| author | nipkow | 
| Tue, 06 Dec 2011 14:18:24 +0100 | |
| changeset 45771 | a70465244096 | 
| parent 45607 | 16b4f5774621 | 
| child 46026 | 83caa4f4bd56 | 
| permissions | -rw-r--r-- | 
| 30925 | 1 | (* Title: HOL/Nat_Numeral.thy | 
| 23164 | 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 3 | Copyright 1999 University of Cambridge | |
| 4 | *) | |
| 5 | ||
| 30925 | 6 | header {* Binary numerals for the natural numbers *}
 | 
| 23164 | 7 | |
| 30925 | 8 | theory Nat_Numeral | 
| 33296 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
32069diff
changeset | 9 | imports Int | 
| 23164 | 10 | begin | 
| 11 | ||
| 31014 | 12 | subsection {* Numerals for natural numbers *}
 | 
| 13 | ||
| 23164 | 14 | text {*
 | 
| 15 | Arithmetic for naturals is reduced to that for the non-negative integers. | |
| 16 | *} | |
| 17 | ||
| 43531 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 18 | instantiation nat :: number_semiring | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25481diff
changeset | 19 | begin | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25481diff
changeset | 20 | |
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25481diff
changeset | 21 | definition | 
| 32069 
6d28bbd33e2c
prefer code_inline over code_unfold; use code_unfold_post where appropriate
 haftmann parents: 
31998diff
changeset | 22 | nat_number_of_def [code_unfold, code del]: "number_of v = nat (number_of v)" | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25481diff
changeset | 23 | |
| 43531 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 24 | instance proof | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 25 | fix n show "number_of (int n) = (of_nat n :: nat)" | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 26 | unfolding nat_number_of_def number_of_eq by simp | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 27 | qed | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 28 | |
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25481diff
changeset | 29 | end | 
| 23164 | 30 | |
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31790diff
changeset | 31 | lemma [code_post]: | 
| 25965 | 32 | "nat (number_of v) = number_of v" | 
| 33 | unfolding nat_number_of_def .. | |
| 34 | ||
| 31014 | 35 | |
| 36 | subsection {* Special case: squares and cubes *}
 | |
| 37 | ||
| 38 | lemma numeral_2_eq_2: "2 = Suc (Suc 0)" | |
| 39 | by (simp add: nat_number_of_def) | |
| 40 | ||
| 41 | lemma numeral_3_eq_3: "3 = Suc (Suc (Suc 0))" | |
| 42 | by (simp add: nat_number_of_def) | |
| 43 | ||
| 44 | context power | |
| 30960 | 45 | begin | 
| 46 | ||
| 23164 | 47 | abbreviation (xsymbols) | 
| 30960 | 48 |   power2 :: "'a \<Rightarrow> 'a"  ("(_\<twosuperior>)" [1000] 999) where
 | 
| 49 | "x\<twosuperior> \<equiv> x ^ 2" | |
| 23164 | 50 | |
| 51 | notation (latex output) | |
| 29401 
94fd5dd918f5
rename abbreviation square -> power2, to match theorem names
 huffman parents: 
29045diff
changeset | 52 |   power2  ("(_\<twosuperior>)" [1000] 999)
 | 
| 23164 | 53 | |
| 54 | notation (HTML output) | |
| 29401 
94fd5dd918f5
rename abbreviation square -> power2, to match theorem names
 huffman parents: 
29045diff
changeset | 55 |   power2  ("(_\<twosuperior>)" [1000] 999)
 | 
| 23164 | 56 | |
| 30960 | 57 | end | 
| 58 | ||
| 31014 | 59 | context monoid_mult | 
| 60 | begin | |
| 61 | ||
| 62 | lemma power2_eq_square: "a\<twosuperior> = a * a" | |
| 63 | by (simp add: numeral_2_eq_2) | |
| 64 | ||
| 65 | lemma power3_eq_cube: "a ^ 3 = a * a * a" | |
| 66 | by (simp add: numeral_3_eq_3 mult_assoc) | |
| 67 | ||
| 68 | lemma power_even_eq: | |
| 69 | "a ^ (2*n) = (a ^ n) ^ 2" | |
| 35047 
1b2bae06c796
hide fact Nat.add_0_right; make add_0_right from Groups priority
 haftmann parents: 
35043diff
changeset | 70 | by (subst mult_commute) (simp add: power_mult) | 
| 31014 | 71 | |
| 72 | lemma power_odd_eq: | |
| 73 | "a ^ Suc (2*n) = a * (a ^ n) ^ 2" | |
| 74 | by (simp add: power_even_eq) | |
| 75 | ||
| 76 | end | |
| 77 | ||
| 78 | context semiring_1 | |
| 79 | begin | |
| 80 | ||
| 81 | lemma zero_power2 [simp]: "0\<twosuperior> = 0" | |
| 82 | by (simp add: power2_eq_square) | |
| 83 | ||
| 84 | lemma one_power2 [simp]: "1\<twosuperior> = 1" | |
| 85 | by (simp add: power2_eq_square) | |
| 86 | ||
| 87 | end | |
| 88 | ||
| 36823 
001d1aad99de
add lemma power2_eq_1_iff; generalize some other lemmas
 huffman parents: 
36719diff
changeset | 89 | context ring_1 | 
| 31014 | 90 | begin | 
| 91 | ||
| 92 | lemma power2_minus [simp]: | |
| 93 | "(- a)\<twosuperior> = a\<twosuperior>" | |
| 94 | by (simp add: power2_eq_square) | |
| 95 | ||
| 96 | text{*
 | |
| 97 |   We cannot prove general results about the numeral @{term "-1"},
 | |
| 98 |   so we have to use @{term "- 1"} instead.
