| author | traytel | 
| Wed, 29 Jan 2014 16:35:05 +0100 | |
| changeset 55163 | a740f312d9e4 | 
| parent 51717 | 9e7d1c139569 | 
| child 57394 | 7621a3b42ce7 | 
| permissions | -rw-r--r-- | 
| 37936 | 1 | (* Title: HOL/Auth/Message.thy | 
| 1839 | 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 3 | Copyright 1996 University of Cambridge | |
| 4 | ||
| 5 | Datatypes of agents and messages; | |
| 1913 | 6 | Inductive relations "parts", "analz" and "synth" | 
| 1839 | 7 | *) | 
| 8 | ||
| 13956 | 9 | header{*Theory of Agents and Messages for Security Protocols*}
 | 
| 10 | ||
| 27105 
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
 haftmann parents: 
26807diff
changeset | 11 | theory Message | 
| 
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
 haftmann parents: 
26807diff
changeset | 12 | imports Main | 
| 
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
 haftmann parents: 
26807diff
changeset | 13 | begin | 
| 11189 | 14 | |
| 15 | (*Needed occasionally with spy_analz_tac, e.g. in analz_insert_Key_newK*) | |
| 13926 | 16 | lemma [simp] : "A \<union> (B \<union> A) = B \<union> A" | 
| 11189 | 17 | by blast | 
| 1839 | 18 | |
| 41774 | 19 | type_synonym | 
| 1839 | 20 | key = nat | 
| 21 | ||
| 22 | consts | |
| 14126 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 23 |   all_symmetric :: bool        --{*true if all keys are symmetric*}
 | 
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 24 |   invKey        :: "key=>key"  --{*inverse of a symmetric key*}
 | 
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 25 | |
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 26 | specification (invKey) | 
| 14181 | 27 | invKey [simp]: "invKey (invKey K) = K" | 
| 28 | invKey_symmetric: "all_symmetric --> invKey = id" | |
| 14126 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 29 | by (rule exI [of _ id], auto) | 
| 1839 | 30 | |
| 14126 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 31 | |
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 32 | text{*The inverse of a symmetric key is itself; that of a public key
 | 
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 33 | is the private key and vice versa*} | 
| 1839 | 34 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35109diff
changeset | 35 | definition symKeys :: "key set" where | 
| 11230 
756c5034f08b
misc tidying; changing the predicate isSymKey to the set symKeys
 paulson parents: 
11192diff
changeset | 36 |   "symKeys == {K. invKey K = K}"
 | 
| 1839 | 37 | |
| 16818 | 38 | datatype  --{*We allow any number of friendly agents*}
 | 
| 2032 | 39 | agent = Server | Friend nat | Spy | 
| 1839 | 40 | |
| 3668 | 41 | datatype | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32149diff
changeset | 42 |      msg = Agent  agent     --{*Agent names*}
 | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 43 |          | Number nat       --{*Ordinary integers, timestamps, ...*}
 | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 44 |          | Nonce  nat       --{*Unguessable nonces*}
 | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 45 |          | Key    key       --{*Crypto keys*}
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32149diff
changeset | 46 |          | Hash   msg       --{*Hashing*}
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32149diff
changeset | 47 |          | MPair  msg msg   --{*Compound messages*}
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32149diff
changeset | 48 |          | Crypt  key msg   --{*Encryption, public- or shared-key*}
 | 
| 1839 | 49 | |
| 5234 | 50 | |
| 16818 | 51 | text{*Concrete syntax: messages appear as {|A,B,NA|}, etc...*}
 | 
| 5234 | 52 | syntax | 
| 35109 | 53 |   "_MTuple"      :: "['a, args] => 'a * 'b"       ("(2{|_,/ _|})")
 | 
| 1839 | 54 | |
| 9686 | 55 | syntax (xsymbols) | 
| 35109 | 56 |   "_MTuple"      :: "['a, args] => 'a * 'b"       ("(2\<lbrace>_,/ _\<rbrace>)")
 | 
| 9686 | 57 | |
| 1839 | 58 | translations | 
| 59 |   "{|x, y, z|}"   == "{|x, {|y, z|}|}"
 | |
| 35054 | 60 |   "{|x, y|}"      == "CONST MPair x y"
 | 
| 1839 | 61 | |
| 62 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35109diff
changeset | 63 | definition HPair :: "[msg,msg] => msg" ("(4Hash[_] /_)" [0, 1000]) where
 | 
| 16818 | 64 |     --{*Message Y paired with a MAC computed with the help of X*}
 | 
| 2516 
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
 paulson parents: 
2484diff
changeset | 65 |     "Hash[X] Y == {| Hash{|X,Y|}, Y|}"
 | 
| 2484 | 66 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35109diff
changeset | 67 | definition keysFor :: "msg set => key set" where | 
| 16818 | 68 |     --{*Keys useful to decrypt elements of a message set*}
 | 
| 11192 | 69 |   "keysFor H == invKey ` {K. \<exists>X. Crypt K X \<in> H}"
 | 
| 1839 | 70 | |
| 16818 | 71 | |
| 72 | subsubsection{*Inductive Definition of All Parts" of a Message*}
 | |
| 1839 | 73 | |
| 23746 | 74 | inductive_set | 
| 75 | parts :: "msg set => msg set" | |
| 76 | for H :: "msg set" | |
| 77 | where | |
| 11192 | 78 | Inj [intro]: "X \<in> H ==> X \<in> parts H" | 
| 23746 | 79 |   | Fst:         "{|X,Y|}   \<in> parts H ==> X \<in> parts H"
 | 
| 80 |   | Snd:         "{|X,Y|}   \<in> parts H ==> Y \<in> parts H"
 | |
| 81 | | Body: "Crypt K X \<in> parts H ==> X \<in> parts H" | |
| 11189 | 82 | |
