| 5078 |      1 | (*  Title:      HOL/Integ/Ring.ML
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author:     Tobias Nipkow
 | 
|  |      4 |     Copyright   1996 TU Muenchen
 | 
|  |      5 | 
 | 
|  |      6 | Derives a few equational consequences about rings
 | 
|  |      7 | and defines cring_simpl, a simplification tactic for commutative rings.
 | 
|  |      8 | *)
 | 
|  |      9 | 
 | 
|  |     10 | Goal "!!x::'a::cring. x*(y*z)=y*(x*z)";
 | 
|  |     11 | by (rtac trans 1);
 | 
|  |     12 | by (rtac times_commute 1);
 | 
|  |     13 | by (rtac trans 1);
 | 
|  |     14 | by (rtac times_assoc 1);
 | 
|  |     15 | by (simp_tac (HOL_basic_ss addsimps [times_commute]) 1);
 | 
|  |     16 | qed "times_commuteL";
 | 
|  |     17 | 
 | 
|  |     18 | val times_cong = read_instantiate [("f1","op *")] (arg_cong RS cong);
 | 
|  |     19 | 
 | 
|  |     20 | Goal "!!x::'a::ring. zero*x = zero";
 | 
|  |     21 | by (rtac trans 1);
 | 
|  |     22 |  by (rtac right_inv 2);
 | 
|  |     23 | by (rtac trans 1);
 | 
|  |     24 |  by (rtac plus_cong 2);
 | 
|  |     25 |   by (rtac refl 3);
 | 
|  |     26 |  by (rtac trans 2);
 | 
|  |     27 |   by (rtac times_cong 3);
 | 
|  |     28 |    by (rtac zeroL 3);
 | 
|  |     29 |   by (rtac refl 3);
 | 
|  |     30 |  by (rtac (distribR RS sym) 2);
 | 
|  |     31 | by (rtac trans 1);
 | 
|  |     32 |  by (rtac (plus_assoc RS sym) 2);
 | 
|  |     33 | by (rtac trans 1);
 | 
|  |     34 |  by (rtac plus_cong 2);
 | 
|  |     35 |   by (rtac refl 2);
 | 
|  |     36 |  by (rtac (right_inv RS sym) 2);
 | 
|  |     37 | by (rtac (zeroR RS sym) 1);
 | 
|  |     38 | qed "mult_zeroL";
 | 
|  |     39 | 
 | 
|  |     40 | Goal "!!x::'a::ring. x*zero = zero";
 | 
|  |     41 | by (rtac trans 1);
 | 
|  |     42 |  by (rtac right_inv 2);
 | 
|  |     43 | by (rtac trans 1);
 | 
|  |     44 |  by (rtac plus_cong 2);
 | 
|  |     45 |   by (rtac refl 3);
 | 
|  |     46 |  by (rtac trans 2);
 | 
|  |     47 |   by (rtac times_cong 3);
 | 
|  |     48 |    by (rtac zeroL 4);
 | 
|  |     49 |   by (rtac refl 3);
 | 
|  |     50 |  by (rtac (distribL RS sym) 2);
 | 
|  |     51 | by (rtac trans 1);
 | 
|  |     52 |  by (rtac (plus_assoc RS sym) 2);
 | 
|  |     53 | by (rtac trans 1);
 | 
|  |     54 |  by (rtac plus_cong 2);
 | 
|  |     55 |   by (rtac refl 2);
 | 
|  |     56 |  by (rtac (right_inv RS sym) 2);
 | 
|  |     57 | by (rtac (zeroR RS sym) 1);
 | 
|  |     58 | qed "mult_zeroR";
 | 
|  |     59 | 
 | 
|  |     60 | Goal "!!x::'a::ring. (zero-x)*y = zero-(x*y)";
 | 
|  |     61 | by (rtac trans 1);
 | 
|  |     62 |  by (rtac zeroL 2);
 | 
|  |     63 | by (rtac trans 1);
 | 
|  |     64 |  by (rtac plus_cong 2);
 | 
|  |     65 |   by (rtac refl 3);
 | 
|  |     66 |  by (rtac mult_zeroL 2);
 | 
|  |     67 | by (rtac trans 1);
 | 
|  |     68 |  by (rtac plus_cong 2);
 | 
|  |     69 |   by (rtac refl 3);
 | 
|  |     70 |  by (rtac times_cong 2);
 | 
|  |     71 |   by (rtac left_inv 2);
 | 
|  |     72 |  by (rtac refl 2);
 | 