 | |
| 99 | *} | |
| 100 | ||
| 101 | lemma power_minus1_even [simp]: | |
| 102 | "(- 1) ^ (2*n) = 1" | |
| 103 | proof (induct n) | |
| 104 | case 0 show ?case by simp | |
| 105 | next | |
| 106 | case (Suc n) then show ?case by (simp add: power_add) | |
| 107 | qed | |
| 108 | ||
| 109 | lemma power_minus1_odd: | |
| 110 | "(- 1) ^ Suc (2*n) = - 1" | |
| 111 | by simp | |
| 112 | ||
| 113 | lemma power_minus_even [simp]: | |
| 114 | "(-a) ^ (2*n) = a ^ (2*n)" | |
| 115 | by (simp add: power_minus [of a]) | |
| 116 | ||
| 117 | end | |
| 118 | ||
| 36823 
001d1aad99de
add lemma power2_eq_1_iff; generalize some other lemmas
 huffman parents: 
36719diff
changeset | 119 | context ring_1_no_zero_divisors | 
| 
001d1aad99de
add lemma power2_eq_1_iff; generalize some other lemmas
 huffman parents: 
36719diff
changeset | 120 | begin | 
| 
001d1aad99de
add lemma power2_eq_1_iff; generalize some other lemmas
 huffman parents: 
36719diff
changeset | 121 | |
| 
001d1aad99de
add lemma power2_eq_1_iff; generalize some other lemmas
 huffman parents: 
36719diff
changeset | 122 | lemma zero_eq_power2 [simp]: | 
| 
001d1aad99de
add lemma power2_eq_1_iff; generalize some other lemmas
 huffman parents: 
36719diff
changeset | 123 | "a\<twosuperior> = 0 \<longleftrightarrow> a = 0" | 
| 
001d1aad99de
add lemma power2_eq_1_iff; generalize some other lemmas
 huffman parents: 
36719diff
changeset | 124 | unfolding power2_eq_square by simp | 
| 
001d1aad99de
add lemma power2_eq_1_iff; generalize some other lemmas
 huffman parents: 
36719diff
changeset | 125 | |
| 36964 | 126 | lemma power2_eq_1_iff: | 
| 36823 
001d1aad99de
add lemma power2_eq_1_iff; generalize some other lemmas
 huffman parents: 
36719diff
changeset | 127 | "a\<twosuperior> = 1 \<longleftrightarrow> a = 1 \<or> a = - 1" | 
| 36964 | 128 | unfolding power2_eq_square by (rule square_eq_1_iff) | 
| 36823 
001d1aad99de
add lemma power2_eq_1_iff; generalize some other lemmas
 huffman parents: 
36719diff
changeset | 129 | |
| 
001d1aad99de
add lemma power2_eq_1_iff; generalize some other lemmas
 huffman parents: 
36719diff
changeset | 130 | end | 
| 
001d1aad99de
add lemma power2_eq_1_iff; generalize some other lemmas
 huffman parents: 
36719diff
changeset | 131 | |
| 44345 | 132 | context idom | 
| 133 | begin | |
| 134 | ||
| 135 | lemma power2_eq_iff: "x\<twosuperior> = y\<twosuperior> \<longleftrightarrow> x = y \<or> x = - y" | |
| 136 | unfolding power2_eq_square by (rule square_eq_iff) | |
| 137 | ||
| 138 | end | |
| 139 | ||
| 35631 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35216diff
changeset | 140 | context linordered_ring | 
| 31014 | 141 | begin | 
| 142 | ||
| 143 | lemma sum_squares_ge_zero: | |
| 144 | "0 \<le> x * x + y * y" | |
| 145 | by (intro add_nonneg_nonneg zero_le_square) | |
| 146 | ||
| 147 | lemma not_sum_squares_lt_zero: | |
| 148 | "\<not> x * x + y * y < 0" | |
| 149 | by (simp add: not_less sum_squares_ge_zero) | |
| 150 | ||
| 35631 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35216diff
changeset | 151 | end | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35216diff
changeset | 152 | |
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35216diff
changeset | 153 | context linordered_ring_strict | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35216diff
changeset | 154 | begin | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35216diff
changeset | 155 | |
| 31014 | 156 | lemma sum_squares_eq_zero_iff: | 
| 157 | "x * x + y * y = 0 \<longleftrightarrow> x = 0 \<and> y = 0" | |
| 31034 | 158 | by (simp add: add_nonneg_eq_0_iff) | 
| 31014 | 159 | |
| 160 | lemma sum_squares_le_zero_iff: | |
| 161 | "x * x + y * y \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0" | |
| 162 | by (simp add: le_less not_sum_squares_lt_zero sum_squares_eq_zero_iff) | |
| 163 | ||
| 164 | lemma sum_squares_gt_zero_iff: | |
| 165 | "0 < x * x + y * y \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0" | |
| 35631 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35216diff
changeset | 166 | by (simp add: not_le [symmetric] sum_squares_le_zero_iff) | 
| 31014 | 167 | |
| 168 | end | |
| 169 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33342diff
changeset | 170 | context linordered_semidom | 
| 31014 | 171 | begin | 
| 172 | ||
| 173 | lemma power2_le_imp_le: | |
| 174 | "x\<twosuperior> \<le> y\<twosuperior> \<Longrightarrow> 0 \<le> y \<Longrightarrow> x \<le> y" | |
| 175 | unfolding numeral_2_eq_2 by (rule power_le_imp_le_base) | |
| 176 | ||
| 177 | lemma power2_less_imp_less: | |
| 178 | "x\<twosuperior> < y\<twosuperior> \<Longrightarrow> 0 \<le> y \<Longrightarrow> x < y" | |
| 179 | by (rule power_less_imp_less_base) | |
| 180 | ||
| 181 | lemma power2_eq_imp_eq: | |
| 182 | "x\<twosuperior> = y\<twosuperior> \<Longrightarrow> 0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> x = y" | |
| 183 | unfolding numeral_2_eq_2 by (erule (2) power_eq_imp_eq_base) simp | |
| 184 | ||
| 185 | end | |
| 186 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33342diff
changeset | 187 | context linordered_idom | 
| 31014 | 188 | begin | 
| 189 | ||
| 190 | lemma zero_le_power2 [simp]: | |
| 191 | "0 \<le> a\<twosuperior>" | |
| 192 | by (simp add: power2_eq_square) | |
| 193 | ||
| 194 | lemma zero_less_power2 [simp]: | |
| 195 | "0 < a\<twosuperior> \<longleftrightarrow> a \<noteq> 0" | |
| 196 | by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff) | |
| 197 | ||
| 198 | lemma power2_less_0 [simp]: | |
| 199 | "\<not> a\<twosuperior> < 0" | |
| 200 | by (force simp add: power2_eq_square mult_less_0_iff) | |
| 201 | ||
| 202 | lemma abs_power2 [simp]: | |
| 203 | "abs (a\<twosuperior>) = a\<twosuperior>" | |
| 204 | by (simp add: power2_eq_square abs_mult abs_mult_self) | |
| 205 | ||
| 206 | lemma power2_abs [simp]: | |
| 207 | "(abs a)\<twosuperior> = a\<twosuperior>" | |
| 208 | by (simp add: power2_eq_square abs_mult_self) | |
| 209 | ||
| 210 | lemma odd_power_less_zero: | |
| 211 | "a < 0 \<Longrightarrow> a ^ Suc (2*n) < 0" | |
| 212 | proof (induct n) | |
| 213 | case 0 | |
| 214 | then show ?case by simp | |
| 215 | next | |
| 216 | case (Suc n) | |
| 217 | have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)" | |
| 218 | by (simp add: mult_ac power_add power2_eq_square) | |
| 219 | thus ?case | |
| 220 | by (simp del: power_Suc add: Suc mult_less_0_iff mult_neg_neg) | |
| 221 | qed | |
| 222 | ||
| 223 | lemma odd_0_le_power_imp_0_le: | |
| 224 | "0 \<le> a ^ Suc (2*n) \<Longrightarrow> 0 \<le> a" | |
| 225 | using odd_power_less_zero [of a n] | |
| 226 | by (force simp add: linorder_not_less [symmetric]) | |
| 227 | ||
| 228 | lemma zero_le_even_power'[simp]: | |
| 229 | "0 \<le> a ^ (2*n)" | |
| 230 | proof (induct n) | |
| 231 | case 0 | |
| 35216 | 232 | show ?case by simp | 
| 31014 | 233 | next | 
| 234 | case (Suc n) | |
| 235 | have "a ^ (2 * Suc n) = (a*a) * a ^ (2*n)" | |
| 236 | by (simp add: mult_ac power_add power2_eq_square) | |
| 237 | thus ?case | |
| 238 | by (simp add: Suc zero_le_mult_iff) | |
| 239 | qed | |
| 240 | ||
| 241 | lemma sum_power2_ge_zero: | |
| 242 | "0 \<le> x\<twosuperior> + y\<twosuperior>" | |
| 243 | unfolding power2_eq_square by (rule sum_squares_ge_zero) | |
| 244 | ||
| 245 | lemma not_sum_power2_lt_zero: | |
| 246 | "\<not> x\<twosuperior> + y\<twosuperior> < 0" | |
| 247 | unfolding power2_eq_square by (rule not_sum_squares_lt_zero) | |