| 83 | ||
| 16818 | 84 | text{*Monotonicity*}
 | 
| 85 | lemma parts_mono: "G \<subseteq> H ==> parts(G) \<subseteq> parts(H)" | |
| 11189 | 86 | apply auto | 
| 87 | apply (erule parts.induct) | |
| 16818 | 88 | apply (blast dest: parts.Fst parts.Snd parts.Body)+ | 
| 11189 | 89 | done | 
| 1839 | 90 | |
| 91 | ||
| 16818 | 92 | text{*Equations hold because constructors are injective.*}
 | 
| 13926 | 93 | lemma Friend_image_eq [simp]: "(Friend x \<in> Friend`A) = (x:A)" | 
| 94 | by auto | |
| 95 | ||
| 96 | lemma Key_image_eq [simp]: "(Key x \<in> Key`A) = (x\<in>A)" | |
| 97 | by auto | |
| 98 | ||
| 99 | lemma Nonce_Key_image_eq [simp]: "(Nonce x \<notin> Key`A)" | |
| 100 | by auto | |
| 101 | ||
| 102 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 103 | subsubsection{*Inverse of keys *}
 | 
| 13926 | 104 | |
| 105 | lemma invKey_eq [simp]: "(invKey K = invKey K') = (K=K')" | |
| 28698 | 106 | by (metis invKey) | 
| 13926 | 107 | |
| 108 | ||
| 109 | subsection{*keysFor operator*}
 | |
| 110 | ||
| 111 | lemma keysFor_empty [simp]: "keysFor {} = {}"
 | |
| 112 | by (unfold keysFor_def, blast) | |
| 113 | ||
| 114 | lemma keysFor_Un [simp]: "keysFor (H \<union> H') = keysFor H \<union> keysFor H'" | |
| 115 | by (unfold keysFor_def, blast) | |
| 116 | ||
| 117 | lemma keysFor_UN [simp]: "keysFor (\<Union>i\<in>A. H i) = (\<Union>i\<in>A. keysFor (H i))" | |
| 118 | by (unfold keysFor_def, blast) | |
| 119 | ||
| 16818 | 120 | text{*Monotonicity*}
 | 
| 121 | lemma keysFor_mono: "G \<subseteq> H ==> keysFor(G) \<subseteq> keysFor(H)" | |
| 13926 | 122 | by (unfold keysFor_def, blast) | 
| 123 | ||
| 124 | lemma keysFor_insert_Agent [simp]: "keysFor (insert (Agent A) H) = keysFor H" | |
| 125 | by (unfold keysFor_def, auto) | |
| 126 | ||
| 127 | lemma keysFor_insert_Nonce [simp]: "keysFor (insert (Nonce N) H) = keysFor H" | |
| 128 | by (unfold keysFor_def, auto) | |
| 129 | ||
| 130 | lemma keysFor_insert_Number [simp]: "keysFor (insert (Number N) H) = keysFor H" | |
| 131 | by (unfold keysFor_def, auto) | |
| 132 | ||
| 133 | lemma keysFor_insert_Key [simp]: "keysFor (insert (Key K) H) = keysFor H" | |
| 134 | by (unfold keysFor_def, auto) | |
| 135 | ||
| 136 | lemma keysFor_insert_Hash [simp]: "keysFor (insert (Hash X) H) = keysFor H" | |
| 137 | by (unfold keysFor_def, auto) | |
| 138 | ||
| 139 | lemma keysFor_insert_MPair [simp]: "keysFor (insert {|X,Y|} H) = keysFor H"
 | |
| 140 | by (unfold keysFor_def, auto) | |
| 141 | ||
| 142 | lemma keysFor_insert_Crypt [simp]: | |
| 143 | "keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)" | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 144 | by (unfold keysFor_def, auto) | 
| 13926 | 145 | |
| 146 | lemma keysFor_image_Key [simp]: "keysFor (Key`E) = {}"
 | |
| 147 | by (unfold keysFor_def, auto) | |
| 148 | ||
| 149 | lemma Crypt_imp_invKey_keysFor: "Crypt K X \<in> H ==> invKey K \<in> keysFor H" | |
| 150 | by (unfold keysFor_def, blast) | |
| 151 | ||
| 152 | ||
| 153 | subsection{*Inductive relation "parts"*}
 | |
| 154 | ||
| 155 | lemma MPair_parts: | |
| 156 |      "[| {|X,Y|} \<in> parts H;        
 | |
| 157 | [| X \<in> parts H; Y \<in> parts H |] ==> P |] ==> P" | |
| 158 | by (blast dest: parts.Fst parts.Snd) | |
| 159 | ||
| 160 | declare MPair_parts [elim!] parts.Body [dest!] | |
| 161 | text{*NB These two rules are UNSAFE in the formal sense, as they discard the
 | |
| 162 | compound message. They work well on THIS FILE. | |
| 163 |   @{text MPair_parts} is left as SAFE because it speeds up proofs.
 | |
| 164 | The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.*} | |
| 165 | ||
| 166 | lemma parts_increasing: "H \<subseteq> parts(H)" | |
| 167 | by blast | |
| 168 | ||
| 45605 | 169 | lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD] | 
| 13926 | 170 | |
| 171 | lemma parts_empty [simp]: "parts{} = {}"
 | |
| 172 | apply safe | |
| 173 | apply (erule parts.induct, blast+) | |
| 174 | done | |
| 175 | ||
| 176 | lemma parts_emptyE [elim!]: "X\<in> parts{} ==> P"
 | |
| 177 | by simp | |
| 178 | ||
| 16818 | 179 | text{*WARNING: loops if H = {Y}, therefore must not be repeated!*}
 | 
| 13926 | 180 | lemma parts_singleton: "X\<in> parts H ==> \<exists>Y\<in>H. X\<in> parts {Y}"
 | 
| 26807 
4cd176ea28dc
Replaced blast by fast in proof of parts_singleton, since blast looped
 berghofe parents: 
26342diff
changeset | 181 | by (erule parts.induct, fast+) | 
| 13926 | 182 | |
| 183 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 184 | subsubsection{*Unions *}
 | 
| 13926 | 185 | |
| 186 | lemma parts_Un_subset1: "parts(G) \<union> parts(H) \<subseteq> parts(G \<union> H)" | |
| 187 | by (intro Un_least parts_mono Un_upper1 Un_upper2) | |
| 188 | ||
| 189 | lemma parts_Un_subset2: "parts(G \<union> H) \<subseteq> parts(G) \<union> parts(H)" | |
| 190 | apply (rule subsetI) | |
| 191 | apply (erule parts.induct, blast+) | |
| 192 | done | |
| 193 | ||
| 194 | lemma parts_Un [simp]: "parts(G \<union> H) = parts(G) \<union> parts(H)" | |
| 195 | by (intro equalityI parts_Un_subset1 parts_Un_subset2) | |
| 196 | ||
| 197 | lemma parts_insert: "parts (insert X H) = parts {X} \<union> parts H"
 | |
| 34185 | 198 | by (metis insert_is_Un parts_Un) | 
| 13926 | 199 | |
| 16818 | 200 | text{*TWO inserts to avoid looping.  This rewrite is better than nothing.
