420
|
1 |
(* Title: LCF/ex.ML
|
0
|
2 |
ID: $Id$
|
420
|
3 |
Author: Tobias Nipkow
|
0
|
4 |
Copyright 1991 University of Cambridge
|
|
5 |
|
|
6 |
Some examples from Lawrence Paulson's book Logic and Computation.
|
|
7 |
*)
|
|
8 |
|
|
9 |
|
420
|
10 |
LCF_build_completed; (*Cause examples to fail if LCF did*)
|
0
|
11 |
|
|
12 |
proof_timing := true;
|
|
13 |
|
|
14 |
(*** Section 10.4 ***)
|
|
15 |
|
420
|
16 |
val ex_thy =
|
|
17 |
thy
|
|
18 |
|> add_consts
|
|
19 |
[("P", "'a => tr", NoSyn),
|
|
20 |
("G", "'a => 'a", NoSyn),
|
|
21 |
("H", "'a => 'a", NoSyn),
|
|
22 |
("K", "('a => 'a) => ('a => 'a)", NoSyn)]
|
|
23 |
|> add_axioms
|
|
24 |
[("P_strict", "P(UU) = UU"),
|
|
25 |
("K", "K = (%h x. P(x) => x | h(h(G(x))))"),
|
|
26 |
("H", "H = FIX(K)")]
|
|
27 |
|> add_thyname "Ex 10.4";
|
|
28 |
|
0
|
29 |
val ax = get_axiom ex_thy;
|
|
30 |
|
|
31 |
val P_strict = ax"P_strict";
|
|
32 |
val K = ax"K";
|
|
33 |
val H = ax"H";
|
|
34 |
|
|
35 |
val ex_ss = LCF_ss addsimps [P_strict,K];
|
|
36 |
|
|
37 |
|
|
38 |
val H_unfold = prove_goal ex_thy "H = K(H)"
|
|
39 |
(fn _ => [stac H 1, rtac (FIX_eq RS sym) 1]);
|
|
40 |
|
|
41 |
val H_strict = prove_goal ex_thy "H(UU)=UU"
|
|
42 |
(fn _ => [stac H_unfold 1, simp_tac ex_ss 1]);
|
|
43 |
|
|
44 |
val ex_ss = ex_ss addsimps [H_strict];
|
|
45 |
|
|
46 |
goal ex_thy "ALL x. H(FIX(K,x)) = FIX(K,x)";
|
|
47 |
by(induct_tac "K" 1);
|
|
48 |
by(simp_tac ex_ss 1);
|
|
49 |
by(simp_tac (ex_ss setloop (split_tac [COND_cases_iff])) 1);
|
|
50 |
by(strip_tac 1);
|
|
51 |
by(stac H_unfold 1);
|
|
52 |
by(asm_simp_tac ex_ss 1);
|
|
53 |
val H_idemp_lemma = topthm();
|
|
54 |
|
|
55 |
val H_idemp = rewrite_rule [mk_meta_eq (H RS sym)] H_idemp_lemma;
|
|
56 |
|
|
57 |
|
|
58 |
(*** Example 3.8 ***)
|
|
59 |
|
420
|
60 |
val ex_thy =
|
|
61 |
thy
|
|
62 |
|> add_consts
|
|
63 |
[("P", "'a => tr", NoSyn),
|
|
64 |
("F", "'a => 'a", NoSyn),
|
|
65 |
("G", "'a => 'a", NoSyn),
|
|
66 |
("H", "'a => 'b => 'b", NoSyn),
|
|
67 |
("K", "('a => 'b => 'b) => ('a => 'b => 'b)", NoSyn)]
|
|
68 |
|> add_axioms
|
|
69 |
[("F_strict", "F(UU) = UU"),
|
|
70 |
("K", "K = (%h x y. P(x) => y | F(h(G(x),y)))"),
|
|
71 |
("H", "H = FIX(K)")]
|
|
72 |
|> add_thyname "Ex 3.8";
|
|
73 |
|
0
|
74 |
val ax = get_axiom ex_thy;
|
|
75 |
|
|
76 |
val F_strict = ax"F_strict";
|
|
77 |
val K = ax"K";
|
|
78 |
val H = ax"H";
|
|
79 |
|
|
80 |
val ex_ss = LCF_ss addsimps [F_strict,K];
|
|
81 |
|
|
82 |
goal ex_thy "ALL x. F(H(x::'a,y::'b)) = H(x,F(y))";
|
|
83 |
by(stac H 1);
|
|
84 |
by(induct_tac "K::('a=>'b=>'b)=>('a=>'b=>'b)" 1);
|
|
85 |
by(simp_tac ex_ss 1);
|
|
86 |
by(asm_simp_tac (ex_ss setloop (split_tac [COND_cases_iff])) 1);
|
|
87 |
result();
|
|
88 |
|
|
89 |
|
|
90 |
(*** Addition with fixpoint of successor ***)
|
|
91 |
|
420
|
92 |
val ex_thy =
|
|
93 |
thy
|
|
94 |
|> add_consts
|
|
95 |
[("s", "'a => 'a", NoSyn),
|
|
96 |
("p", "'a => 'a => 'a", NoSyn)]
|
|
97 |
|> add_axioms
|
|
98 |
[("p_strict", "p(UU) = UU"),
|
|
99 |
("p_s", "p(s(x),y) = s(p(x,y))")]
|
|
100 |
|> add_thyname "fix ex";
|
|
101 |
|
0
|
102 |
val ax = get_axiom ex_thy;
|
|
103 |
|
|
104 |
val p_strict = ax"p_strict";
|
|
105 |
val p_s = ax"p_s";
|
|
106 |
|
|
107 |
val ex_ss = LCF_ss addsimps [p_strict,p_s];
|
|
108 |
|
|
109 |
goal ex_thy "p(FIX(s),y) = FIX(s)";
|
|
110 |
by(induct_tac "s" 1);
|
|
111 |
by(simp_tac ex_ss 1);
|
|
112 |
by(simp_tac ex_ss 1);
|
|
113 |
result();
|
|
114 |
|
|
115 |
|
|
116 |
(*** Prefixpoints ***)
|
|
117 |
|
|
118 |
val asms = goal thy "[| f(p) << p; !!q. f(q) << q ==> p << q |] ==> FIX(f)=p";
|
|
119 |
by(rewtac eq_def);
|
|
120 |
by (rtac conjI 1);
|
|
121 |
by(induct_tac "f" 1);
|
|
122 |
by (rtac minimal 1);
|
|
123 |
by(strip_tac 1);
|
|
124 |
by (rtac less_trans 1);
|
|
125 |
by (resolve_tac asms 2);
|
|
126 |
by (etac less_ap_term 1);
|
|
127 |
by (resolve_tac asms 1);
|
|
128 |
by (rtac (FIX_eq RS eq_imp_less1) 1);
|
|
129 |
result();
|
|
130 |
|
|
131 |
maketest"END: file for LCF examples";
|