|  |     73 | by (rtac trans 1);
 | 
|  |     74 |  by (rtac plus_cong 2);
 | 
|  |     75 |   by (rtac refl 3);
 | 
|  |     76 |  by (rtac (distribR RS sym) 2);
 | 
|  |     77 | by (rtac trans 1);
 | 
|  |     78 |  by (rtac (plus_assoc RS sym) 2);
 | 
|  |     79 | by (rtac trans 1);
 | 
|  |     80 |  by (rtac plus_cong 2);
 | 
|  |     81 |   by (rtac refl 2);
 | 
|  |     82 |  by (rtac (right_inv RS sym) 2);
 | 
|  |     83 | by (rtac (zeroR RS sym) 1);
 | 
|  |     84 | qed "mult_invL";
 | 
|  |     85 | 
 | 
|  |     86 | Goal "!!x::'a::ring. x*(zero-y) = zero-(x*y)";
 | 
|  |     87 | by (rtac trans 1);
 | 
|  |     88 |  by (rtac zeroL 2);
 | 
|  |     89 | by (rtac trans 1);
 | 
|  |     90 |  by (rtac plus_cong 2);
 | 
|  |     91 |   by (rtac refl 3);
 | 
|  |     92 |  by (rtac mult_zeroR 2);
 | 
|  |     93 | by (rtac trans 1);
 | 
|  |     94 |  by (rtac plus_cong 2);
 | 
|  |     95 |   by (rtac refl 3);
 | 
|  |     96 |  by (rtac times_cong 2);
 | 
|  |     97 |   by (rtac refl 2);
 | 
|  |     98 |  by (rtac left_inv 2);
 | 
|  |     99 | by (rtac trans 1);
 | 
|  |    100 |  by (rtac plus_cong 2);
 | 
|  |    101 |   by (rtac refl 3);
 | 
|  |    102 |  by (rtac (distribL RS sym) 2);
 | 
|  |    103 | by (rtac trans 1);
 | 
|  |    104 |  by (rtac (plus_assoc RS sym) 2);
 | 
|  |    105 | by (rtac trans 1);
 | 
|  |    106 |  by (rtac plus_cong 2);
 | 
|  |    107 |   by (rtac refl 2);
 | 
|  |    108 |  by (rtac (right_inv RS sym) 2);
 | 
|  |    109 | by (rtac (zeroR RS sym) 1);
 | 
|  |    110 | qed "mult_invR";
 | 
|  |    111 | 
 | 
|  |    112 | Goal "x*(y-z) = (x*y - x*z::'a::ring)";
 | 
|  |    113 | by (mk_group1_tac 1);
 | 
|  |    114 | by (simp_tac (HOL_basic_ss addsimps [distribL,mult_invR]) 1);
 | 
|  |    115 | qed "minus_distribL";
 | 
|  |    116 | 
 | 
|  |    117 | Goal "(x-y)*z = (x*z - y*z::'a::ring)";
 | 
|  |    118 | by (mk_group1_tac 1);
 | 
|  |    119 | by (simp_tac (HOL_basic_ss addsimps [distribR,mult_invL]) 1);
 | 
|  |    120 | qed "minus_distribR";
 | 
|  |    121 | 
 | 
|  |    122 | val cring_simps = [times_assoc,times_commute,times_commuteL,
 | 
|  |    123 |                    distribL,distribR,minus_distribL,minus_distribR]
 | 
|  |    124 |                   @ agroup2_simps;
 | 
|  |    125 | 
 | 
|  |    126 | val cring_tac =
 | 
|  |    127 |   let val ss = HOL_basic_ss addsimps cring_simps
 | 
|  |    128 |   in simp_tac ss end;
 | 
|  |    129 | 
 | 
|  |    130 | 
 | 
|  |    131 | (*** The order [minus_plusL3,minus_plusL2] is important because minus_plusL3
 | 
|  |    132 |      MUST be tried first
 | 
|  |    133 | val cring_simp =
 | 
|  |    134 |   let val phase1 = simpset() addsimps
 | 
|  |    135 |                    [plus_minusL,minus_plusR,minus_minusR,plus_minusR]
 | 
|  |    136 |       val phase2 = HOL_ss addsimps [minus_plusL3,minus_plusL2,
 | 
|  |    137 |                                     zeroL,zeroR,mult_zeroL,mult_zeroR]
 | 
|  |    138 |   in simp_tac phase1 THEN' simp_tac phase2 end;
 | 
|  |    139 | ***)
 |