 | 
| 201 | Not suitable for Addsimps: its behaviour can be strange.*} | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 202 | lemma parts_insert2: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 203 |      "parts (insert X (insert Y H)) = parts {X} \<union> parts {Y} \<union> parts H"
 | 
| 34185 | 204 | by (metis Un_commute Un_empty_right Un_insert_right insert_is_Un parts_Un) | 
| 13926 | 205 | |
| 206 | lemma parts_UN_subset1: "(\<Union>x\<in>A. parts(H x)) \<subseteq> parts(\<Union>x\<in>A. H x)" | |
| 207 | by (intro UN_least parts_mono UN_upper) | |
| 208 | ||
| 209 | lemma parts_UN_subset2: "parts(\<Union>x\<in>A. H x) \<subseteq> (\<Union>x\<in>A. parts(H x))" | |
| 210 | apply (rule subsetI) | |
| 211 | apply (erule parts.induct, blast+) | |
| 212 | done | |
| 213 | ||
| 214 | lemma parts_UN [simp]: "parts(\<Union>x\<in>A. H x) = (\<Union>x\<in>A. parts(H x))" | |
| 215 | by (intro equalityI parts_UN_subset1 parts_UN_subset2) | |
| 216 | ||
| 16818 | 217 | text{*Added to simplify arguments to parts, analz and synth.
 | 
| 218 | NOTE: the UN versions are no longer used!*} | |
| 13926 | 219 | |
| 220 | ||
| 221 | text{*This allows @{text blast} to simplify occurrences of 
 | |
| 222 |   @{term "parts(G\<union>H)"} in the assumption.*}
 | |
| 17729 | 223 | lemmas in_parts_UnE = parts_Un [THEN equalityD1, THEN subsetD, THEN UnE] | 
| 224 | declare in_parts_UnE [elim!] | |
| 13926 | 225 | |
| 226 | ||
| 227 | lemma parts_insert_subset: "insert X (parts H) \<subseteq> parts(insert X H)" | |
| 228 | by (blast intro: parts_mono [THEN [2] rev_subsetD]) | |
| 229 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 230 | subsubsection{*Idempotence and transitivity *}
 | 
| 13926 | 231 | |
| 232 | lemma parts_partsD [dest!]: "X\<in> parts (parts H) ==> X\<in> parts H" | |
| 233 | by (erule parts.induct, blast+) | |
| 234 | ||
| 235 | lemma parts_idem [simp]: "parts (parts H) = parts H" | |
| 236 | by blast | |
| 237 | ||
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 238 | lemma parts_subset_iff [simp]: "(parts G \<subseteq> parts H) = (G \<subseteq> parts H)" | 
| 35566 
3c01f5ad1d34
Simplified a couple of proofs and corrected a comment
 paulson parents: 
35416diff
changeset | 239 | by (metis parts_idem parts_increasing parts_mono subset_trans) | 
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 240 | |
| 13926 | 241 | lemma parts_trans: "[| X\<in> parts G; G \<subseteq> parts H |] ==> X\<in> parts H" | 
| 41693 
47532fe9e075
Introduction of metis calls and other cosmetic modifications.
 paulson parents: 
39216diff
changeset | 242 | by (metis parts_subset_iff set_mp) | 
| 13926 | 243 | |
| 16818 | 244 | text{*Cut*}
 | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 245 | lemma parts_cut: | 
| 18492 | 246 | "[| Y\<in> parts (insert X G); X\<in> parts H |] ==> Y\<in> parts (G \<union> H)" | 
| 247 | by (blast intro: parts_trans) | |
| 248 | ||
| 13926 | 249 | lemma parts_cut_eq [simp]: "X\<in> parts H ==> parts (insert X H) = parts H" | 
| 41693 
47532fe9e075
Introduction of metis calls and other cosmetic modifications.
