| author | huffman | 
| Wed, 10 Jun 2009 15:32:02 -0700 | |
| changeset 31561 | a5e168fd2bb9 | 
| parent 27681 | 8cedebf55539 | 
| permissions | -rw-r--r-- | 
| 12516 | 1 | (* Title: HOL/MicroJava/BV/Err.thy | 
| 10496 | 2 | ID: $Id$ | 
| 3 | Author: Tobias Nipkow | |
| 4 | Copyright 2000 TUM | |
| 5 | ||
| 6 | The error type | |
| 7 | *) | |
| 8 | ||
| 12911 | 9 | header {* \isaheader{The Error Type} *}
 | 
| 10496 | 10 | |
| 27681 | 11 | theory Err | 
| 12 | imports Semilat | |
| 13 | begin | |
| 10496 | 14 | |
| 15 | datatype 'a err = Err | OK 'a | |
| 16 | ||
| 13006 | 17 | types 'a ebinop = "'a \<Rightarrow> 'a \<Rightarrow> 'a err" | 
| 10496 | 18 | 'a esl = "'a set * 'a ord * 'a ebinop" | 
| 19 | ||
| 20 | consts | |
| 13006 | 21 | ok_val :: "'a err \<Rightarrow> 'a" | 
| 10496 | 22 | primrec | 
| 23 | "ok_val (OK x) = x" | |
| 24 | ||
| 25 | constdefs | |
| 13006 | 26 |  lift :: "('a \<Rightarrow> 'b err) \<Rightarrow> ('a err \<Rightarrow> 'b err)"
 | 
| 27 | "lift f e == case e of Err \<Rightarrow> Err | OK x \<Rightarrow> f x" | |
| 10496 | 28 | |
| 13006 | 29 |  lift2 :: "('a \<Rightarrow> 'b \<Rightarrow> 'c err) \<Rightarrow> 'a err \<Rightarrow> 'b err \<Rightarrow> 'c err"
 | 
| 10496 | 30 | "lift2 f e1 e2 == | 
| 13006 | 31 | case e1 of Err \<Rightarrow> Err | 
| 32 | | OK x \<Rightarrow> (case e2 of Err \<Rightarrow> Err | OK y \<Rightarrow> f x y)" | |
| 10496 | 33 | |
| 13006 | 34 | le :: "'a ord \<Rightarrow> 'a err ord" | 
| 10496 | 35 | "le r e1 e2 == | 
| 13006 | 36 | case e2 of Err \<Rightarrow> True | | 
| 37 | OK y \<Rightarrow> (case e1 of Err \<Rightarrow> False | OK x \<Rightarrow> x <=_r y)" | |
| 10496 | 38 | |
| 13006 | 39 |  sup :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a err \<Rightarrow> 'b err \<Rightarrow> 'c err)"
 | 
| 10496 | 40 | "sup f == lift2(%x y. OK(x +_f y))" | 
| 41 | ||
| 13006 | 42 | err :: "'a set \<Rightarrow> 'a err set" | 
| 10496 | 43 | "err A == insert Err {x . ? y:A. x = OK y}"
 | 
| 44 | ||
| 13006 | 45 | esl :: "'a sl \<Rightarrow> 'a esl" | 
| 10496 | 46 | "esl == %(A,r,f). (A,r, %x y. OK(f x y))" | 
| 47 | ||
| 13006 | 48 | sl :: "'a esl \<Rightarrow> 'a err sl" | 
| 10496 | 49 | "sl == %(A,r,f). (err A, le r, lift2 f)" | 
| 50 | ||
| 51 | syntax | |
| 13006 | 52 | err_semilat :: "'a esl \<Rightarrow> bool" | 
| 10496 | 53 | translations | 
| 54 | "err_semilat L" == "semilat(Err.sl L)" | |
| 55 | ||
| 56 | ||
| 10812 
ead84e90bfeb
merged semilattice orders with <=' from Convert.thy (now defined in JVMType.thy)
 kleing parents: 
10496diff
changeset | 57 | consts | 
| 13006 | 58 |   strict  :: "('a \<Rightarrow> 'b err) \<Rightarrow> ('a err \<Rightarrow> 'b err)"
 | 
| 10812 
ead84e90bfeb
merged semilattice orders with <=' from Convert.thy (now defined in JVMType.thy)
 kleing parents: 
10496diff
changeset | 59 | primrec | 
| 
ead84e90bfeb
merged semilattice orders with <=' from Convert.thy (now defined in JVMType.thy)
 kleing parents: 
10496diff
changeset | 60 | "strict f Err = Err" | 
| 
ead84e90bfeb
merged semilattice orders with <=' from Convert.thy (now defined in JVMType.thy)
