doc-src/TutorialI/Overview/FP1.thy
author nipkow
Fri, 21 Jun 2002 18:40:06 +0200
changeset 13238 a6cb18a25cbb
parent 12631 7648ac4a6b95
child 13250 efd5db7dc7cc
permissions -rw-r--r--
*** empty log message ***
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
     1
(*<*)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     2
theory FP1 = Main:
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
     3
(*>*)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     4
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     5
lemma "if xs = ys
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     6
       then rev xs = rev ys
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     7
       else rev xs \<noteq> rev ys"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     8
by auto
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     9
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    10
lemma "case xs of
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    11
         []   \<Rightarrow> tl xs = xs
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    12
       | y#ys \<Rightarrow> tl xs \<noteq> xs"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    13
apply(case_tac xs)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    14
by auto
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    15
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    16
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    17
subsection{*More Types*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    18
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    19
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    20
subsubsection{*Natural Numbers*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    21
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    22
consts sum :: "nat \<Rightarrow> nat"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    23
primrec "sum 0 = 0"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    24
        "sum (Suc n) = Suc n + sum n"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    25
12631
wenzelm
parents: 11292
diff changeset
    26
lemma "sum n + sum n = n*(Suc n)"
wenzelm
parents: 11292
diff changeset
    27
apply(induct_tac n)
wenzelm
parents: 11292
diff changeset
    28
apply(auto)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    29
done
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    30
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    31
text{*
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    32
Some examples of linear arithmetic:
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    33
*}
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    34
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    35
lemma "\<lbrakk> \<not> m < n; m < n+(1::int) \<rbrakk> \<Longrightarrow> m = n"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    36
by(auto)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    37
12631
wenzelm
parents: 11292
diff changeset
    38
lemma "min i (max j k) = max (min k i) (min i (j::nat))"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    39
by(arith)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    40
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    41
text{*
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    42
Not proved automatically because it involves multiplication:
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    43
*}
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    44
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    45
lemma "n*n = n \<Longrightarrow> n=0 \<or> n=(1::int)"
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    46
(*<*)oops(*>*)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    47
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    48
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    49
subsubsection{*Pairs*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    50
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    51
lemma "fst(x,y) = snd(z,x)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    52
by auto
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    53
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    54
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    55
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    56
subsection{*Definitions*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    57
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    58
consts xor :: "bool \<Rightarrow> bool \<Rightarrow> bool"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    59
defs xor_def: "xor x y \<equiv> x \<and> \<not>y \<or> \<not>x \<and> y"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    60
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    61
constdefs nand :: "bool \<Rightarrow> bool \<Rightarrow> bool"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    62
         "nand x y \<equiv> \<not>(x \<and> y)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    63
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    64
lemma "\<not> xor x x"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    65
apply(unfold xor_def)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    66
by auto
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    67
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    68
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    69
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    70
subsection{*Simplification*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    71
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    72
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    73
subsubsection{*Simplification Rules*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    74
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    75
lemma fst_conv[simp]: "fst(x,y) = x"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    76
by auto
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    77
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    78
text{*
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    79
Setting and resetting the @{text simp} attribute:
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    80
*}
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    81
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    82
declare fst_conv[simp]
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    83
declare fst_conv[simp del]
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    84
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    85
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    86
subsubsection{*The Simplification Method*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    87
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    88
lemma "x*(y+1) = y*(x+1::nat)"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    89
apply simp
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    90
(*<*)oops(*>*)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    91
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    92
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    93
subsubsection{*Adding and Deleting Simplification Rules*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    94
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    95
lemma "\<forall>x::nat. x*(y+z) = r"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    96
apply (simp add: add_mult_distrib2)
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    97
(*<*)oops(*>*)text_raw {* \isanewline\isanewline *}
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    98
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    99
lemma "rev(rev(xs @ [])) = xs"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   100
apply (simp del: rev_rev_ident)
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   101
(*<*)oops(*>*)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   102
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   103
subsubsection{*Assumptions*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   104
12631
wenzelm
parents: 11292
diff changeset
   105
lemma "\<lbrakk> xs @ zs = ys @ xs; [] @ xs = [] @ [] \<rbrakk> \<Longrightarrow> ys = zs"
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   106
by simp
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   107
12631
wenzelm
parents: 11292
diff changeset
   108
lemma "\<forall>x. f x = g (f (g x)) \<Longrightarrow> f [] = f [] @ []"
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   109
by(simp (no_asm))
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   110
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   111
subsubsection{*Rewriting with Definitions*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   112