 paulson parents: 
39216diff
changeset | 250 | by (metis insert_absorb parts_idem parts_insert) | 
| 13926 | 251 | |
| 252 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 253 | subsubsection{*Rewrite rules for pulling out atomic messages *}
 | 
| 13926 | 254 | |
| 255 | lemmas parts_insert_eq_I = equalityI [OF subsetI parts_insert_subset] | |
| 256 | ||
| 257 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 258 | lemma parts_insert_Agent [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 259 | "parts (insert (Agent agt) H) = insert (Agent agt) (parts H)" | 
| 13926 | 260 | apply (rule parts_insert_eq_I) | 
| 261 | apply (erule parts.induct, auto) | |
| 262 | done | |
| 263 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 264 | lemma parts_insert_Nonce [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 265 | "parts (insert (Nonce N) H) = insert (Nonce N) (parts H)" | 
| 13926 | 266 | apply (rule parts_insert_eq_I) | 
| 267 | apply (erule parts.induct, auto) | |
| 268 | done | |
| 269 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 270 | lemma parts_insert_Number [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 271 | "parts (insert (Number N) H) = insert (Number N) (parts H)" | 
| 13926 | 272 | apply (rule parts_insert_eq_I) | 
| 273 | apply (erule parts.induct, auto) | |
| 274 | done | |
| 275 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 276 | lemma parts_insert_Key [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 277 | "parts (insert (Key K) H) = insert (Key K) (parts H)" | 
| 13926 | 278 | apply (rule parts_insert_eq_I) | 
| 279 | apply (erule parts.induct, auto) | |
| 280 | done | |
| 281 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 282 | lemma parts_insert_Hash [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 283 | "parts (insert (Hash X) H) = insert (Hash X) (parts H)" | 
| 13926 | 284 | apply (rule parts_insert_eq_I) | 
| 285 | apply (erule parts.induct, auto) | |
| 286 | done | |
| 287 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 288 | lemma parts_insert_Crypt [simp]: | 
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 289 | "parts (insert (Crypt K X) H) = insert (Crypt K X) (parts (insert X H))" | 
| 13926 | 290 | apply (rule equalityI) | 
| 291 | apply (rule subsetI) | |
| 292 | apply (erule parts.induct, auto) | |
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 293 | apply (blast intro: parts.Body) | 
| 13926 | 294 | done | 
| 295 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 296 | lemma parts_insert_MPair [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 297 |      "parts (insert {|X,Y|} H) =  
 | 
| 13926 | 298 |           insert {|X,Y|} (parts (insert X (insert Y H)))"
 | 
| 299 | apply (rule equalityI) | |
| 300 | apply (rule subsetI) | |
| 301 | apply (erule parts.induct, auto) | |
| 302 | apply (blast intro: parts.Fst parts.Snd)+ | |
| 303 | done | |
| 304 | ||
| 305 | lemma parts_image_Key [simp]: "parts (Key`N) = Key`N" | |
| 306 | apply auto | |
| 307 | apply (erule parts.induct, auto) | |
| 308 | done | |
| 309 | ||
| 310 | ||
| 16818 | 311 | text{*In any message, there is an upper bound N on its greatest nonce.*}
 | 
| 13926 | 312 | lemma msg_Nonce_supply: "\<exists>N. \<forall>n. N\<le>n --> Nonce n \<notin> parts {msg}"
 | 
| 27105 
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
 haftmann parents: 
26807diff
changeset | 313 | apply (induct msg) | 
| 13926 | 314 | apply (simp_all (no_asm_simp) add: exI parts_insert2) | 
| 16818 | 315 | txt{*Nonce case*}
 | 
| 34185 | 316 | apply (metis Suc_n_not_le_n) | 
| 317 | txt{*MPair case: metis works out the necessary sum itself!*}
 | |
| 318 | apply (metis le_trans nat_le_linear) | |
| 13926 | 319 | done | 
| 320 | ||
| 321 | ||
| 322 | subsection{*Inductive relation "analz"*}
 | |
| 323 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 324 | text{*Inductive definition of "analz" -- what can be broken down from a set of
 | 
| 1839 | 325 | messages, including keys. A form of downward closure. Pairs can | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 326 | be taken apart; messages decrypted with known keys. *} | 
| 1839 | 327 | |
| 23746 | 328 | inductive_set | 
| 329 | analz :: "msg set => msg set" | |
| 330 | for H :: "msg set" | |
| 331 | where | |
| 11192 | 332 | Inj [intro,simp] : "X \<in> H ==> X \<in> analz H" | 
| 23746 | 333 |   | Fst:     "{|X,Y|} \<in> analz H ==> X \<in> analz H"
 | 
| 334 |   | Snd:     "{|X,Y|} \<in> analz H ==> Y \<in> analz H"
 | |
| 335 | | Decrypt [dest]: | |
| 11192 | 336 | "[|Crypt K X \<in> analz H; Key(invKey K): analz H|] ==> X \<in> analz H" | 
| 1839 | 337 | |
| 338 | ||
| 16818 | 339 | text{*Monotonicity; Lemma 1 of Lowe's paper*}
 | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 340 | lemma analz_mono: "G\<subseteq>H ==> analz(G) \<subseteq> analz(H)" | 
| 11189 | 341 | apply auto | 
| 342 | apply (erule analz.induct) | |
| 16818 | 343 | apply (auto dest: analz.Fst analz.Snd) | 
| 11189 | 344 | done | 
| 345 | ||
| 13926 | 346 | text{*Making it safe speeds up proofs*}
 | 
| 347 | lemma MPair_analz [elim!]: | |
| 348 |      "[| {|X,Y|} \<in> analz H;        
 | |
| 349 | [| X \<in> analz H; Y \<in> analz H |] ==> P | |
| 350 | |] ==> P" | |
| 351 | by (blast dest: analz.Fst analz.Snd) | |
| 352 | ||
| 353 | lemma analz_increasing: "H \<subseteq> analz(H)" | |
| 354 | by blast | |
| 355 | ||
| 356 | lemma analz_subset_parts: "analz H \<subseteq> parts H" | |
| 357 | apply (rule subsetI) | |
| 358 | apply (erule analz.induct, blast+) | |
| 359 | done | |
| 360 | ||
| 45605 | 361 | lemmas analz_into_parts = analz_subset_parts [THEN subsetD] | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 362 | |
| 45605 | 363 | lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD] | 
| 13926 | 364 | |
| 365 | ||
| 366 | lemma parts_analz [simp]: "parts (analz H) = parts H" | |