| 248 | ||
| 249 | lemma sum_power2_eq_zero_iff: | |
| 250 | "x\<twosuperior> + y\<twosuperior> = 0 \<longleftrightarrow> x = 0 \<and> y = 0" | |
| 251 | unfolding power2_eq_square by (rule sum_squares_eq_zero_iff) | |
| 252 | ||
| 253 | lemma sum_power2_le_zero_iff: | |
| 254 | "x\<twosuperior> + y\<twosuperior> \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0" | |
| 255 | unfolding power2_eq_square by (rule sum_squares_le_zero_iff) | |
| 256 | ||
| 257 | lemma sum_power2_gt_zero_iff: | |
| 258 | "0 < x\<twosuperior> + y\<twosuperior> \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0" | |
| 259 | unfolding power2_eq_square by (rule sum_squares_gt_zero_iff) | |
| 260 | ||
| 261 | end | |
| 262 | ||
| 263 | lemma power2_sum: | |
| 43531 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 264 | fixes x y :: "'a::number_semiring" | 
| 31014 | 265 | shows "(x + y)\<twosuperior> = x\<twosuperior> + y\<twosuperior> + 2 * x * y" | 
| 43531 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 266 | by (simp add: algebra_simps power2_eq_square semiring_mult_2_right) | 
| 31014 | 267 | |
| 268 | lemma power2_diff: | |
| 269 | fixes x y :: "'a::number_ring" | |
| 270 | shows "(x - y)\<twosuperior> = x\<twosuperior> + y\<twosuperior> - 2 * x * y" | |
| 33296 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
32069diff
changeset | 271 | by (simp add: ring_distribs power2_eq_square mult_2) (rule mult_commute) | 
| 31014 | 272 | |
| 23164 | 273 | |
| 29040 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 274 | subsection {* Predicate for negative binary numbers *}
 | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 275 | |
| 30652 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 276 | definition neg :: "int \<Rightarrow> bool" where | 
| 29040 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 277 | "neg Z \<longleftrightarrow> Z < 0" | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 278 | |
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 279 | lemma not_neg_int [simp]: "~ neg (of_nat n)" | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 280 | by (simp add: neg_def) | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 281 | |
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 282 | lemma neg_zminus_int [simp]: "neg (- (of_nat (Suc n)))" | 
| 35216 | 283 | by (simp add: neg_def del: of_nat_Suc) | 
| 29040 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 284 | |
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 285 | lemmas neg_eq_less_0 = neg_def | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 286 | |
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 287 | lemma not_neg_eq_ge_0: "(~neg x) = (0 \<le> x)" | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 288 | by (simp add: neg_def linorder_not_less) | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 289 | |
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 290 | text{*To simplify inequalities when Numeral1 can get simplified to 1*}
 | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 291 | |
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 292 | lemma not_neg_0: "~ neg 0" | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 293 | by (simp add: One_int_def neg_def) | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 294 | |
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 295 | lemma not_neg_1: "~ neg 1" | 
| 35216 | 296 | by (simp add: neg_def linorder_not_less) | 
| 29040 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 297 | |
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 298 | lemma neg_nat: "neg z ==> nat z = 0" | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 299 | by (simp add: neg_def order_less_imp_le) | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 300 | |
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 301 | lemma not_neg_nat: "~ neg z ==> of_nat (nat z) = z" | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 302 | by (simp add: linorder_not_less neg_def) | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 303 | |
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 304 | text {*
 | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 305 |   If @{term Numeral0} is rewritten to 0 then this rule can't be applied:
 | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 306 |   @{term Numeral0} IS @{term "number_of Pls"}
 | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 307 | *} | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 308 | |
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 309 | lemma not_neg_number_of_Pls: "~ neg (number_of Int.Pls)" | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 310 | by (simp add: neg_def) | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 311 | |
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 312 | lemma neg_number_of_Min: "neg (number_of Int.Min)" | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 313 | by (simp add: neg_def) | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 314 | |
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 315 | lemma neg_number_of_Bit0: | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 316 | "neg (number_of (Int.Bit0 w)) = neg (number_of w)" | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 317 | by (simp add: neg_def) | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 318 | |
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 319 | lemma neg_number_of_Bit1: | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 320 | "neg (number_of (Int.Bit1 w)) = neg (number_of w)" | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 321 | by (simp add: neg_def) | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 322 | |
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 323 | lemmas neg_simps [simp] = | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 324 | not_neg_0 not_neg_1 | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 325 | not_neg_number_of_Pls neg_number_of_Min | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 326 | neg_number_of_Bit0 neg_number_of_Bit1 | 
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 327 | |
| 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 huffman parents: 
29039diff
changeset | 328 | |
| 23164 | 329 | subsection{*Function @{term nat}: Coercion from Type @{typ int} to @{typ nat}*}
 | 
| 330 | ||
| 35216 | 331 | declare nat_1 [simp] | 
| 23164 | 332 | |
| 333 | lemma nat_number_of [simp]: "nat (number_of w) = number_of w" | |
| 334 | by (simp add: nat_number_of_def) | |
| 335 | ||
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31790diff
changeset | 336 | lemma nat_numeral_0_eq_0 [simp, code_post]: "Numeral0 = (0::nat)" | 
| 44884 | 337 | by (rule semiring_numeral_0_eq_0) | 
| 23164 | 338 | |
| 339 | lemma nat_numeral_1_eq_1 [simp]: "Numeral1 = (1::nat)" | |
| 44884 | 340 | by (rule semiring_numeral_1_eq_1) | 
| 23164 | 341 | |
| 36719 | 342 | lemma Numeral1_eq1_nat: | 
| 343 | "(1::nat) = Numeral1" | |
| 344 | by simp | |
| 345 | ||
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31790diff
changeset | 346 | lemma numeral_1_eq_Suc_0 [code_post]: "Numeral1 = Suc 0" | 
| 35216 | 347 | by (simp only: nat_numeral_1_eq_1 One_nat_def) | 
| 23164 | 348 | |
| 349 | ||
| 350 | subsection{*Function @{term int}: Coercion from Type @{typ nat} to @{typ int}*}
 | |
| 351 | ||
| 352 | lemma int_nat_number_of [simp]: | |