12631
wenzelm
parents: 11292
diff changeset
   113
lemma "xor A (\<not>A)"
wenzelm
parents: 11292
diff changeset
   114
apply(simp only: xor_def)
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   115
apply simp
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   116
done
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   117
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   118
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   119
subsubsection{*Conditional Equations*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   120
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   121
lemma hd_Cons_tl[simp]: "xs \<noteq> []  \<Longrightarrow>  hd xs # tl xs = xs"
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   122
by(case_tac xs, simp_all)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   123
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   124
lemma "xs \<noteq> [] \<Longrightarrow> hd(rev xs) # tl(rev xs) = rev xs"
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   125
by simp
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   126
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   127
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   128
subsubsection{*Automatic Case Splits*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   129
12631
wenzelm
parents: 11292
diff changeset
   130
lemma "\<forall>xs. if xs = [] then A else B"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   131
apply simp
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   132
(*<*)oops(*>*)text_raw {* \isanewline\isanewline *}
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   133
12631
wenzelm
parents: 11292
diff changeset
   134
lemma "case xs @ [] of [] \<Rightarrow> P | y#ys \<Rightarrow> Q ys y"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   135
apply simp
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   136
apply(simp split: list.split)
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   137
(*<*)oops(*>*)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   138
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   139
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   140
subsubsection{*Arithmetic*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   141
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   142
text{*
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   143
Is simple enough for the default arithmetic:
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   144
*}
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   145
lemma "\<lbrakk> \<not> m < n; m < n+(1::nat) \<rbrakk> \<Longrightarrow> m = n"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   146
by simp
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   147
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   148
text{*
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   149
Contains boolean combinations and needs full arithmetic:
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   150
*}
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   151
lemma "\<not> m < n \<and> m < n+(1::nat) \<Longrightarrow> m = n"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   152
apply simp
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   153
by(arith)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   154
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   155
(*<*)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   156
subsubsection{*Tracing*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   157
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   158
lemma "rev [a] = []"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   159
apply(simp)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   160
oops
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   161
(*>*)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   162
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   163
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   164
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   165
subsection{*Case Study: Compiling Expressions*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   166
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   167
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   168
subsubsection{*Expressions*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   169
12631
wenzelm
parents: 11292
diff changeset
   170
types 'v binop = "'v \<Rightarrow> 'v \<Rightarrow> 'v"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   171
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   172
datatype ('a,'v)expr = Cex 'v
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   173
                     | Vex 'a
12631
wenzelm
parents: 11292
diff changeset
   174
                     | Bex "'v binop"  "('a,'v)expr"  "('a,'v)expr"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   175
12631
wenzelm
parents: 11292
diff changeset
   176
consts value :: "('a,'v)expr \<Rightarrow> ('a \<Rightarrow> 'v) \<Rightarrow> 'v"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   177
primrec
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   178
"value (Cex v) env = v"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   179
"value (Vex a) env = env a"
12631
wenzelm
parents: 11292
diff changeset
   180
"value (Bex f e1 e2) env = f (value e1 env) (value e2 env)"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   181
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   182
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   183
subsubsection{*The Stack Machine*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   184
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   185
datatype ('a,'v) instr = Const 'v
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   186
                       | Load 'a
12631
wenzelm
parents: 11292
diff changeset
   187
                       | Apply "'v binop"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   188
12631
wenzelm
parents: 11292
diff changeset
   189
consts exec :: "('a,'v)instr list \<Rightarrow> ('a\<Rightarrow>'v) \<Rightarrow> 'v list \<Rightarrow> 'v list"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   190
primrec
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   191
"exec [] s vs = vs"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   192
"exec (i#is) s vs = (case i of
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   193
    Const v  \<Rightarrow> exec is s (v#vs)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   194
  | Load a   \<Rightarrow> exec is s ((s a)#vs)
12631
wenzelm
parents: 11292
diff changeset
   195
  | Apply f  \<Rightarrow> exec is s ((f (hd vs) (hd(tl vs)))#(tl(tl vs))))"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   196
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   197
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   198
subsubsection{*The Compiler*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   199
12631
wenzelm
parents: 11292
diff changeset
   200
consts comp :: "('a,'v)expr \<Rightarrow> ('a,'v)instr list"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   201
primrec
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   202
"comp (Cex v)       = [Const v]"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   203
"comp (Vex a)       = [Load a]"
12631
wenzelm
parents: 11292
diff changeset
   204
"comp (Bex f e1 e2) = (comp e2) @ (comp e1) @ [Apply f]"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   205
12631
wenzelm
parents: 11292
diff changeset
   206
theorem "exec (comp e) s [] = [value e s]"
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   207
(*<*)oops(*>*)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   208
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   209
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   210
11236
17403c5a9eb1 *** empty log message ***
nipkow
parents: 11235
diff changeset
   211
subsection{*Advanced Datatypes*}
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   212
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   213
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   214
subsubsection{*Mutual Recursion*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   215
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   216
datatype 'a aexp = IF   "'a bexp" "'a aexp" "'a aexp"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   217
                 | Sum  "'a aexp" "'a aexp"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   218
                 | Var 'a
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   219
                 | Num nat
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   220