| 34185 | 367 | by (metis analz_increasing analz_subset_parts equalityI parts_mono parts_subset_iff) | 
| 13926 | 368 | |
| 369 | lemma analz_parts [simp]: "analz (parts H) = parts H" | |
| 370 | apply auto | |
| 371 | apply (erule analz.induct, auto) | |
| 372 | done | |
| 373 | ||
| 45605 | 374 | lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD] | 
| 13926 | 375 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 376 | subsubsection{*General equational properties *}
 | 
| 13926 | 377 | |
| 378 | lemma analz_empty [simp]: "analz{} = {}"
 | |
| 379 | apply safe | |
| 380 | apply (erule analz.induct, blast+) | |
| 381 | done | |
| 382 | ||
| 16818 | 383 | text{*Converse fails: we can analz more from the union than from the 
 | 
| 384 | separate parts, as a key in one might decrypt a message in the other*} | |
| 13926 | 385 | lemma analz_Un: "analz(G) \<union> analz(H) \<subseteq> analz(G \<union> H)" | 
| 386 | by (intro Un_least analz_mono Un_upper1 Un_upper2) | |
| 387 | ||
| 388 | lemma analz_insert: "insert X (analz H) \<subseteq> analz(insert X H)" | |
| 389 | by (blast intro: analz_mono [THEN [2] rev_subsetD]) | |
| 390 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 391 | subsubsection{*Rewrite rules for pulling out atomic messages *}
 | 
| 13926 | 392 | |
| 393 | lemmas analz_insert_eq_I = equalityI [OF subsetI analz_insert] | |
| 394 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 395 | lemma analz_insert_Agent [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 396 | "analz (insert (Agent agt) H) = insert (Agent agt) (analz H)" | 
| 13926 | 397 | apply (rule analz_insert_eq_I) | 
| 398 | apply (erule analz.induct, auto) | |
| 399 | done | |
| 400 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 401 | lemma analz_insert_Nonce [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 402 | "analz (insert (Nonce N) H) = insert (Nonce N) (analz H)" | 
| 13926 | 403 | apply (rule analz_insert_eq_I) | 
| 404 | apply (erule analz.induct, auto) | |
| 405 | done | |
| 406 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 407 | lemma analz_insert_Number [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 408 | "analz (insert (Number N) H) = insert (Number N) (analz H)" | 
| 13926 | 409 | apply (rule analz_insert_eq_I) | 
| 410 | apply (erule analz.induct, auto) | |
| 411 | done | |
| 412 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 413 | lemma analz_insert_Hash [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 414 | "analz (insert (Hash X) H) = insert (Hash X) (analz H)" | 
| 13926 | 415 | apply (rule analz_insert_eq_I) | 
| 416 | apply (erule analz.induct, auto) | |
| 417 | done | |
| 418 | ||
| 16818 | 419 | text{*Can only pull out Keys if they are not needed to decrypt the rest*}
 | 
| 13926 | 420 | lemma analz_insert_Key [simp]: | 
| 421 | "K \<notin> keysFor (analz H) ==> | |
| 422 | analz (insert (Key K) H) = insert (Key K) (analz H)" | |
| 423 | apply (unfold keysFor_def) | |
| 424 | apply (rule analz_insert_eq_I) | |
| 425 | apply (erule analz.induct, auto) | |
| 426 | done | |
| 427 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 428 | lemma analz_insert_MPair [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 429 |      "analz (insert {|X,Y|} H) =  
 | 
| 13926 | 430 |           insert {|X,Y|} (analz (insert X (insert Y H)))"
 | 
| 431 | apply (rule equalityI) | |
| 432 | apply (rule subsetI) | |
| 433 | apply (erule analz.induct, auto) | |
| 434 | apply (erule analz.induct) | |
| 435 | apply (blast intro: analz.Fst analz.Snd)+ | |
| 436 | done | |
| 437 | ||
| 16818 | 438 | text{*Can pull out enCrypted message if the Key is not known*}
 | 
| 13926 | 439 | lemma analz_insert_Crypt: | 
| 440 | "Key (invKey K) \<notin> analz H | |
| 441 | ==> analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)" | |
| 442 | apply (rule analz_insert_eq_I) | |
| 443 | apply (erule analz.induct, auto) | |
| 444 | ||
| 445 | done | |
| 446 | ||
| 447 | lemma lemma1: "Key (invKey K) \<in> analz H ==> | |
| 448 | analz (insert (Crypt K X) H) \<subseteq> | |
| 449 | insert (Crypt K X) (analz (insert X H))" | |
| 450 | apply (rule subsetI) | |
| 23746 | 451 | apply (erule_tac x = x in analz.induct, auto) | 
| 13926 | 452 | done | 
| 453 | ||
| 454 | lemma lemma2: "Key (invKey K) \<in> analz H ==> | |
| 455 | insert (Crypt K X) (analz (insert X H)) \<subseteq> | |
| 456 | analz (insert (Crypt K X) H)" | |
| 457 | apply auto | |
| 23746 | 458 | apply (erule_tac x = x in analz.induct, auto) | 
| 13926 | 459 | apply (blast intro: analz_insertI analz.Decrypt) | 
| 460 | done | |
| 461 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 462 | lemma analz_insert_Decrypt: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 463 | "Key (invKey K) \<in> analz H ==> | 
| 13926 | 464 | analz (insert (Crypt K X) H) = | 
| 465 | insert (Crypt K X) (analz (insert X H))" | |
| 466 | by (intro equalityI lemma1 lemma2) | |
| 467 | ||
| 16818 | 468 | text{*Case analysis: either the message is secure, or it is not! Effective,
 | 
| 469 | but can cause subgoals to blow up! Use with @{text "split_if"}; apparently
 | |
| 470 | @{text "split_tac"} does not cope with patterns such as @{term"analz (insert
 | |
| 471 | (Crypt K X) H)"} *} | |
| 13926 | 472 | lemma analz_Crypt_if [simp]: | 
| 473 | "analz (insert (Crypt K X) H) = | |
| 474 | (if (Key (invKey K) \<in> analz H) | |
| 475 | then insert (Crypt K X) (analz (insert X H)) | |
| 476 | else insert (Crypt K X) (analz H))" | |
| 477 | by (simp add: analz_insert_Crypt analz_insert_Decrypt) | |
| 478 | ||
| 479 | ||
| 16818 | 480 | text{*This rule supposes "for the sake of argument" that we have the key.*}
 | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 481 | lemma analz_insert_Crypt_subset: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 482 | "analz (insert (Crypt K X) H) \<subseteq> | 
| 13926 | 483 | insert (Crypt K X) (analz (insert X H))" | 
