0
|
1 |
(* Title: ZF/list-fn
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1993 University of Cambridge
|
|
5 |
|
|
6 |
Functions for Lists in Zermelo-Fraenkel Set Theory
|
|
7 |
|
|
8 |
map is a binding operator -- it applies to meta-level functions, not
|
|
9 |
object-level functions. This simplifies the final form of term_rec_conv,
|
|
10 |
although complicating its derivation.
|
|
11 |
*)
|
|
12 |
|
|
13 |
ListFn = List +
|
|
14 |
consts
|
|
15 |
"@" :: "[i,i]=>i" (infixr 60)
|
|
16 |
list_rec :: "[i, i, [i,i,i]=>i] => i"
|
|
17 |
map :: "[i=>i, i] => i"
|
|
18 |
length,rev :: "i=>i"
|
|
19 |
flat :: "i=>i"
|
|
20 |
list_add :: "i=>i"
|
|
21 |
|
|
22 |
(* List Enumeration *)
|
|
23 |
"[]" :: "i" ("[]")
|
|
24 |
"@List" :: "args => i" ("[(_)]")
|
|
25 |
|
|
26 |
|
|
27 |
translations
|
|
28 |
"[x, xs]" == "Cons(x, [xs])"
|
|
29 |
"[x]" == "Cons(x, [])"
|
|
30 |
"[]" == "Nil"
|
|
31 |
|
|
32 |
|
|
33 |
rules
|
|
34 |
list_rec_def
|
|
35 |
"list_rec(l,c,h) == Vrec(l, %l g.list_case(c, %x xs. h(x, xs, g`xs), l))"
|
|
36 |
|
|
37 |
map_def "map(f,l) == list_rec(l, Nil, %x xs r. Cons(f(x), r))"
|
|
38 |
length_def "length(l) == list_rec(l, 0, %x xs r. succ(r))"
|
|
39 |
app_def "xs@ys == list_rec(xs, ys, %x xs r. Cons(x,r))"
|
|
40 |
rev_def "rev(l) == list_rec(l, Nil, %x xs r. r @ [x])"
|
|
41 |
flat_def "flat(ls) == list_rec(ls, Nil, %l ls r. l @ r)"
|
|
42 |
list_add_def "list_add(l) == list_rec(l, 0, %x xs r. x#+r)"
|
|
43 |
|
|
44 |
end
|