 kleing parents: 
10496diff
changeset | 61 | "strict f (OK x) = f x" | 
| 
ead84e90bfeb
merged semilattice orders with <=' from Convert.thy (now defined in JVMType.thy)
 kleing parents: 
10496diff
changeset | 62 | |
| 11085 | 63 | lemma strict_Some [simp]: | 
| 64 | "(strict f x = OK y) = (\<exists> z. x = OK z \<and> f z = OK y)" | |
| 65 | by (cases x, auto) | |
| 10812 
ead84e90bfeb
merged semilattice orders with <=' from Convert.thy (now defined in JVMType.thy)
 kleing parents: 
10496diff
changeset | 66 | |
| 10496 | 67 | lemma not_Err_eq: | 
| 68 | "(x \<noteq> Err) = (\<exists>a. x = OK a)" | |
| 69 | by (cases x) auto | |
| 70 | ||
| 71 | lemma not_OK_eq: | |
| 72 | "(\<forall>y. x \<noteq> OK y) = (x = Err)" | |
| 73 | by (cases x) auto | |
| 74 | ||
| 75 | lemma unfold_lesub_err: | |
| 76 | "e1 <=_(le r) e2 == le r e1 e2" | |
| 77 | by (simp add: lesub_def) | |
| 78 | ||
| 79 | lemma le_err_refl: | |
| 13006 | 80 | "!x. x <=_r x \<Longrightarrow> e <=_(Err.le r) e" | 
| 10496 | 81 | apply (unfold lesub_def Err.le_def) | 
| 82 | apply (simp split: err.split) | |
| 83 | done | |
| 84 | ||
| 85 | lemma le_err_trans [rule_format]: | |
| 13006 | 86 | "order r \<Longrightarrow> e1 <=_(le r) e2 \<longrightarrow> e2 <=_(le r) e3 \<longrightarrow> e1 <=_(le r) e3" | 
| 10496 | 87 | apply (unfold unfold_lesub_err le_def) | 
| 88 | apply (simp split: err.split) | |
| 89 | apply (blast intro: order_trans) | |
| 90 | done | |
| 91 | ||
| 92 | lemma le_err_antisym [rule_format]: | |
| 13006 | 93 | "order r \<Longrightarrow> e1 <=_(le r) e2 \<longrightarrow> e2 <=_(le r) e1 \<longrightarrow> e1=e2" | 
| 10496 | 94 | apply (unfold unfold_lesub_err le_def) | 
| 95 | apply (simp split: err.split) | |
| 96 | apply (blast intro: order_antisym) | |
| 97 | done | |
| 98 | ||
| 99 | lemma OK_le_err_OK: | |
| 100 | "(OK x <=_(le r) OK y) = (x <=_r y)" | |
| 101 | by (simp add: unfold_lesub_err le_def) | |
| 102 | ||
| 103 | lemma order_le_err [iff]: | |
| 104 | "order(le r) = order r" | |
| 105 | apply (rule iffI) | |
| 22068 | 106 | apply (subst Semilat.order_def) | 
| 10496 | 107 | apply (blast dest: order_antisym OK_le_err_OK [THEN iffD2] | 
| 108 | intro: order_trans OK_le_err_OK [THEN iffD1]) | |
| 22068 | 109 | apply (subst Semilat.order_def) | 
| 10496 | 110 | apply (blast intro: le_err_refl le_err_trans le_err_antisym | 
| 111 | dest: order_refl) | |
| 112 | done | |
| 113 | ||
| 114 | lemma le_Err [iff]: "e <=_(le r) Err" | |
| 115 | by (simp add: unfold_lesub_err le_def) | |
| 116 | ||
| 117 | lemma Err_le_conv [iff]: | |
| 118 | "Err <=_(le r) e = (e = Err)" | |
| 119 | by (simp add: unfold_lesub_err le_def split: err.split) | |
| 120 | ||
| 121 | lemma le_OK_conv [iff]: | |
| 122 | "e <=_(le r) OK x = (? y. e = OK y & y <=_r x)" | |
| 123 | by (simp add: unfold_lesub_err le_def split: err.split) | |
| 124 | ||
| 125 | lemma OK_le_conv: | |
| 126 | "OK x <=_(le r) e = (e = Err | (? y. e = OK y & x <=_r y))" | |
| 127 | by (simp add: unfold_lesub_err le_def split: err.split) | |
| 128 | ||
| 129 | lemma top_Err [iff]: "top (le r) Err"; | |