| 484 | apply (rule subsetI) | |
| 485 | apply (erule analz.induct, auto) | |
| 486 | done | |
| 487 | ||
| 488 | ||
| 489 | lemma analz_image_Key [simp]: "analz (Key`N) = Key`N" | |
| 490 | apply auto | |
| 491 | apply (erule analz.induct, auto) | |
| 492 | done | |
| 493 | ||
| 494 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 495 | subsubsection{*Idempotence and transitivity *}
 | 
| 13926 | 496 | |
| 497 | lemma analz_analzD [dest!]: "X\<in> analz (analz H) ==> X\<in> analz H" | |
| 498 | by (erule analz.induct, blast+) | |
| 499 | ||
| 500 | lemma analz_idem [simp]: "analz (analz H) = analz H" | |
| 501 | by blast | |
| 502 | ||
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 503 | lemma analz_subset_iff [simp]: "(analz G \<subseteq> analz H) = (G \<subseteq> analz H)" | 
| 34185 | 504 | by (metis analz_idem analz_increasing analz_mono subset_trans) | 
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 505 | |
| 13926 | 506 | lemma analz_trans: "[| X\<in> analz G; G \<subseteq> analz H |] ==> X\<in> analz H" | 
| 507 | by (drule analz_mono, blast) | |
| 508 | ||
| 16818 | 509 | text{*Cut; Lemma 2 of Lowe*}
 | 
| 13926 | 510 | lemma analz_cut: "[| Y\<in> analz (insert X H); X\<in> analz H |] ==> Y\<in> analz H" | 
| 511 | by (erule analz_trans, blast) | |
| 512 | ||
| 513 | (*Cut can be proved easily by induction on | |
| 514 | "Y: analz (insert X H) ==> X: analz H --> Y: analz H" | |
| 515 | *) | |
| 516 | ||
| 16818 | 517 | text{*This rewrite rule helps in the simplification of messages that involve
 | 
| 13926 | 518 | the forwarding of unknown components (X). Without it, removing occurrences | 
| 16818 | 519 | of X can be very complicated. *} | 
| 13926 | 520 | lemma analz_insert_eq: "X\<in> analz H ==> analz (insert X H) = analz H" | 
| 41693 
47532fe9e075
Introduction of metis calls and other cosmetic modifications.
 paulson parents: 
39216diff
changeset | 521 | by (metis analz_cut analz_insert_eq_I insert_absorb) | 
| 13926 | 522 | |
| 523 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 524 | text{*A congruence rule for "analz" *}
 | 
| 13926 | 525 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 526 | lemma analz_subset_cong: | 
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 527 | "[| analz G \<subseteq> analz G'; analz H \<subseteq> analz H' |] | 
| 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 528 | ==> analz (G \<union> H) \<subseteq> analz (G' \<union> H')" | 
| 41693 
47532fe9e075
Introduction of metis calls and other cosmetic modifications.
 paulson parents: 
39216diff
changeset | 529 | by (metis Un_mono analz_Un analz_subset_iff subset_trans) | 
| 13926 | 530 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 531 | lemma analz_cong: | 
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 532 | "[| analz G = analz G'; analz H = analz H' |] | 
| 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 533 | ==> analz (G \<union> H) = analz (G' \<union> H')" | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 534 | by (intro equalityI analz_subset_cong, simp_all) | 
| 13926 | 535 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 536 | lemma analz_insert_cong: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 537 | "analz H = analz H' ==> analz(insert X H) = analz(insert X H')" | 
| 13926 | 538 | by (force simp only: insert_def intro!: analz_cong) | 
| 539 | ||
| 16818 | 540 | text{*If there are no pairs or encryptions then analz does nothing*}
 | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 541 | lemma analz_trivial: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 542 |      "[| \<forall>X Y. {|X,Y|} \<notin> H;  \<forall>X K. Crypt K X \<notin> H |] ==> analz H = H"
 | 
| 13926 | 543 | apply safe | 
| 544 | apply (erule analz.induct, blast+) | |
| 545 | done | |
| 546 | ||
| 16818 | 547 | text{*These two are obsolete (with a single Spy) but cost little to prove...*}
 | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 548 | lemma analz_UN_analz_lemma: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 549 | "X\<in> analz (\<Union>i\<in>A. analz (H i)) ==> X\<in> analz (\<Union>i\<in>A. H i)" | 
| 13926 | 550 | apply (erule analz.induct) | 
| 551 | apply (blast intro: analz_mono [THEN [2] rev_subsetD])+ | |
| 552 | done | |
| 553 | ||
| 554 | lemma analz_UN_analz [simp]: "analz (\<Union>i\<in>A. analz (H i)) = analz (\<Union>i\<in>A. H i)" | |
| 555 | by (blast intro: analz_UN_analz_lemma analz_mono [THEN [2] rev_subsetD]) | |
| 556 | ||
| 557 | ||
| 558 | subsection{*Inductive relation "synth"*}
 | |
| 559 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 560 | text{*Inductive definition of "synth" -- what can be built up from a set of
 | 
| 1839 | 561 | messages. A form of upward closure. Pairs can be built, messages | 
| 3668 | 562 | encrypted with known keys. Agent names are public domain. | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 563 | Numbers can be guessed, but Nonces cannot be. *} | 
| 1839 | 564 | |
| 23746 | 565 | inductive_set | 
| 566 | synth :: "msg set => msg set" | |
| 567 | for H :: "msg set" | |
| 568 | where | |
| 11192 | 569 | Inj [intro]: "X \<in> H ==> X \<in> synth H" | 
| 23746 | 570 | | Agent [intro]: "Agent agt \<in> synth H" | 
| 571 | | Number [intro]: "Number n \<in> synth H" | |
| 572 | | Hash [intro]: "X \<in> synth H ==> Hash X \<in> synth H" | |
| 573 |   | MPair  [intro]:   "[|X \<in> synth H;  Y \<in> synth H|] ==> {|X,Y|} \<in> synth H"
 | |
| 574 | | Crypt [intro]: "[|X \<in> synth H; Key(K) \<in> H|] ==> Crypt K X \<in> synth H" | |
| 11189 | 575 | |
| 16818 | 576 | text{*Monotonicity*}
 | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 577 | lemma synth_mono: "G\<subseteq>H ==> synth(G) \<subseteq> synth(H)" | 
| 16818 | 578 | by (auto, erule synth.induct, auto) | 
| 11189 | 579 | |
| 16818 | 580 | text{*NO @{text Agent_synth}, as any Agent name can be synthesized.  
