| 
15381
 | 
     1  | 
(*  ID:         $Id$
  | 
| 
1475
 | 
     2  | 
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
923
 | 
     3  | 
    Copyright   1994  University of Cambridge
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
*)
  | 
| 
 | 
     6  | 
  | 
| 
15386
 | 
     7  | 
header{*Greatest Fixed Points and the Knaster-Tarski Theorem*}
 | 
| 
15381
 | 
     8  | 
  | 
| 
 | 
     9  | 
theory Gfp
  | 
| 
15140
 | 
    10  | 
imports Lfp
  | 
| 
15131
 | 
    11  | 
begin
  | 
| 
1558
 | 
    12  | 
  | 
| 
 | 
    13  | 
constdefs
  | 
| 
14169
 | 
    14  | 
  gfp :: "['a set=>'a set] => 'a set"
  | 
| 
15381
 | 
    15  | 
    "gfp(f) == Union({u. u \<subseteq> f(u)})"
 | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
  | 
| 
 | 
    18  | 
  | 
| 
15386
 | 
    19  | 
subsection{*Proof of Knaster-Tarski Theorem using @{term gfp}*}
 | 
| 
15381
 | 
    20  | 
  | 
| 
 | 
    21  | 
  | 
| 
15386
 | 
    22  | 
text{*@{term "gfp f"} is the greatest lower bound of 
 | 
| 
15381
 | 
    23  | 
      the set @{term "{u. u \<subseteq> f(u)}"} *}
 | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
lemma gfp_upperbound: "[| X \<subseteq> f(X) |] ==> X \<subseteq> gfp(f)"
  | 
| 
 | 
    26  | 
by (auto simp add: gfp_def)
  | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
lemma gfp_least: "[| !!u. u \<subseteq> f(u) ==> u\<subseteq>X |] ==> gfp(f) \<subseteq> X"
  | 
| 
 | 
    29  | 
by (auto simp add: gfp_def)
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
lemma gfp_lemma2: "mono(f) ==> gfp(f) \<subseteq> f(gfp(f))"
  | 
| 
 | 
    32  | 
by (rules intro: gfp_least subset_trans monoD gfp_upperbound)
  | 
| 
 | 
    33  | 
  | 
| 
 | 
    34  | 
lemma gfp_lemma3: "mono(f) ==> f(gfp(f)) \<subseteq> gfp(f)"
  | 
| 
 | 
    35  | 
by (rules intro: gfp_lemma2 monoD gfp_upperbound)
  | 
| 
 | 
    36  | 
  | 
| 
 | 
    37  | 
lemma gfp_unfold: "mono(f) ==> gfp(f) = f(gfp(f))"
  | 
| 
 | 
    38  | 
by (rules intro: equalityI gfp_lemma2 gfp_lemma3)
  | 
| 
 | 
    39  | 
  | 
| 
 | 
    40  | 
subsection{*Coinduction rules for greatest fixed points*}
 | 
| 
 | 
    41  | 
  | 
| 
 | 
    42  | 
text{*weak version*}
 | 
| 
 | 
    43  | 
lemma weak_coinduct: "[| a: X;  X \<subseteq> f(X) |] ==> a : gfp(f)"
  | 
| 
 | 
    44  | 
by (rule gfp_upperbound [THEN subsetD], auto)
  | 
| 
 | 
    45  | 
  | 
| 
 | 
    46  | 
lemma weak_coinduct_image: "!!X. [| a : X; g`X \<subseteq> f (g`X) |] ==> g a : gfp f"
  | 
| 
 | 
    47  | 
apply (erule gfp_upperbound [THEN subsetD])
  | 
| 
 | 
    48  | 
apply (erule imageI)
  | 
| 
 | 
    49  | 
done
  | 
| 
 | 
    50  | 
  | 
| 
 | 
    51  | 
lemma coinduct_lemma:
  | 
| 
 | 
    52  | 
     "[| X \<subseteq> f(X Un gfp(f));  mono(f) |] ==> X Un gfp(f) \<subseteq> f(X Un gfp(f))"
  | 
| 
 | 
    53  | 
by (blast dest: gfp_lemma2 mono_Un)
  | 
| 
 | 
    54  | 
  | 
| 
 | 
    55  | 
text{*strong version, thanks to Coen and Frost*}
 | 
| 
 | 
    56  | 
lemma coinduct: "[| mono(f);  a: X;  X \<subseteq> f(X Un gfp(f)) |] ==> a : gfp(f)"
  | 
| 
 | 
    57  | 
by (blast intro: weak_coinduct [OF _ coinduct_lemma])
  | 
| 
 | 
    58  | 
  | 
| 
 | 
    59  | 
lemma gfp_fun_UnI2: "[| mono(f);  a: gfp(f) |] ==> a: f(X Un gfp(f))"
  | 
| 
 | 
    60  | 
by (blast dest: gfp_lemma2 mono_Un)
  | 
| 
 | 
    61  | 
  | 
| 
 | 
    62  | 
subsection{*Even Stronger Coinduction Rule, by Martin Coen*}
 | 
| 
 | 
    63  | 
  | 
| 
 | 
    64  | 
text{* Weakens the condition @{term "X \<subseteq> f(X)"} to one expressed using both
 | 
| 
 | 
    65  | 
  @{term lfp} and @{term gfp}*}
 | 
| 
 | 
    66  | 
  | 
| 
 | 
    67  | 
lemma coinduct3_mono_lemma: "mono(f) ==> mono(%x. f(x) Un X Un B)"
  | 
| 
 | 
    68  | 
by (rules intro: subset_refl monoI Un_mono monoD)