| 23365 | 353 | "int (number_of v) = | 
| 23307 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 huffman parents: 
23294diff
changeset | 354 | (if neg (number_of v :: int) then 0 | 
| 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 huffman parents: 
23294diff
changeset | 355 | else (number_of v :: int))" | 
| 28984 | 356 | unfolding nat_number_of_def number_of_is_id neg_def | 
| 44884 | 357 | by simp (* FIXME: redundant with of_nat_number_of_eq *) | 
| 23307 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 huffman parents: 
23294diff
changeset | 358 | |
| 43531 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 359 | lemma nonneg_int_cases: | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 360 | fixes k :: int assumes "0 \<le> k" obtains n where "k = of_nat n" | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 361 | using assms by (cases k, simp, simp) | 
| 23164 | 362 | |
| 363 | subsubsection{*Successor *}
 | |
| 364 | ||
| 365 | lemma Suc_nat_eq_nat_zadd1: "(0::int) <= z ==> Suc (nat z) = nat (1 + z)" | |
| 366 | apply (rule sym) | |
| 44766 | 367 | apply (simp add: nat_eq_iff) | 
| 23164 | 368 | done | 
| 369 | ||
| 370 | lemma Suc_nat_number_of_add: | |
| 371 | "Suc (number_of v + n) = | |
| 28984 | 372 | (if neg (number_of v :: int) then 1+n else number_of (Int.succ v) + n)" | 
| 373 | unfolding nat_number_of_def number_of_is_id neg_def numeral_simps | |
| 374 | by (simp add: Suc_nat_eq_nat_zadd1 add_ac) | |
| 23164 | 375 | |
| 376 | lemma Suc_nat_number_of [simp]: | |
| 377 | "Suc (number_of v) = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 378 | (if neg (number_of v :: int) then 1 else number_of (Int.succ v))" | 
| 23164 | 379 | apply (cut_tac n = 0 in Suc_nat_number_of_add) | 
| 380 | apply (simp cong del: if_weak_cong) | |
| 381 | done | |
| 382 | ||
| 383 | ||
| 384 | subsubsection{*Addition *}
 | |
| 385 | ||
| 386 | lemma add_nat_number_of [simp]: | |
| 387 | "(number_of v :: nat) + number_of v' = | |
| 29012 | 388 | (if v < Int.Pls then number_of v' | 
| 389 | else if v' < Int.Pls then number_of v | |
| 23164 | 390 | else number_of (v + v'))" | 
| 29012 | 391 | unfolding nat_number_of_def number_of_is_id numeral_simps | 
| 28984 | 392 | by (simp add: nat_add_distrib) | 
| 23164 | 393 | |
| 30081 | 394 | lemma nat_number_of_add_1 [simp]: | 
| 395 | "number_of v + (1::nat) = | |
| 396 | (if v < Int.Pls then 1 else number_of (Int.succ v))" | |
| 397 | unfolding nat_number_of_def number_of_is_id numeral_simps | |
| 398 | by (simp add: nat_add_distrib) | |
| 399 | ||
| 400 | lemma nat_1_add_number_of [simp]: | |
| 401 | "(1::nat) + number_of v = | |
| 402 | (if v < Int.Pls then 1 else number_of (Int.succ v))" | |
| 403 | unfolding nat_number_of_def number_of_is_id numeral_simps | |
| 404 | by (simp add: nat_add_distrib) | |
| 405 | ||
| 406 | lemma nat_1_add_1 [simp]: "1 + 1 = (2::nat)" | |
| 43531 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 407 | by (rule semiring_one_add_one_is_two) | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 408 | |
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 409 | text {* TODO: replace simp rules above with these generic ones: *}
 | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 410 | |
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 411 | lemma semiring_add_number_of: | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 412 | "\<lbrakk>Int.Pls \<le> v; Int.Pls \<le> v'\<rbrakk> \<Longrightarrow> | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 413 | (number_of v :: 'a::number_semiring) + number_of v' = number_of (v + v')" | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 414 | unfolding Int.Pls_def | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 415 | by (elim nonneg_int_cases, | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 416 | simp only: number_of_int of_nat_add [symmetric]) | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 417 | |
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 418 | lemma semiring_number_of_add_1: | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 419 | "Int.Pls \<le> v \<Longrightarrow> | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 420 | number_of v + (1::'a::number_semiring) = number_of (Int.succ v)" | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 421 | unfolding Int.Pls_def Int.succ_def | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 422 | by (elim nonneg_int_cases, | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 423 | simp only: number_of_int add_commute [where b=1] of_nat_Suc [symmetric]) | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 424 | |
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 425 | lemma semiring_1_add_number_of: | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 426 | "Int.Pls \<le> v \<Longrightarrow> | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 427 | (1::'a::number_semiring) + number_of v = number_of (Int.succ v)" | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 428 | unfolding Int.Pls_def Int.succ_def | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 429 | by (elim nonneg_int_cases, | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 430 | simp only: number_of_int add_commute [where b=1] of_nat_Suc [symmetric]) | 
| 30081 | 431 | |
| 23164 | 432 | |
| 433 | subsubsection{*Subtraction *}
 | |
| 434 | ||
| 435 | lemma diff_nat_eq_if: | |
| 436 | "nat z - nat z' = | |
| 437 | (if neg z' then nat z | |
| 438 | else let d = z-z' in | |
| 439 | if neg d then 0 else nat d)" | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
26342diff
changeset | 440 | by (simp add: Let_def nat_diff_distrib [symmetric] neg_eq_less_0 not_neg_eq_ge_0) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
26342diff
changeset | 441 | |
| 23164 | 442 | |
| 443 | lemma diff_nat_number_of [simp]: | |
| 444 | "(number_of v :: nat) - number_of v' = | |
| 29012 | 445 | (if v' < Int.Pls then number_of v | 
| 23164 | 446 | else let d = number_of (v + uminus v') in | 
| 447 | if neg d then 0 else nat d)" | |
| 29012 | 448 | unfolding nat_number_of_def number_of_is_id numeral_simps neg_def | 
| 449 | by auto | |
| 23164 | 450 | |
| 30081 | 451 | lemma nat_number_of_diff_1 [simp]: | 
| 452 | "number_of v - (1::nat) = | |
| 453 | (if v \<le> Int.Pls then 0 else number_of (Int.pred v))" | |
| 454 | unfolding nat_number_of_def number_of_is_id numeral_simps | |
| 455 | by auto | |
| 456 | ||
| 23164 | 457 | |
| 458 | subsubsection{*Multiplication *}
 | |
| 459 | ||
| 460 | lemma mult_nat_number_of [simp]: | |
| 461 | "(number_of v :: nat) * number_of v' = | |
| 29012 | 462 | (if v < Int.Pls then 0 else number_of (v * v'))" | 
| 463 | unfolding nat_number_of_def number_of_is_id numeral_simps | |
| 28984 | 464 | by (simp add: nat_mult_distrib) | 
| 23164 | 465 | |
| 43531 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 466 | (* TODO: replace mult_nat_number_of with this next rule *) | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 467 | lemma semiring_mult_number_of: | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 468 | "\<lbrakk>Int.Pls \<le> v; Int.Pls \<le> v'\<rbrakk> \<Longrightarrow> | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 469 | (number_of v :: 'a::number_semiring) * number_of v' = number_of (v * v')" | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 470 | unfolding Int.Pls_def | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 471 | by (elim nonneg_int_cases, | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 472 | simp only: number_of_int of_nat_mult [symmetric]) | 