 | 
| 581 |   The same holds for @{term Number}*}
 | |
| 11189 | 582 | |
| 39216 | 583 | inductive_simps synth_simps [iff]: | 
| 584 | "Nonce n \<in> synth H" | |
| 585 | "Key K \<in> synth H" | |
| 586 | "Hash X \<in> synth H" | |
| 587 |  "{|X,Y|} \<in> synth H"
 | |
| 588 | "Crypt K X \<in> synth H" | |
| 13926 | 589 | |
| 590 | lemma synth_increasing: "H \<subseteq> synth(H)" | |
| 591 | by blast | |
| 592 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 593 | subsubsection{*Unions *}
 | 
| 13926 | 594 | |
| 16818 | 595 | text{*Converse fails: we can synth more from the union than from the 
 | 
| 596 | separate parts, building a compound message using elements of each.*} | |
| 13926 | 597 | lemma synth_Un: "synth(G) \<union> synth(H) \<subseteq> synth(G \<union> H)" | 
| 598 | by (intro Un_least synth_mono Un_upper1 Un_upper2) | |
| 599 | ||
| 600 | lemma synth_insert: "insert X (synth H) \<subseteq> synth(insert X H)" | |
| 601 | by (blast intro: synth_mono [THEN [2] rev_subsetD]) | |
| 602 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 603 | subsubsection{*Idempotence and transitivity *}
 | 
| 13926 | 604 | |
| 605 | lemma synth_synthD [dest!]: "X\<in> synth (synth H) ==> X\<in> synth H" | |
| 39216 | 606 | by (erule synth.induct, auto) | 
| 13926 | 607 | |
| 608 | lemma synth_idem: "synth (synth H) = synth H" | |
| 609 | by blast | |
| 610 | ||
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 611 | lemma synth_subset_iff [simp]: "(synth G \<subseteq> synth H) = (G \<subseteq> synth H)" | 
| 35566 
3c01f5ad1d34
Simplified a couple of proofs and corrected a comment
 paulson parents: 
35416diff
changeset | 612 | by (metis subset_trans synth_idem synth_increasing synth_mono) | 
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 613 | |
| 13926 | 614 | lemma synth_trans: "[| X\<in> synth G; G \<subseteq> synth H |] ==> X\<in> synth H" | 
| 615 | by (drule synth_mono, blast) | |
| 616 | ||
| 16818 | 617 | text{*Cut; Lemma 2 of Lowe*}
 | 
| 13926 | 618 | lemma synth_cut: "[| Y\<in> synth (insert X H); X\<in> synth H |] ==> Y\<in> synth H" | 
| 619 | by (erule synth_trans, blast) | |
| 620 | ||
| 621 | lemma Agent_synth [simp]: "Agent A \<in> synth H" | |
| 622 | by blast | |
| 623 | ||
| 624 | lemma Number_synth [simp]: "Number n \<in> synth H" | |
| 625 | by blast | |
| 626 | ||
| 627 | lemma Nonce_synth_eq [simp]: "(Nonce N \<in> synth H) = (Nonce N \<in> H)" | |
| 628 | by blast | |
| 629 | ||
| 630 | lemma Key_synth_eq [simp]: "(Key K \<in> synth H) = (Key K \<in> H)" | |
| 631 | by blast | |
| 632 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 633 | lemma Crypt_synth_eq [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 634 | "Key K \<notin> H ==> (Crypt K X \<in> synth H) = (Crypt K X \<in> H)" | 
| 13926 | 635 | by blast | 
| 636 | ||
| 637 | ||
| 638 | lemma keysFor_synth [simp]: | |
| 639 |     "keysFor (synth H) = keysFor H \<union> invKey`{K. Key K \<in> H}"
 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 640 | by (unfold keysFor_def, blast) | 
| 13926 | 641 | |
| 642 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 643 | subsubsection{*Combinations of parts, analz and synth *}
 | 
| 13926 | 644 | |
| 645 | lemma parts_synth [simp]: "parts (synth H) = parts H \<union> synth H" | |
| 646 | apply (rule equalityI) | |
| 647 | apply (rule subsetI) | |
| 648 | apply (erule parts.induct) | |
| 649 | apply (blast intro: synth_increasing [THEN parts_mono, THEN subsetD] | |
| 650 | parts.Fst parts.Snd parts.Body)+ | |
| 651 | done | |
| 652 | ||
| 653 | lemma analz_analz_Un [simp]: "analz (analz G \<union> H) = analz (G \<union> H)" | |
| 654 | apply (intro equalityI analz_subset_cong)+ | |
| 655 | apply simp_all | |
| 656 | done | |
| 657 | ||
| 658 | lemma analz_synth_Un [simp]: "analz (synth G \<union> H) = analz (G \<union> H) \<union> synth G" | |
| 659 | apply (rule equalityI) | |
| 660 | apply (rule subsetI) | |
| 661 | apply (erule analz.induct) | |
| 662 | prefer 5 apply (blast intro: analz_mono [THEN [2] rev_subsetD]) | |
| 663 | apply (blast intro: analz.Fst analz.Snd analz.Decrypt)+ | |
| 664 | done | |
| 665 | ||
| 666 | lemma analz_synth [simp]: "analz (synth H) = analz H \<union> synth H" | |
| 34185 | 667 | by (metis Un_empty_right analz_synth_Un) | 
| 13926 | 668 | |
| 669 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 670 | subsubsection{*For reasoning about the Fake rule in traces *}
 | 
| 13926 | 671 | |
| 672 | lemma parts_insert_subset_Un: "X\<in> G ==> parts(insert X H) \<subseteq> parts G \<union> parts H" | |
| 34185 | 673 | by (metis UnCI Un_upper2 insert_subset parts_Un parts_mono) | 
| 13926 | 674 | |
| 35566 
3c01f5ad1d34
Simplified a couple of proofs and corrected a comment
 paulson parents: 
35416diff
changeset | 675 | text{*More specifically for Fake. See also @{text Fake_parts_sing} below *}
 | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 676 | lemma Fake_parts_insert: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 677 | "X \<in> synth (analz H) ==> | 
