author | wenzelm |
Sat, 10 Jan 2009 21:32:30 +0100 | |
changeset 29435 | a5f84ac14609 |
parent 17274 | 746bb4c56800 |
permissions | -rw-r--r-- |
10134 | 1 |
(* Title: HOL/AxClasses/Group.thy |
2 |
ID: $Id$ |
|
3 |
Author: Markus Wenzel, TU Muenchen |
|
4 |
*) |
|
5 |
||
16417 | 6 |
theory Group imports Main begin |
10134 | 7 |
|
8 |
subsection {* Monoids and Groups *} |
|
9 |
||
10 |
consts |
|
11 |
times :: "'a => 'a => 'a" (infixl "[*]" 70) |
|
11072 | 12 |
invers :: "'a => 'a" |
10134 | 13 |
one :: 'a |
14 |
||
15 |
||
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11072
diff
changeset
|
16 |
axclass monoid < type |
10134 | 17 |
assoc: "(x [*] y) [*] z = x [*] (y [*] z)" |
18 |
left_unit: "one [*] x = x" |
|
19 |
right_unit: "x [*] one = x" |
|
20 |
||
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11072
diff
changeset
|
21 |
axclass semigroup < type |
10134 | 22 |
assoc: "(x [*] y) [*] z = x [*] (y [*] z)" |
23 |
||
24 |
axclass group < semigroup |
|
25 |
left_unit: "one [*] x = x" |
|
11072 | 26 |
left_inverse: "invers x [*] x = one" |
10134 | 27 |
|
28 |
axclass agroup < group |
|
29 |
commute: "x [*] y = y [*] x" |
|
30 |
||
31 |
||
32 |
subsection {* Abstract reasoning *} |
|
33 |
||
11072 | 34 |
theorem group_right_inverse: "x [*] invers x = (one::'a::group)" |
10134 | 35 |
proof - |
11072 | 36 |
have "x [*] invers x = one [*] (x [*] invers x)" |
17274
746bb4c56800
axclass: name space prefix is now "c_class" instead of just "c";
wenzelm
parents:
16417
diff
changeset
|
37 |
by (simp only: group_class.left_unit) |
11072 | 38 |
also have "... = one [*] x [*] invers x" |
17274
746bb4c56800
axclass: name space prefix is now "c_class" instead of just "c";
wenzelm
parents:
16417
diff
changeset
|
39 |
by (simp only: semigroup_class.assoc) |
11072 | 40 |
also have "... = invers (invers x) [*] invers x [*] x [*] invers x" |
17274
746bb4c56800
axclass: name space prefix is now "c_class" instead of just "c";
wenzelm
parents:
16417
diff
changeset
|
41 |
by (simp only: group_class.left_inverse) |
11072 | 42 |
also have "... = invers (invers x) [*] (invers x [*] x) [*] invers x" |
17274
746bb4c56800
axclass: name space prefix is now "c_class" instead of just "c";
wenzelm
parents:
16417
diff
changeset
|
43 |
by (simp only: semigroup_class.assoc) |
11072 | 44 |
also have "... = invers (invers x) [*] one [*] invers x" |
17274
746bb4c56800
axclass: name space prefix is now "c_class" instead of just "c";
wenzelm
parents:
16417
diff
changeset
|
45 |
by (simp only: group_class.left_inverse) |
11072 | 46 |
also have "... = invers (invers x) [*] (one [*] invers x)" |
17274
746bb4c56800
axclass: name space prefix is now "c_class" instead of just "c";
wenzelm
parents:
16417
diff
changeset
|
47 |
by (simp only: semigroup_class.assoc) |
11072 | 48 |
also have "... = invers (invers x) [*] invers x" |
17274
746bb4c56800
axclass: name space prefix is now "c_class" instead of just "c";
wenzelm
parents:
16417
diff
changeset
|
49 |
by (simp only: group_class.left_unit) |
10134 | 50 |
also have "... = one" |
17274
746bb4c56800
axclass: name space prefix is now "c_class" instead of just "c";
wenzelm
parents:
16417
diff
changeset
|
51 |
by (simp only: group_class.left_inverse) |
10134 | 52 |
finally show ?thesis . |
53 |
qed |
|
54 |
||
55 |