| 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 473 | |
| 23164 | 474 | |
| 475 | subsection{*Comparisons*}
 | |
| 476 | ||
| 477 | subsubsection{*Equals (=) *}
 | |
| 478 | ||
| 479 | lemma eq_nat_number_of [simp]: | |
| 480 | "((number_of v :: nat) = number_of v') = | |
| 28969 | 481 | (if neg (number_of v :: int) then (number_of v' :: int) \<le> 0 | 
| 482 | else if neg (number_of v' :: int) then (number_of v :: int) = 0 | |
| 483 | else v = v')" | |
| 484 | unfolding nat_number_of_def number_of_is_id neg_def | |
| 485 | by auto | |
| 23164 | 486 | |
| 487 | ||
| 488 | subsubsection{*Less-than (<) *}
 | |
| 489 | ||
| 490 | lemma less_nat_number_of [simp]: | |
| 29011 | 491 | "(number_of v :: nat) < number_of v' \<longleftrightarrow> | 
| 492 | (if v < v' then Int.Pls < v' else False)" | |
| 493 | unfolding nat_number_of_def number_of_is_id numeral_simps | |
| 28961 | 494 | by auto | 
| 23164 | 495 | |
| 496 | ||
| 29010 | 497 | subsubsection{*Less-than-or-equal *}
 | 
| 498 | ||
| 499 | lemma le_nat_number_of [simp]: | |
| 500 | "(number_of v :: nat) \<le> number_of v' \<longleftrightarrow> | |
| 501 | (if v \<le> v' then True else v \<le> Int.Pls)" | |
| 502 | unfolding nat_number_of_def number_of_is_id numeral_simps | |
| 503 | by auto | |
| 504 | ||
| 23164 | 505 | (*Maps #n to n for n = 0, 1, 2*) | 
| 506 | lemmas numerals = nat_numeral_0_eq_0 nat_numeral_1_eq_1 numeral_2_eq_2 | |
| 507 | ||
| 508 | ||
| 509 | subsection{*Powers with Numeric Exponents*}
 | |
| 510 | ||
| 511 | text{*Squares of literal numerals will be evaluated.*}
 | |
| 31014 | 512 | lemmas power2_eq_square_number_of [simp] = | 
| 45607 | 513 | power2_eq_square [of "number_of w"] for w | 
| 23164 | 514 | |
| 515 | ||
| 516 | text{*Simprules for comparisons where common factors can be cancelled.*}
 | |
| 517 | lemmas zero_compare_simps = | |
| 518 | add_strict_increasing add_strict_increasing2 add_increasing | |
| 519 | zero_le_mult_iff zero_le_divide_iff | |
| 520 | zero_less_mult_iff zero_less_divide_iff | |
| 521 | mult_le_0_iff divide_le_0_iff | |
| 522 | mult_less_0_iff divide_less_0_iff | |
| 523 | zero_le_power2 power2_less_0 | |
| 524 | ||
| 525 | subsubsection{*Nat *}
 | |
| 526 | ||
| 527 | lemma Suc_pred': "0 < n ==> n = Suc(n - 1)" | |
| 35216 | 528 | by simp | 
| 23164 | 529 | |
| 530 | (*Expresses a natural number constant as the Suc of another one. | |
| 531 | NOT suitable for rewriting because n recurs in the condition.*) | |
| 45607 | 532 | lemmas expand_Suc = Suc_pred' [of "number_of v"] for v | 
| 23164 | 533 | |
| 534 | subsubsection{*Arith *}
 | |
| 535 | ||
| 31790 | 536 | lemma Suc_eq_plus1: "Suc n = n + 1" | 
| 35216 | 537 | unfolding One_nat_def by simp | 
| 23164 | 538 | |
| 31790 | 539 | lemma Suc_eq_plus1_left: "Suc n = 1 + n" | 
| 35216 | 540 | unfolding One_nat_def by simp | 
| 23164 | 541 | |
| 542 | (* These two can be useful when m = number_of... *) | |
| 543 | ||
| 544 | lemma add_eq_if: "(m::nat) + n = (if m=0 then n else Suc ((m - 1) + n))" | |
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29958diff
changeset | 545 | unfolding One_nat_def by (cases m) simp_all | 
| 23164 | 546 | |
| 547 | lemma mult_eq_if: "(m::nat) * n = (if m=0 then 0 else n + ((m - 1) * n))" | |
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29958diff
changeset | 548 | unfolding One_nat_def by (cases m) simp_all | 
| 23164 | 549 | |
| 550 | lemma power_eq_if: "(p ^ m :: nat) = (if m=0 then 1 else p * (p ^ (m - 1)))" | |
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29958diff
changeset | 551 | unfolding One_nat_def by (cases m) simp_all | 
| 23164 | 552 | |
| 553 | ||
| 554 | subsection{*Comparisons involving (0::nat) *}
 | |
| 555 | ||
| 556 | text{*Simplification already does @{term "n<0"}, @{term "n\<le>0"} and @{term "0\<le>n"}.*}
 | |
| 557 | ||
| 558 | lemma eq_number_of_0 [simp]: | |
| 29012 | 559 | "number_of v = (0::nat) \<longleftrightarrow> v \<le> Int.Pls" | 
| 560 | unfolding nat_number_of_def number_of_is_id numeral_simps | |
| 561 | by auto | |
| 23164 | 562 | |
| 563 | lemma eq_0_number_of [simp]: | |
| 29012 | 564 | "(0::nat) = number_of v \<longleftrightarrow> v \<le> Int.Pls" | 
| 23164 | 565 | by (rule trans [OF eq_sym_conv eq_number_of_0]) | 
| 566 | ||
| 567 | lemma less_0_number_of [simp]: | |
| 29012 | 568 | "(0::nat) < number_of v \<longleftrightarrow> Int.Pls < v" | 
| 569 | unfolding nat_number_of_def number_of_is_id numeral_simps | |
| 570 | by simp | |
| 23164 | 571 | |
| 572 | lemma neg_imp_number_of_eq_0: "neg (number_of v :: int) ==> number_of v = (0::nat)" | |
| 28969 | 573 | by (simp del: nat_numeral_0_eq_0 add: nat_numeral_0_eq_0 [symmetric]) | 
| 23164 | 574 | |
| 575 | ||
| 576 | ||
| 577 | subsection{*Comparisons involving  @{term Suc} *}
 | |
| 578 | ||
| 579 | lemma eq_number_of_Suc [simp]: | |
| 580 | "(number_of v = Suc n) = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 581 | (let pv = number_of (Int.pred v) in | 
| 23164 | 582 | if neg pv then False else nat pv = n)" | 
| 583 | apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less | |
| 584 | number_of_pred nat_number_of_def | |
| 585 | split add: split_if) | |
| 586 | apply (rule_tac x = "number_of v" in spec) | |
| 587 | apply (auto simp add: nat_eq_iff) | |
| 588 | done | |
| 589 | ||
| 590 | lemma Suc_eq_number_of [simp]: | |
| 591 | "(Suc n = number_of v) = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 592 | (let pv = number_of (Int.pred v) in | 
| 23164 | 593 | if neg pv then False else nat pv = n)" | 
| 594 | by (rule trans [OF eq_sym_conv eq_number_of_Suc]) | |
| 595 | ||
| 596 | lemma less_number_of_Suc [simp]: | |
| 597 | "(number_of v < Suc n) = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 598 | (let pv = number_of (Int.pred v) in | 
| 23164 | 599 | if neg pv then True else nat pv < n)" | 
| 600 | apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less | |
| 601 | number_of_pred nat_number_of_def | |
| 602 | split add: split_if) | |
| 603 | apply (rule_tac x = "number_of v" in spec) | |
| 604 | apply (auto simp add: nat_less_iff) | |
| 605 | done | |
| 606 | ||
| 607 | lemma less_Suc_number_of [simp]: | |
| 608 | "(Suc n < number_of v) = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 609 | (let pv = number_of (Int.pred v) in | 
| 23164 | 610 | if neg pv then False else n < nat pv)" | 
| 611 | apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less | |
| 612 | number_of_pred nat_number_of_def | |
| 613 | split add: split_if) | |
| 614 | apply (rule_tac x = "number_of v" in spec) | |
| 615 | apply (auto simp add: zless_nat_eq_int_zless) | |
| 616 | done | |
| 617 | ||
| 618 | lemma le_number_of_Suc [simp]: | |
| 619 | "(number_of v <= Suc n) = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 620 | (let pv = number_of (Int.pred v) in | 
| 23164 | 621 | if neg pv then True else nat pv <= n)" | 
| 35216 | 622 | by (simp add: Let_def linorder_not_less [symmetric]) | 
| 23164 | 623 | |
| 624 | lemma le_Suc_number_of [simp]: | |
| 625 | "(Suc n <= number_of v) = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 626 | (let pv = number_of (Int.pred v) in | 
| 23164 | 627 | if neg pv then False else n <= nat pv)" | 
| 35216 | 628 | by (simp add: Let_def linorder_not_less [symmetric]) | 