  | 
| 
 | 
    69  | 
  | 
| 
 | 
    70  | 
lemma coinduct3_lemma:
  | 
| 
 | 
    71  | 
     "[| X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f)));  mono(f) |]
  | 
| 
 | 
    72  | 
      ==> lfp(%x. f(x) Un X Un gfp(f)) \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f)))"
  | 
| 
 | 
    73  | 
apply (rule subset_trans)
  | 
| 
 | 
    74  | 
apply (erule coinduct3_mono_lemma [THEN lfp_lemma3])
  | 
| 
 | 
    75  | 
apply (rule Un_least [THEN Un_least])
  | 
| 
 | 
    76  | 
apply (rule subset_refl, assumption)
  | 
| 
 | 
    77  | 
apply (rule gfp_unfold [THEN equalityD1, THEN subset_trans], assumption)
  | 
| 
 | 
    78  | 
apply (rule monoD, assumption)
  | 
| 
 | 
    79  | 
apply (subst coinduct3_mono_lemma [THEN lfp_unfold], auto)
  | 
| 
 | 
    80  | 
done
  | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
lemma coinduct3: 
  | 
| 
 | 
    83  | 
  "[| mono(f);  a:X;  X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f))) |] ==> a : gfp(f)"
  | 
| 
 | 
    84  | 
apply (rule coinduct3_lemma [THEN [2] weak_coinduct])
  | 
| 
 | 
    85  | 
apply (rule coinduct3_mono_lemma [THEN lfp_unfold, THEN ssubst], auto)
  | 
| 
 | 
    86  | 
done
  | 
| 
 | 
    87  | 
  | 
| 
 | 
    88  | 
  | 
| 
 | 
    89  | 
text{*Definition forms of @{text gfp_unfold} and @{text coinduct}, 
 | 
| 
 | 
    90  | 
    to control unfolding*}
  | 
| 
 | 
    91  | 
  | 
| 
 | 
    92  | 
lemma def_gfp_unfold: "[| A==gfp(f);  mono(f) |] ==> A = f(A)"
  | 
| 
 | 
    93  | 
by (auto intro!: gfp_unfold)
  | 
| 
 | 
    94  | 
  | 
| 
 | 
    95  | 
lemma def_coinduct:
  | 
| 
 | 
    96  | 
     "[| A==gfp(f);  mono(f);  a:X;  X \<subseteq> f(X Un A) |] ==> a: A"
  | 
| 
 | 
    97  | 
by (auto intro!: coinduct)
  | 
| 
 | 
    98  | 
  | 
| 
 | 
    99  | 
(*The version used in the induction/coinduction package*)
  | 
| 
 | 
   100  | 
lemma def_Collect_coinduct:
  | 
| 
 | 
   101  | 
    "[| A == gfp(%w. Collect(P(w)));  mono(%w. Collect(P(w)));   
  | 
| 
 | 
   102  | 
        a: X;  !!z. z: X ==> P (X Un A) z |] ==>  
  | 
| 
 | 
   103  | 
     a : A"
  | 
| 
 | 
   104  | 
apply (erule def_coinduct, auto) 
  | 
| 
 | 
   105  | 
done
  | 
| 
 | 
   106  | 
  | 
| 
 | 
   107  | 
lemma def_coinduct3:
  | 
| 
 | 
   108  | 
    "[| A==gfp(f); mono(f);  a:X;  X \<subseteq> f(lfp(%x. f(x) Un X Un A)) |] ==> a: A"
  | 
| 
 | 
   109  | 
by (auto intro!: coinduct3)
  | 
| 
 | 
   110  | 
  | 
| 
 | 
   111  | 
text{*Monotonicity of @{term gfp}!*}
 | 
| 
 | 
   112  | 
lemma gfp_mono: "[| !!Z. f(Z)\<subseteq>g(Z) |] ==> gfp(f) \<subseteq> gfp(g)"
  | 
| 
 | 
   113  | 
by (rule gfp_upperbound [THEN gfp_least], blast)
  | 
| 
 | 
   114  | 
  | 
| 
 | 
   115  | 
  | 
| 
 | 
   116  | 
ML
  | 
| 
 | 
   117  | 
{*
 | 
| 
 | 
   118  | 
val gfp_def = thm "gfp_def";
  | 
| 
 | 
   119  | 
val gfp_upperbound = thm "gfp_upperbound";
  | 
| 
 | 
   120  | 
val gfp_least = thm "gfp_least";
  | 
| 
 | 
   121  | 
val gfp_unfold = thm "gfp_unfold";
  | 
| 
 | 
   122  | 
val weak_coinduct = thm "weak_coinduct";
  | 
| 
 | 
   123  | 
val weak_coinduct_image = thm "weak_coinduct_image";
  | 
| 
 | 
   124  | 
val coinduct = thm "coinduct";
  | 
| 
 | 
   125  | 
val gfp_fun_UnI2 = thm "gfp_fun_UnI2";
  | 
| 
 | 
   126  | 
val coinduct3 = thm "coinduct3";
  | 
| 
 | 
   127  | 
val def_gfp_unfold = thm "def_gfp_unfold";
  | 
| 
 | 
   128  | 
val def_coinduct = thm "def_coinduct";
  | 
| 
 | 
   129  | 
val def_Collect_coinduct = thm "def_Collect_coinduct";
  | 
| 
 | 
   130  | 
val def_coinduct3 = thm "def_coinduct3";
  | 
| 
 | 
   131  | 
val gfp_mono = thm "gfp_mono";
  | 
| 
 | 
   132  | 
*}
  | 
| 
 | 
   133  | 
  | 
| 
1558
 | 
   134  | 
  | 
| 
923
 | 
   135  | 
end
  |