theorem group_right_unit: "x [*] one = (x::'a::group)" |
|
56 |
proof - |
|
11072 | 57 |
have "x [*] one = x [*] (invers x [*] x)" |
17274
746bb4c56800
axclass: name space prefix is now "c_class" instead of just "c";
wenzelm
parents:
16417
diff
changeset
|
58 |
by (simp only: group_class.left_inverse) |
11072 | 59 |
also have "... = x [*] invers x [*] x" |
17274
746bb4c56800
axclass: name space prefix is now "c_class" instead of just "c";
wenzelm
parents:
16417
diff
changeset
|
60 |
by (simp only: semigroup_class.assoc) |
10134 | 61 |
also have "... = one [*] x" |
62 |
by (simp only: group_right_inverse) |
|
63 |
also have "... = x" |
|
17274
746bb4c56800
axclass: name space prefix is now "c_class" instead of just "c";
wenzelm
parents:
16417
diff
changeset
|
64 |
by (simp only: group_class.left_unit) |
10134 | 65 |
finally show ?thesis . |
66 |
qed |
|
67 |
||
68 |
||
69 |
subsection {* Abstract instantiation *} |
|
70 |
||
71 |
instance monoid < semigroup |
|
72 |
proof intro_classes |
|
73 |
fix x y z :: "'a::monoid" |
|
74 |
show "x [*] y [*] z = x [*] (y [*] z)" |
|
17274
746bb4c56800
axclass: name space prefix is now "c_class" instead of just "c";
wenzelm
parents:
16417
diff
changeset
|
75 |
by (rule monoid_class.assoc) |
10134 | 76 |
qed |
77 |
||
78 |
instance group < monoid |
|
79 |
proof intro_classes |
|
80 |
fix x y z :: "'a::group" |
|
81 |
show "x [*] y [*] z = x [*] (y [*] z)" |
|
17274
746bb4c56800
axclass: name space prefix is now "c_class" instead of just "c";
wenzelm
parents:
16417
diff
changeset
|
82 |
by (rule semigroup_class.assoc) |
10134 | 83 |
show "one [*] x = x" |
17274
746bb4c56800
axclass: name space prefix is now "c_class" instead of just "c";
wenzelm
parents:
16417
diff
changeset
|
84 |
by (rule group_class.left_unit) |
10134 | 85 |
show "x [*] one = x" |
86 |
by (rule group_right_unit) |
|
87 |
qed |
|
88 |
||
89 |
||
90 |
subsection {* Concrete instantiation *} |
|
91 |
||
92 |
defs (overloaded) |
|
93 |
times_bool_def: "x [*] y == x ~= (y::bool)" |
|
11072 | 94 |
inverse_bool_def: "invers x == x::bool" |
10134 | 95 |
unit_bool_def: "one == False" |
96 |
||
97 |
instance bool :: agroup |
|
98 |
proof (intro_classes, |
|
99 |
unfold times_bool_def inverse_bool_def unit_bool_def) |
|
100 |
fix x y z |
|
101 |
show "((x ~= y) ~= z) = (x ~= (y ~= z))" by blast |
|
102 |
show "(False ~= x) = x" by blast |
|
103 |
show "(x ~= x) = False" by blast |
|
104 |
show "(x ~= y) = (y ~= x)" by blast |
|
105 |
qed |
|
106 |
||
107 |
||
108 |
subsection {* Lifting and Functors *} |
|
109 |
||
110 |
defs (overloaded) |
|
111 |
times_prod_def: "p [*] q == (fst p [*] fst q, snd p [*] snd q)" |
|
112 |
||
113 |
instance * :: (semigroup, semigroup) semigroup |
|
114 |
proof (intro_classes, unfold times_prod_def) |
|
115 |
fix p q r :: "'a::semigroup * 'b::semigroup" |
|
116 |
show |
|
117 |
"(fst (fst p [*] fst q, snd p [*] snd q) [*] fst r, |
|
118 |
snd (fst p [*] fst q, snd p [*] snd q) [*] snd r) = |
|
119 |
(fst p [*] fst (fst q [*] fst r, snd q [*] snd r), |
|
120 |
snd p [*] snd (fst q [*] fst r, snd q [*] snd r))" |
|
17274
746bb4c56800
axclass: name space prefix is now "c_class" instead of just "c";
wenzelm
parents:
16417
diff
changeset
|
121 |
by (simp add: semigroup_class.assoc) |
10134 | 122 |
qed |
123 |
||
124 |
end |