| 130 | by (simp add: top_def) | |
| 131 | ||
| 132 | lemma OK_less_conv [rule_format, iff]: | |
| 133 | "OK x <_(le r) e = (e=Err | (? y. e = OK y & x <_r y))" | |
| 134 | by (simp add: lesssub_def lesub_def le_def split: err.split) | |
| 135 | ||
| 136 | lemma not_Err_less [rule_format, iff]: | |
| 137 | "~(Err <_(le r) x)" | |
| 138 | by (simp add: lesssub_def lesub_def le_def split: err.split) | |
| 139 | ||
| 27611 | 140 | lemma semilat_errI [intro]: | 
| 141 | assumes semilat: "semilat (A, r, f)" | |
| 142 | shows "semilat(err A, Err.le r, lift2(%x y. OK(f x y)))" | |
| 143 | apply(insert semilat) | |
| 144 | apply (unfold semilat_Def closed_def plussub_def lesub_def | |
| 145 | lift2_def Err.le_def err_def) | |
| 146 | apply (simp split: err.split) | |
| 147 | done | |
| 10496 | 148 | |
| 13074 | 149 | lemma err_semilat_eslI_aux: | 
| 27611 | 150 | assumes semilat: "semilat (A, r, f)" | 
| 151 | shows "err_semilat(esl(A,r,f))" | |
| 152 | apply (unfold sl_def esl_def) | |
| 153 | apply (simp add: semilat_errI[OF semilat]) | |
| 154 | done | |
| 10496 | 155 | |
| 13074 | 156 | lemma err_semilat_eslI [intro, simp]: | 
| 157 | "\<And>L. semilat L \<Longrightarrow> err_semilat(esl L)" | |
| 158 | by(simp add: err_semilat_eslI_aux split_tupled_all) | |
| 159 | ||
| 13006 | 160 | lemma acc_err [simp, intro!]: "acc r \<Longrightarrow> acc(le r)" | 
| 10496 | 161 | apply (unfold acc_def lesub_def le_def lesssub_def) | 
| 22271 | 162 | apply (simp add: wfP_eq_minimal split: err.split) | 
| 10496 | 163 | apply clarify | 
| 164 | apply (case_tac "Err : Q") | |
| 165 | apply blast | |
| 166 | apply (erule_tac x = "{a . OK a : Q}" in allE)
 | |
| 167 | apply (case_tac "x") | |
| 168 | apply fast | |
| 169 | apply blast | |
| 170 | done | |
| 171 | ||
| 172 | lemma Err_in_err [iff]: "Err : err A" | |
| 173 | by (simp add: err_def) | |
| 174 | ||
| 175 | lemma Ok_in_err [iff]: "(OK x : err A) = (x:A)" | |
| 176 | by (auto simp add: err_def) | |
| 177 | ||
| 11085 | 178 | section {* lift *}
 | 
| 10496 | 179 | |
| 180 | lemma lift_in_errI: | |
| 13006 | 181 | "\<lbrakk> e : err S; !x:S. e = OK x \<longrightarrow> f x : err S \<rbrakk> \<Longrightarrow> lift f e : err S" | 
| 10496 | 182 | apply (unfold lift_def) | 
| 183 | apply (simp split: err.split) | |
| 184 | apply blast | |
| 185 | done | |
| 186 | ||
| 187 | lemma Err_lift2 [simp]: | |
| 188 | "Err +_(lift2 f) x = Err" | |
| 189 | by (simp add: lift2_def plussub_def) | |
| 190 | ||
| 191 | lemma lift2_Err [simp]: | |
| 192 | "x +_(lift2 f) Err = Err" | |
| 193 | by (simp add: lift2_def plussub_def split: err.split) | |
| 194 | ||
| 195 | lemma OK_lift2_OK [simp]: | |
| 196 | "OK x +_(lift2 f) OK y = x +_f y" | |
| 197 | by (simp add: lift2_def plussub_def split: err.split) | |
| 198 | ||
| 11085 | 199 | |
| 200 | section {* sup *}
 | |
| 10496 | 201 | |
| 202 | lemma Err_sup_Err [simp]: | |
| 203 | "Err +_(Err.sup f) x = Err" | |
| 204 | by (simp add: plussub_def Err.sup_def Err.lift2_def) | |
| 205 | ||
| 206 | lemma Err_sup_Err2 [simp]: | |
| 207 | "x +_(Err.sup f) Err = Err" | |