and      'a bexp = Less "'a aexp" "'a aexp"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   221
                 | And  "'a bexp" "'a bexp"
12631
wenzelm
parents: 11292
diff changeset
   222
                 | Neg  "'a bexp"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   223
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   224
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   225
consts  evala :: "'a aexp \<Rightarrow> ('a \<Rightarrow> nat) \<Rightarrow> nat"
12631
wenzelm
parents: 11292
diff changeset
   226
        evalb :: "'a bexp \<Rightarrow> ('a \<Rightarrow> nat) \<Rightarrow> bool"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   227
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   228
primrec
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   229
  "evala (IF b a1 a2) env =
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   230
     (if evalb b env then evala a1 env else evala a2 env)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   231
  "evala (Sum a1 a2) env = evala a1 env + evala a2 env"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   232
  "evala (Var v) env = env v"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   233
  "evala (Num n) env = n"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   234
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   235
  "evalb (Less a1 a2) env = (evala a1 env < evala a2 env)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   236
  "evalb (And b1 b2) env = (evalb b1 env \<and> evalb b2 env)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   237
  "evalb (Neg b) env = (\<not> evalb b env)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   238
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   239
consts substa :: "('a \<Rightarrow> 'b aexp) \<Rightarrow> 'a aexp \<Rightarrow> 'b aexp"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   240
       substb :: "('a \<Rightarrow> 'b aexp) \<Rightarrow> 'a bexp \<Rightarrow> 'b bexp"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   241
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   242
primrec
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   243
  "substa s (IF b a1 a2) =
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   244
     IF (substb s b) (substa s a1) (substa s a2)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   245
  "substa s (Sum a1 a2) = Sum (substa s a1) (substa s a2)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   246
  "substa s (Var v) = s v"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   247
  "substa s (Num n) = Num n"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   248
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   249
  "substb s (Less a1 a2) = Less (substa s a1) (substa s a2)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   250
  "substb s (And b1 b2) = And (substb s b1) (substb s b2)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   251
  "substb s (Neg b) = Neg (substb s b)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   252
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   253
lemma substitution_lemma:
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   254
 "evala (substa s a) env = evala a (\<lambda>x. evala (s x) env) \<and>
12631
wenzelm
parents: 11292
diff changeset
   255
  evalb (substb s b) env = evalb b (\<lambda>x. evala (s x) env)"
wenzelm
parents: 11292
diff changeset
   256
apply(induct_tac a and b)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   257
by simp_all
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   258
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   259
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   260
subsubsection{*Nested Recursion*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   261
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   262
datatype tree = C "tree list"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   263
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   264
text{*Some trees:*}
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   265
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   266
term "C []"
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   267
term "C [C [C []], C []]"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   268
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   269
consts
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   270
mirror :: "tree \<Rightarrow> tree"
12631
wenzelm
parents: 11292
diff changeset
   271
mirrors:: "tree list \<Rightarrow> tree list"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   272
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   273
primrec
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   274
  "mirror(C ts) = C(mirrors ts)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   275
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   276
  "mirrors [] = []"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   277
  "mirrors (t # ts) = mirrors ts @ [mirror t]"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   278
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   279
lemma "mirror(mirror t) = t \<and> mirrors(mirrors ts) = ts"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   280
apply(induct_tac t and ts)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   281
apply simp_all
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   282
(*<*)oops(*>*)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   283
11236
17403c5a9eb1 *** empty log message ***
nipkow
parents: 11235
diff changeset
   284
text{*
17403c5a9eb1 *** empty log message ***
nipkow
parents: 11235
diff changeset
   285
\begin{exercise}
17403c5a9eb1 *** empty log message ***
nipkow
parents: 11235
diff changeset
   286
Complete the above proof.
17403c5a9eb1 *** empty log message ***
nipkow
parents: 11235
diff changeset
   287
\end{exercise}
17403c5a9eb1 *** empty log message ***
nipkow
parents: 11235
diff changeset
   288
*}
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   289
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   290
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   291
subsubsection{*Datatypes Involving Functions*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   292
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   293
datatype ('a,'i)bigtree = Tip | Br 'a "'i \<Rightarrow> ('a,'i)bigtree"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   294
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   295
text{*A big tree:*}
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   296
term "Br 0 (\<lambda>i. Br i (\<lambda>n. Tip))"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   297
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   298
consts map_bt :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a,'i)bigtree \<Rightarrow> ('b,'i)bigtree"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   299
primrec
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   300
"map_bt f Tip      = Tip"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   301
"map_bt f (Br a F) = Br (f a) (\<lambda>i. map_bt f (F i))"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   302
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   303
lemma "map_bt (g o f) T = map_bt g (map_bt f T)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   304
apply(induct_tac T, rename_tac[2] F)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   305
apply simp_all
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   306
done
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   307
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   308
text{* This is \emph{not} allowed:
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   309
\begin{verbatim}
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   310
datatype lambda = C "lambda => lambda"
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   311
\end{verbatim}
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   312
*}
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   313
11236
17403c5a9eb1 *** empty log message ***
nipkow
parents: 11235
diff changeset
   314
text{*
17403c5a9eb1 *** empty log message ***
nipkow
parents: 11235
diff changeset
   315
\begin{exercise}
11237
0ef5ecc1fd4d *** empty log message ***
nipkow
parents: 11236
diff changeset
   316
Define a datatype of ordinals and the ordinal $\Gamma_0$.
11236
17403c5a9eb1 *** empty log message ***
nipkow
parents: 11235
diff changeset
   317
\end{exercise}
17403c5a9eb1 *** empty log message ***
nipkow
parents: 11235
diff changeset
   318
*}
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   319
(*<*)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   320
end
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   321
(*>*)