 
| 
bf448d999b7e
re-arranged tuples (theory * 'a) to ('a * theory) in Pure
 haftmann parents: 
18377diff
changeset | 578 | add_inductive_i true (rec_tms, dom_sum) intr_specs | 
| 
bf448d999b7e
re-arranged tuples (theory * 'a) to ('a * theory) in Pure
 haftmann parents: 
18377diff
changeset | 579 | (monos, con_defs, type_intrs, type_elims)) | 
| 
bf448d999b7e
re-arranged tuples (theory * 'a) to ('a * theory) in Pure
 haftmann parents: 
18377diff
changeset | 580 | end; | 
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 581 | |
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 582 | |
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 583 | (* outer syntax *) | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 584 | |
| 17057 | 585 | local structure P = OuterParse and K = OuterKeyword in | 
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 586 | |
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 587 | fun mk_ind (((((doms, intrs), monos), con_defs), type_intrs), type_elims) = | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 588 | #1 o add_inductive doms (map P.triple_swap intrs) (monos, con_defs, type_intrs, type_elims); | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 589 | |
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 590 | val ind_decl = | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 591 | (P.$$$ "domains" |-- P.!!! (P.enum1 "+" P.term -- | 
| 12876 
a70df1e5bf10
got rid of explicit marginal comments (now stripped earlier from input);
 wenzelm parents: 
12725diff
changeset | 592 | ((P.$$$ "\\<subseteq>" || P.$$$ "<=") |-- P.term))) -- | 
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 593 | (P.$$$ "intros" |-- | 
| 12876 
a70df1e5bf10
got rid of explicit marginal comments (now stripped earlier from input);
 wenzelm parents: 
12725diff
changeset | 594 | P.!!! (Scan.repeat1 (P.opt_thm_name ":" -- P.prop))) -- | 
| 
a70df1e5bf10
got rid of explicit marginal comments (now stripped earlier from input);
 wenzelm parents: 
12725diff
changeset | 595 | Scan.optional (P.$$$ "monos" |-- P.!!! P.xthms1) [] -- | 
| 
a70df1e5bf10
got rid of explicit marginal comments (now stripped earlier from input);
 wenzelm parents: 
12725diff
changeset | 596 | Scan.optional (P.$$$ "con_defs" |-- P.!!! P.xthms1) [] -- | 
| 
a70df1e5bf10
got rid of explicit marginal comments (now stripped earlier from input);
 wenzelm parents: 
12725diff
changeset | 597 | Scan.optional (P.$$$ "type_intros" |-- P.!!! P.xthms1) [] -- | 
| 
a70df1e5bf10
got rid of explicit marginal comments (now stripped earlier from input);
 wenzelm parents: 
12725diff
changeset | 598 | Scan.optional (P.$$$ "type_elims" |-- P.!!! P.xthms1) [] | 
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 599 | >> (Toplevel.theory o mk_ind); | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 600 | |
| 12227 | 601 | val inductiveP = OuterSyntax.command (co_prefix ^ "inductive") | 
| 602 |   ("define " ^ co_prefix ^ "inductive sets") K.thy_decl ind_decl;
 | |
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 603 | |
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 604 | val _ = OuterSyntax.add_keywords | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 605 | ["domains", "intros", "monos", "con_defs", "type_intros", "type_elims"]; | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 606 | val _ = OuterSyntax.add_parsers [inductiveP]; | 
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 607 | |
| 6051 | 608 | end; | 
| 12132 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 609 | |
| 
1ef58b332ca9
support co/inductive definitions in new-style theories;
 wenzelm parents: 
11680diff
changeset | 610 | end; | 
| 15705 | 611 |