| 208 | by (simp add: plussub_def Err.sup_def Err.lift2_def split: err.split) | |
| 209 | ||
| 210 | lemma Err_sup_OK [simp]: | |
| 211 | "OK x +_(Err.sup f) OK y = OK(x +_f y)" | |
| 212 | by (simp add: plussub_def Err.sup_def Err.lift2_def) | |
| 213 | ||
| 214 | lemma Err_sup_eq_OK_conv [iff]: | |
| 215 | "(Err.sup f ex ey = OK z) = (? x y. ex = OK x & ey = OK y & f x y = z)" | |
| 216 | apply (unfold Err.sup_def lift2_def plussub_def) | |
| 217 | apply (rule iffI) | |
| 218 | apply (simp split: err.split_asm) | |
| 219 | apply clarify | |
| 220 | apply simp | |
| 221 | done | |
| 222 | ||
| 223 | lemma Err_sup_eq_Err [iff]: | |
| 224 | "(Err.sup f ex ey = Err) = (ex=Err | ey=Err)" | |
| 225 | apply (unfold Err.sup_def lift2_def plussub_def) | |
| 226 | apply (simp split: err.split) | |
| 227 | done | |
| 228 | ||
| 11085 | 229 | section {* semilat (err A) (le r) f *}
 | 
| 10496 | 230 | |
| 231 | lemma semilat_le_err_Err_plus [simp]: | |
| 13006 | 232 | "\<lbrakk> x: err A; semilat(err A, le r, f) \<rbrakk> \<Longrightarrow> Err +_f x = Err" | 
| 27681 | 233 | by (blast intro: Semilat.le_iff_plus_unchanged [OF Semilat.intro, THEN iffD1] | 
| 234 | Semilat.le_iff_plus_unchanged2 [OF Semilat.intro, THEN iffD1]) | |
| 10496 | 235 | |
| 236 | lemma semilat_le_err_plus_Err [simp]: | |
| 13006 | 237 | "\<lbrakk> x: err A; semilat(err A, le r, f) \<rbrakk> \<Longrightarrow> x +_f Err = Err" | 
| 27681 | 238 | by (blast intro: Semilat.le_iff_plus_unchanged [OF Semilat.intro, THEN iffD1] | 
| 239 | Semilat.le_iff_plus_unchanged2 [OF Semilat.intro, THEN iffD1]) | |
| 10496 | 240 | |
| 241 | lemma semilat_le_err_OK1: | |
| 13006 | 242 | "\<lbrakk> x:A; y:A; semilat(err A, le r, f); OK x +_f OK y = OK z \<rbrakk> | 
| 243 | \<Longrightarrow> x <=_r z"; | |
| 10496 | 244 | apply (rule OK_le_err_OK [THEN iffD1]) | 
| 245 | apply (erule subst) | |
| 27681 | 246 | apply (simp add: Semilat.ub1 [OF Semilat.intro]) | 
| 13074 | 247 | done | 
| 10496 | 248 | |
| 249 | lemma semilat_le_err_OK2: | |
| 13006 | 250 | "\<lbrakk> x:A; y:A; semilat(err A, le r, f); OK x +_f OK y = OK z \<rbrakk> | 
| 251 | \<Longrightarrow> y <=_r z" | |
| 10496 | 252 | apply (rule OK_le_err_OK [THEN iffD1]) | 
| 253 | apply (erule subst) | |
| 27681 | 254 | apply (simp add: Semilat.ub2 [OF Semilat.intro]) | 
| 13074 | 255 | done | 
| 10496 | 256 | |
| 257 | lemma eq_order_le: | |
| 13006 | 258 | "\<lbrakk> x=y; order r \<rbrakk> \<Longrightarrow> x <=_r y" | 
| 22068 | 259 | apply (unfold Semilat.order_def) | 
| 10496 | 260 | apply blast | 
| 261 | done | |
| 262 | ||
| 263 | lemma OK_plus_OK_eq_Err_conv [simp]: | |
| 18372 | 264 | assumes "x:A" and "y:A" and "semilat(err A, le r, fe)" | 
| 265 | shows "((OK x) +_fe (OK y) = Err) = (~(? z:A. x <=_r z & y <=_r z))" | |
| 10496 | 266 | proof - | 
| 13006 | 267 | have plus_le_conv3: "\<And>A x y z f r. | 
| 268 | \<lbrakk> semilat (A,r,f); x +_f y <=_r z; x:A; y:A; z:A \<rbrakk> | |
| 269 | \<Longrightarrow> x <=_r z \<and> y <=_r z" | |
| 27681 | 270 | by (rule Semilat.plus_le_conv [OF Semilat.intro, THEN iffD1]) | 
| 18372 | 271 | from prems show ?thesis | 