| 23164 | 629 | |
| 630 | ||
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 631 | lemma eq_number_of_Pls_Min: "(Numeral0 ::int) ~= number_of Int.Min" | 
| 23164 | 632 | by auto | 
| 633 | ||
| 634 | ||
| 635 | ||
| 636 | subsection{*Max and Min Combined with @{term Suc} *}
 | |
| 637 | ||
| 638 | lemma max_number_of_Suc [simp]: | |
| 639 | "max (Suc n) (number_of v) = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 640 | (let pv = number_of (Int.pred v) in | 
| 23164 | 641 | if neg pv then Suc n else Suc(max n (nat pv)))" | 
| 642 | apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def | |
| 643 | split add: split_if nat.split) | |
| 644 | apply (rule_tac x = "number_of v" in spec) | |
| 645 | apply auto | |
| 646 | done | |
| 647 | ||
| 648 | lemma max_Suc_number_of [simp]: | |
| 649 | "max (number_of v) (Suc n) = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 650 | (let pv = number_of (Int.pred v) in | 
| 23164 | 651 | if neg pv then Suc n else Suc(max (nat pv) n))" | 
| 652 | apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def | |
| 653 | split add: split_if nat.split) | |
| 654 | apply (rule_tac x = "number_of v" in spec) | |
| 655 | apply auto | |
| 656 | done | |
| 657 | ||
| 658 | lemma min_number_of_Suc [simp]: | |
| 659 | "min (Suc n) (number_of v) = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 660 | (let pv = number_of (Int.pred v) in | 
| 23164 | 661 | if neg pv then 0 else Suc(min n (nat pv)))" | 
| 662 | apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def | |
| 663 | split add: split_if nat.split) | |
| 664 | apply (rule_tac x = "number_of v" in spec) | |
| 665 | apply auto | |
| 666 | done | |
| 667 | ||
| 668 | lemma min_Suc_number_of [simp]: | |
| 669 | "min (number_of v) (Suc n) = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 670 | (let pv = number_of (Int.pred v) in | 
| 23164 | 671 | if neg pv then 0 else Suc(min (nat pv) n))" | 
| 672 | apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def | |
| 673 | split add: split_if nat.split) | |
| 674 | apply (rule_tac x = "number_of v" in spec) | |
| 675 | apply auto | |
| 676 | done | |
| 677 | ||
| 678 | subsection{*Literal arithmetic involving powers*}
 | |
| 679 | ||
| 680 | lemma power_nat_number_of: | |
| 681 | "(number_of v :: nat) ^ n = | |
| 682 | (if neg (number_of v :: int) then 0^n else nat ((number_of v :: int) ^ n))" | |
| 683 | by (simp only: simp_thms neg_nat not_neg_eq_ge_0 nat_number_of_def nat_power_eq | |
| 684 | split add: split_if cong: imp_cong) | |
| 685 | ||
| 686 | ||
| 45607 | 687 | lemmas power_nat_number_of_number_of = power_nat_number_of [of _ "number_of w"] for w | 
| 23164 | 688 | declare power_nat_number_of_number_of [simp] | 
| 689 | ||
| 690 | ||
| 691 | ||
| 23294 | 692 | text{*For arbitrary rings*}
 | 
| 23164 | 693 | |
| 23294 | 694 | lemma power_number_of_even: | 
| 43526 
2b92a6943915
generalize lemmas power_number_of_even and power_number_of_odd
 huffman parents: 
40690diff
changeset | 695 | fixes z :: "'a::monoid_mult" | 
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 696 | shows "z ^ number_of (Int.Bit0 w) = (let w = z ^ (number_of w) in w * w)" | 
| 33296 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
32069diff
changeset | 697 | by (cases "w \<ge> 0") (auto simp add: Let_def Bit0_def nat_number_of_def number_of_is_id | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
32069diff
changeset | 698 | nat_add_distrib power_add simp del: nat_number_of) | 
| 23164 | 699 | |
| 23294 | 700 | lemma power_number_of_odd: | 
| 43526 
2b92a6943915
generalize lemmas power_number_of_even and power_number_of_odd
 huffman parents: 
40690diff
changeset | 701 | fixes z :: "'a::monoid_mult" | 
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 702 | shows "z ^ number_of (Int.Bit1 w) = (if (0::int) <= number_of w | 
| 23164 | 703 | then (let w = z ^ (number_of w) in z * w * w) else 1)" | 
| 35815 
10e723e54076
tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
 boehmes parents: 
35631diff
changeset | 704 | unfolding Let_def Bit1_def nat_number_of_def number_of_is_id | 
| 
10e723e54076
tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
 boehmes parents: 
35631diff
changeset | 705 | apply (cases "0 <= w") | 
| 
10e723e54076
tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
 boehmes parents: 
35631diff
changeset | 706 | apply (simp only: mult_assoc nat_add_distrib power_add, simp) | 
| 33296 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
32069diff
changeset | 707 | apply (simp add: not_le mult_2 [symmetric] add_assoc) | 
| 23164 | 708 | done | 
| 709 | ||
| 23294 | 710 | lemmas zpower_number_of_even = power_number_of_even [where 'a=int] | 
| 711 | lemmas zpower_number_of_odd = power_number_of_odd [where 'a=int] | |
| 23164 | 712 | |
| 23294 | 713 | lemmas power_number_of_even_number_of [simp] = | 
| 45607 | 714 | power_number_of_even [of "number_of v"] for v | 
| 23164 | 715 | |
| 23294 | 716 | lemmas power_number_of_odd_number_of [simp] = | 
| 45607 | 717 | power_number_of_odd [of "number_of v"] for v | 
| 23164 | 718 | |
| 719 | lemma nat_number_of_Pls: "Numeral0 = (0::nat)" | |
| 35216 | 720 | by (simp add: nat_number_of_def) | 
| 23164 | 721 | |
| 40690 
3f472e57446a
added "no_atp" for fact that confuses the SMT normalizer and that doesn't help ATPs anyway
 blanchet parents: 
40077diff
changeset | 722 | lemma nat_number_of_Min [no_atp]: "number_of Int.Min = (0::nat)" | 
| 23164 | 723 | apply (simp only: number_of_Min nat_number_of_def nat_zminus_int) | 
| 724 | done | |
| 725 | ||
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 726 | lemma nat_number_of_Bit0: | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 727 | "number_of (Int.Bit0 w) = (let n::nat = number_of w in n + n)" | 
| 33296 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
32069diff
changeset | 728 | by (cases "w \<ge> 0") (auto simp add: Let_def Bit0_def nat_number_of_def number_of_is_id | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
32069diff
changeset | 729 | nat_add_distrib simp del: nat_number_of) | 
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 730 | |
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 731 | lemma nat_number_of_Bit1: | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 732 | "number_of (Int.Bit1 w) = | 
| 23164 | 733 | (if neg (number_of w :: int) then 0 | 
| 734 | else let n = number_of w in Suc (n + n))" | |
| 35815 
10e723e54076
tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
 boehmes parents: 
35631diff
changeset | 735 | unfolding Let_def Bit1_def nat_number_of_def number_of_is_id neg_def | 
| 
10e723e54076
tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
 boehmes parents: 
35631diff
changeset | 736 | apply (cases "w < 0") | 
| 33296 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
32069diff
changeset | 737 | apply (simp add: mult_2 [symmetric] add_assoc) | 
| 35815 
10e723e54076
tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
 boehmes parents: 
35631diff
changeset | 738 | apply (simp only: nat_add_distrib, simp) | 
| 33296 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
32069diff
changeset | 739 | done | 
| 23164 | 740 | |
| 40077 | 741 | lemmas eval_nat_numeral = | 
| 35216 | 742 | nat_number_of_Bit0 nat_number_of_Bit1 | 
| 743 | ||
| 36699 
816da1023508
moved nat_arith ot Nat_Numeral: clarified normalizer setup
 haftmann parents: 
