| 
10750
 | 
     1  | 
(*  Title       : Filter.thy
  | 
| 
 | 
     2  | 
    ID          : $Id$
  | 
| 
 | 
     3  | 
    Author      : Jacques D. Fleuriot
  | 
| 
 | 
     4  | 
    Copyright   : 1998  University of Cambridge
  | 
| 
 | 
     5  | 
    Description : Filters and Ultrafilters
  | 
| 
 | 
     6  | 
*) 
  | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
Filter = Zorn + 
  | 
| 
 | 
     9  | 
  | 
| 
 | 
    10  | 
constdefs
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
  is_Filter       :: ['a set set,'a set] => bool
  | 
| 
 | 
    13  | 
  "is_Filter F S == (F <= Pow(S) & S : F & {} ~: F &
 | 
| 
 | 
    14  | 
                   (ALL u: F. ALL v: F. u Int v : F) &
  | 
| 
 | 
    15  | 
                   (ALL u v. u: F & u <= v & v <= S --> v: F))" 
  | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
  Filter          :: 'a set => 'a set set set
  | 
| 
 | 
    18  | 
  "Filter S == {X. is_Filter X S}"
 | 
| 
 | 
    19  | 
 
  | 
| 
 | 
    20  | 
  (* free filter does not contain any finite set *)
  | 
| 
 | 
    21  | 
  | 
| 
 | 
    22  | 
  Freefilter      :: 'a set => 'a set set set
  | 
| 
 | 
    23  | 
  "Freefilter S == {X. X: Filter S & (ALL x: X. ~ finite x)}"
 | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
  Ultrafilter     :: 'a set => 'a set set set
  | 
| 
 | 
    26  | 
  "Ultrafilter S == {X. X: Filter S & (ALL A: Pow(S). A: X | S - A : X)}"
 | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
  FreeUltrafilter :: 'a set => 'a set set set
  | 
| 
 | 
    29  | 
  "FreeUltrafilter S == {X. X: Ultrafilter S & (ALL x: X. ~ finite x)}" 
 | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
  (* A locale makes proof of Ultrafilter Theorem more modular *)
  | 
| 
 | 
    32  | 
locale UFT = 
  | 
| 
 | 
    33  | 
       fixes     frechet :: "'a set => 'a set set"
  | 
| 
 | 
    34  | 
                 superfrechet :: "'a set => 'a set set set"
  | 
| 
 | 
    35  | 
  | 
| 
 | 
    36  | 
       assumes   not_finite_UNIV "~finite (UNIV :: 'a set)"
  | 
| 
 | 
    37  | 
  | 
| 
 | 
    38  | 
       defines   frechet_def "frechet S == {A. finite (S - A)}"
 | 
| 
 | 
    39  | 
                 superfrechet_def "superfrechet S == 
  | 
| 
 | 
    40  | 
                                   {G.  G: Filter S & frechet S <= G}"
 | 
| 
 | 
    41  | 
end
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
  | 
| 
 | 
    44  | 
  | 
| 
 | 
    45  | 
  |