| 10496 | 272 | apply (rule_tac iffI) | 
| 273 | apply clarify | |
| 274 | apply (drule OK_le_err_OK [THEN iffD2]) | |
| 275 | apply (drule OK_le_err_OK [THEN iffD2]) | |
| 27681 | 276 | apply (drule Semilat.lub [OF Semilat.intro, of _ _ _ "OK x" _ "OK y"]) | 
| 10496 | 277 | apply assumption | 
| 278 | apply assumption | |
| 279 | apply simp | |
| 280 | apply simp | |
| 281 | apply simp | |
| 282 | apply simp | |
| 283 | apply (case_tac "(OK x) +_fe (OK y)") | |
| 284 | apply assumption | |
| 285 | apply (rename_tac z) | |
| 286 | apply (subgoal_tac "OK z: err A") | |
| 287 | apply (drule eq_order_le) | |
| 27681 | 288 | apply (erule Semilat.orderI [OF Semilat.intro]) | 
| 10496 | 289 | apply (blast dest: plus_le_conv3) | 
| 290 | apply (erule subst) | |
| 27681 | 291 | apply (blast intro: Semilat.closedI [OF Semilat.intro] closedD) | 
| 10496 | 292 | done | 
| 293 | qed | |
| 294 | ||
| 11085 | 295 | section {* semilat (err(Union AS)) *}
 | 
| 10496 | 296 | |
| 297 | (* FIXME? *) | |
| 298 | lemma all_bex_swap_lemma [iff]: | |
| 13006 | 299 | "(!x. (? y:A. x = f y) \<longrightarrow> P x) = (!y:A. P(f y))" | 
| 10496 | 300 | by blast | 
| 301 | ||
| 302 | lemma closed_err_Union_lift2I: | |
| 13006 | 303 |   "\<lbrakk> !A:AS. closed (err A) (lift2 f); AS ~= {}; 
 | 
| 304 | !A:AS.!B:AS. A~=B \<longrightarrow> (!a:A.!b:B. a +_f b = Err) \<rbrakk> | |
| 305 | \<Longrightarrow> closed (err(Union AS)) (lift2 f)" | |
| 10496 | 306 | apply (unfold closed_def err_def) | 
| 307 | apply simp | |
| 308 | apply clarify | |
| 309 | apply simp | |
| 310 | apply fast | |
| 311 | done | |
| 312 | ||
| 11085 | 313 | text {* 
 | 
| 314 |   If @{term "AS = {}"} the thm collapses to
 | |
| 315 |   @{prop "order r & closed {Err} f & Err +_f Err = Err"}
 | |
| 316 | which may not hold | |
| 317 | *} | |
| 10496 | 318 | lemma err_semilat_UnionI: | 
| 13006 | 319 |   "\<lbrakk> !A:AS. err_semilat(A, r, f); AS ~= {}; 
 | 
| 320 | !A:AS.!B:AS. A~=B \<longrightarrow> (!a:A.!b:B. ~ a <=_r b & a +_f b = Err) \<rbrakk> | |
| 321 | \<Longrightarrow> err_semilat(Union AS, r, f)" | |
| 10496 | 322 | apply (unfold semilat_def sl_def) | 
| 323 | apply (simp add: closed_err_Union_lift2I) | |
| 324 | apply (rule conjI) | |
| 325 | apply blast | |
| 326 | apply (simp add: err_def) | |
| 327 | apply (rule conjI) | |
| 328 | apply clarify | |
| 329 | apply (rename_tac A a u B b) | |
| 330 | apply (case_tac "A = B") | |
| 331 | apply simp | |
| 332 | apply simp | |
| 333 | apply (rule conjI) | |
| 334 | apply clarify | |
| 335 | apply (rename_tac A a u B b) | |
| 336 | apply (case_tac "A = B") | |
| 337 | apply simp | |
| 338 | apply simp | |
| 339 | apply clarify | |
| 340 | apply (rename_tac A ya yb B yd z C c a b) | |
| 341 | apply (case_tac "A = B") | |
| 342 | apply (case_tac "A = C") | |
| 343 | apply simp | |
| 344 | apply (rotate_tac -1) | |
| 345 | apply simp | |
| 346 | apply (rotate_tac -1) | |
| 347 | apply (case_tac "B = C") | |
| 348 | apply simp | |
| 349 | apply (rotate_tac -1) | |
| 350 | apply simp | |
| 351 | done | |
| 352 | ||
| 353 | end |