35815diff
changeset | 744 | lemmas nat_arith = | 
| 
816da1023508
moved nat_arith ot Nat_Numeral: clarified normalizer setup
 haftmann parents: 
35815diff
changeset | 745 | add_nat_number_of | 
| 
816da1023508
moved nat_arith ot Nat_Numeral: clarified normalizer setup
 haftmann parents: 
35815diff
changeset | 746 | diff_nat_number_of | 
| 
816da1023508
moved nat_arith ot Nat_Numeral: clarified normalizer setup
 haftmann parents: 
35815diff
changeset | 747 | mult_nat_number_of | 
| 
816da1023508
moved nat_arith ot Nat_Numeral: clarified normalizer setup
 haftmann parents: 
35815diff
changeset | 748 | eq_nat_number_of | 
| 
816da1023508
moved nat_arith ot Nat_Numeral: clarified normalizer setup
 haftmann parents: 
35815diff
changeset | 749 | less_nat_number_of | 
| 
816da1023508
moved nat_arith ot Nat_Numeral: clarified normalizer setup
 haftmann parents: 
35815diff
changeset | 750 | |
| 36716 | 751 | lemmas semiring_norm = | 
| 752 | Let_def arith_simps nat_arith rel_simps neg_simps if_False | |
| 753 | if_True add_0 add_Suc add_number_of_left mult_number_of_left | |
| 754 | numeral_1_eq_1 [symmetric] Suc_eq_plus1 | |
| 755 | numeral_0_eq_0 [symmetric] numerals [symmetric] | |
| 36841 
02df88789641
include iszero_simps in semiring_norm just once (they are already included in rel_simps)
 huffman parents: 
36823diff
changeset | 756 | not_iszero_Numeral1 | 
| 36716 | 757 | |
| 23164 | 758 | lemma Let_Suc [simp]: "Let (Suc n) f == f (Suc n)" | 
| 33296 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
32069diff
changeset | 759 | by (fact Let_def) | 
| 23164 | 760 | |
| 31014 | 761 | lemma power_m1_even: "(-1) ^ (2*n) = (1::'a::{number_ring})"
 | 
| 762 | by (simp only: number_of_Min power_minus1_even) | |
| 23164 | 763 | |
| 31014 | 764 | lemma power_m1_odd: "(-1) ^ Suc(2*n) = (-1::'a::{number_ring})"
 | 
| 765 | by (simp only: number_of_Min power_minus1_odd) | |
| 23164 | 766 | |
| 33296 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
32069diff
changeset | 767 | lemma nat_number_of_add_left: | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
32069diff
changeset | 768 | "number_of v + (number_of v' + (k::nat)) = | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
32069diff
changeset | 769 | (if neg (number_of v :: int) then number_of v' + k | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
32069diff
changeset | 770 | else if neg (number_of v' :: int) then number_of v + k | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
32069diff
changeset | 771 | else number_of (v + v') + k)" | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
32069diff
changeset | 772 | by (auto simp add: neg_def) | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
32069diff
changeset | 773 | |
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
32069diff
changeset | 774 | lemma nat_number_of_mult_left: | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
32069diff
changeset | 775 | "number_of v * (number_of v' * (k::nat)) = | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
32069diff
changeset | 776 | (if v < Int.Pls then 0 | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
32069diff
changeset | 777 | else number_of (v * v') * k)" | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
32069diff
changeset | 778 | by (auto simp add: not_less Pls_def nat_number_of_def number_of_is_id | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
32069diff
changeset | 779 | nat_mult_distrib simp del: nat_number_of) | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
32069diff
changeset | 780 | |
| 23164 | 781 | |
| 782 | subsection{*Literal arithmetic and @{term of_nat}*}
 | |
| 783 | ||
| 784 | lemma of_nat_double: | |
| 785 | "0 \<le> x ==> of_nat (nat (2 * x)) = of_nat (nat x) + of_nat (nat x)" | |
| 786 | by (simp only: mult_2 nat_add_distrib of_nat_add) | |
| 787 | ||
| 788 | lemma nat_numeral_m1_eq_0: "-1 = (0::nat)" | |
| 789 | by (simp only: nat_number_of_def) | |
| 790 | ||
| 791 | lemma of_nat_number_of_lemma: | |
| 792 | "of_nat (number_of v :: nat) = | |
| 793 | (if 0 \<le> (number_of v :: int) | |
| 44857 
73d5b722c4b4
generalize lemma of_nat_number_of_eq to class number_semiring
 huffman parents: 
44766diff
changeset | 794 | then (number_of v :: 'a :: number_semiring) | 
| 23164 | 795 | else 0)" | 
| 44857 
73d5b722c4b4
generalize lemma of_nat_number_of_eq to class number_semiring
 huffman parents: 
44766diff
changeset | 796 | by (auto simp add: int_number_of_def nat_number_of_def number_of_int | 
| 
73d5b722c4b4
generalize lemma of_nat_number_of_eq to class number_semiring
 huffman parents: 
44766diff
changeset | 797 | elim!: nonneg_int_cases) | 
| 23164 | 798 | |
| 799 | lemma of_nat_number_of_eq [simp]: | |
| 800 | "of_nat (number_of v :: nat) = | |
| 801 | (if neg (number_of v :: int) then 0 | |
| 44857 
73d5b722c4b4
generalize lemma of_nat_number_of_eq to class number_semiring
 huffman parents: 
44766diff
changeset | 802 | else (number_of v :: 'a :: number_semiring))" | 
| 
73d5b722c4b4
generalize lemma of_nat_number_of_eq to class number_semiring
 huffman parents: 
44766diff
changeset | 803 | by (simp only: of_nat_number_of_lemma neg_def, simp) | 
| 23164 | 804 | |
| 805 | ||
| 30652 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 806 | subsubsection{*For simplifying @{term "Suc m - K"} and  @{term "K - Suc m"}*}
 | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 807 | |
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 808 | text{*Where K above is a literal*}
 | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 809 | |
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 810 | lemma Suc_diff_eq_diff_pred: "Numeral0 < n ==> Suc m - n = m - (n - Numeral1)" | 
| 35216 | 811 | by (simp split: nat_diff_split) | 
| 30652 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 812 | |
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 813 | text {*Now just instantiating @{text n} to @{text "number_of v"} does
 | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 814 | the right simplification, but with some redundant inequality | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 815 | tests.*} | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 816 | lemma neg_number_of_pred_iff_0: | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 817 | "neg (number_of (Int.pred v)::int) = (number_of v = (0::nat))" | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 818 | apply (subgoal_tac "neg (number_of (Int.pred v)) = (number_of v < Suc 0) ") | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 819 | apply (simp only: less_Suc_eq_le le_0_eq) | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 820 | apply (subst less_number_of_Suc, simp) | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 821 | done | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 822 | |
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 823 | text{*No longer required as a simprule because of the @{text inverse_fold}
 | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 824 | simproc*} | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 825 | lemma Suc_diff_number_of: | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 826 | "Int.Pls < v ==> | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 827 | Suc m - (number_of v) = m - (number_of (Int.pred v))" | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 828 | apply (subst Suc_diff_eq_diff_pred) | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 829 | apply simp | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 830 | apply (simp del: nat_numeral_1_eq_1) | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 831 | apply (auto simp only: diff_nat_number_of less_0_number_of [symmetric] | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 832 | neg_number_of_pred_iff_0) | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 833 | done | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 834 | |
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 835 | lemma diff_Suc_eq_diff_pred: "m - Suc n = (m - 1) - n" | 
| 35216 | 836 | by (simp split: nat_diff_split) | 
| 30652 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 837 | |
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 838 | |
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 839 | subsubsection{*For @{term nat_case} and @{term nat_rec}*}
 | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 840 | |
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 841 | lemma nat_case_number_of [simp]: | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 842 | "nat_case a f (number_of v) = | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 843 | (let pv = number_of (Int.pred v) in | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 844 | if neg pv then a else f (nat pv))" | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 845 | by (simp split add: nat.split add: Let_def neg_number_of_pred_iff_0) | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 846 | |
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 847 | lemma nat_case_add_eq_if [simp]: | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 848 | "nat_case a f ((number_of v) + n) = | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 849 | (let pv = number_of (Int.pred v) in | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 850 | if neg pv then nat_case a f n else f (nat pv + n))" | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 851 | apply (subst add_eq_if) | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 852 | apply (simp split add: nat.split | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 853 | del: nat_numeral_1_eq_1 | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 854 | add: nat_numeral_1_eq_1 [symmetric] | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 855 | numeral_1_eq_Suc_0 [symmetric] | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 856 | neg_number_of_pred_iff_0) | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 857 | done | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 858 | |
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 859 | lemma nat_rec_number_of [simp]: | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 860 | "nat_rec a f (number_of v) = | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 861 | (let pv = number_of (Int.pred v) in | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 862 | if neg pv then a else f (nat pv) (nat_rec a f (nat pv)))" | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 863 | apply (case_tac " (number_of v) ::nat") | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 864 | apply (simp_all (no_asm_simp) add: Let_def neg_number_of_pred_iff_0) | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 865 | apply (simp split add: split_if_asm) | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 866 | done | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 867 | |
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 868 | lemma nat_rec_add_eq_if [simp]: | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 869 | "nat_rec a f (number_of v + n) = | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 870 | (let pv = number_of (Int.pred v) in | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 871 | if neg pv then nat_rec a f n | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 872 | else f (nat pv + n) (nat_rec a f (nat pv + n)))" | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 873 | apply (subst add_eq_if) | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 874 | apply (simp split add: nat.split | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 875 | del: nat_numeral_1_eq_1 | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 876 | add: nat_numeral_1_eq_1 [symmetric] | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 877 | numeral_1_eq_Suc_0 [symmetric] | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 878 | neg_number_of_pred_iff_0) | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 879 | done | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 880 | |
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 881 | |
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 882 | subsubsection{*Various Other Lemmas*}
 | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 883 | |
| 31080 | 884 | lemma card_UNIV_bool[simp]: "card (UNIV :: bool set) = 2" | 
| 885 | by(simp add: UNIV_bool) | |
| 886 | ||
| 30652 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 887 | text {*Evens and Odds, for Mutilated Chess Board*}
 | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 888 | |
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 889 | text{*Lemmas for specialist use, NOT as default simprules*}
 | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 890 | lemma nat_mult_2: "2 * z = (z+z::nat)" | 
| 43531 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 891 | by (rule semiring_mult_2) | 
| 30652 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 892 | |
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 893 | lemma nat_mult_2_right: "z * 2 = (z+z::nat)" | 
| 43531 
cc46a678faaf
added number_semiring class, plus a few new lemmas;
 huffman parents: 
43526diff
changeset | 894 | by (rule semiring_mult_2_right) | 
| 30652 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 895 | |
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 896 | text{*Case analysis on @{term "n<2"}*}
 | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 897 | lemma less_2_cases: "(n::nat) < 2 ==> n = 0 | n = Suc 0" | 
| 33296 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
32069diff
changeset | 898 | by (auto simp add: nat_1_add_1 [symmetric]) | 
| 30652 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 899 | |
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 900 | text{*Removal of Small Numerals: 0, 1 and (in additive positions) 2*}
 | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 901 | |
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 902 | lemma add_2_eq_Suc [simp]: "2 + n = Suc (Suc n)" | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 903 | by simp | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 904 | |
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 905 | lemma add_2_eq_Suc' [simp]: "n + 2 = Suc (Suc n)" | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 906 | by simp | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 907 | |
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 908 | text{*Can be used to eliminate long strings of Sucs, but not by default*}
 | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 909 | lemma Suc3_eq_add_3: "Suc (Suc (Suc n)) = 3 + n" | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 910 | by simp | 
| 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30497diff
changeset | 911 | |
| 31096 | 912 | end |