| 13926 | 678 | parts (insert X H) \<subseteq> synth (analz H) \<union> parts H" | 
| 34185 | 679 | by (metis Un_commute analz_increasing insert_subset parts_analz parts_mono | 
| 680 | parts_synth synth_mono synth_subset_iff) | |
| 13926 | 681 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 682 | lemma Fake_parts_insert_in_Un: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 683 | "[|Z \<in> parts (insert X H); X: synth (analz H)|] | 
| 34185 | 684 | ==> Z \<in> synth (analz H) \<union> parts H" | 
| 685 | by (metis Fake_parts_insert set_mp) | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 686 | |
| 16818 | 687 | text{*@{term H} is sometimes @{term"Key ` KK \<union> spies evs"}, so can't put 
 | 
| 688 |   @{term "G=H"}.*}
 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 689 | lemma Fake_analz_insert: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 690 | "X\<in> synth (analz G) ==> | 
| 13926 | 691 | analz (insert X H) \<subseteq> synth (analz G) \<union> analz (G \<union> H)" | 
| 692 | apply (rule subsetI) | |
| 34185 | 693 | apply (subgoal_tac "x \<in> analz (synth (analz G) \<union> H)", force) | 
| 694 | apply (blast intro: analz_mono [THEN [2] rev_subsetD] analz_mono [THEN synth_mono, THEN [2] rev_subsetD]) | |
| 13926 | 695 | done | 
| 696 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 697 | lemma analz_conj_parts [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 698 | "(X \<in> analz H & X \<in> parts H) = (X \<in> analz H)" | 
| 14145 
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
 paulson parents: 
14126diff
changeset | 699 | by (blast intro: analz_subset_parts [THEN subsetD]) | 
| 13926 | 700 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 701 | lemma analz_disj_parts [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 702 | "(X \<in> analz H | X \<in> parts H) = (X \<in> parts H)" | 
| 14145 
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
 paulson parents: 
14126diff
changeset | 703 | by (blast intro: analz_subset_parts [THEN subsetD]) | 
| 13926 | 704 | |
| 16818 | 705 | text{*Without this equation, other rules for synth and analz would yield
 | 
| 706 | redundant cases*} | |
| 13926 | 707 | lemma MPair_synth_analz [iff]: | 
| 708 |      "({|X,Y|} \<in> synth (analz H)) =  
 | |
| 709 | (X \<in> synth (analz H) & Y \<in> synth (analz H))" | |
| 710 | by blast | |
| 711 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 712 | lemma Crypt_synth_analz: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 713 | "[| Key K \<in> analz H; Key (invKey K) \<in> analz H |] | 
| 13926 | 714 | ==> (Crypt K X \<in> synth (analz H)) = (X \<in> synth (analz H))" | 
| 715 | by blast | |
| 716 | ||
| 717 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 718 | lemma Hash_synth_analz [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 719 | "X \<notin> synth (analz H) | 
| 13926 | 720 |       ==> (Hash{|X,Y|} \<in> synth (analz H)) = (Hash{|X,Y|} \<in> analz H)"
 | 
| 721 | by blast | |
| 722 | ||
| 723 | ||
| 724 | subsection{*HPair: a combination of Hash and MPair*}
 | |
| 725 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 726 | subsubsection{*Freeness *}
 | 
| 13926 | 727 | |
| 728 | lemma Agent_neq_HPair: "Agent A ~= Hash[X] Y" | |
| 729 | by (unfold HPair_def, simp) | |
| 730 | ||
| 731 | lemma Nonce_neq_HPair: "Nonce N ~= Hash[X] Y" | |
| 732 | by (unfold HPair_def, simp) | |
| 733 | ||
| 734 | lemma Number_neq_HPair: "Number N ~= Hash[X] Y" | |
| 735 | by (unfold HPair_def, simp) | |
| 736 | ||
| 737 | lemma Key_neq_HPair: "Key K ~= Hash[X] Y" | |
| 738 | by (unfold HPair_def, simp) | |
| 739 | ||
| 740 | lemma Hash_neq_HPair: "Hash Z ~= Hash[X] Y" | |
| 741 | by (unfold HPair_def, simp) | |
| 742 | ||
| 743 | lemma Crypt_neq_HPair: "Crypt K X' ~= Hash[X] Y" | |
| 744 | by (unfold HPair_def, simp) | |
| 745 | ||
| 746 | lemmas HPair_neqs = Agent_neq_HPair Nonce_neq_HPair Number_neq_HPair | |
| 747 | Key_neq_HPair Hash_neq_HPair Crypt_neq_HPair | |
| 748 | ||
| 749 | declare HPair_neqs [iff] | |
| 750 | declare HPair_neqs [symmetric, iff] | |
| 751 | ||
| 752 | lemma HPair_eq [iff]: "(Hash[X'] Y' = Hash[X] Y) = (X' = X & Y'=Y)" | |
| 753 | by (simp add: HPair_def) | |
| 754 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 755 | lemma MPair_eq_HPair [iff]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 756 |      "({|X',Y'|} = Hash[X] Y) = (X' = Hash{|X,Y|} & Y'=Y)"
 | 
| 13926 | 757 | by (simp add: HPair_def) | 
| 758 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 759 | lemma HPair_eq_MPair [iff]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 760 |      "(Hash[X] Y = {|X',Y'|}) = (X' = Hash{|X,Y|} & Y'=Y)"
 | 
| 13926 | 761 | by (auto simp add: HPair_def) | 
| 762 | ||
| 763 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 764 | subsubsection{*Specialized laws, proved in terms of those for Hash and MPair *}
 | 
| 13926 | 765 | |
| 766 | lemma keysFor_insert_HPair [simp]: "keysFor (insert (Hash[X] Y) H) = keysFor H" | |
| 767 | by (simp add: HPair_def) | |
| 768 | ||
| 769 | lemma parts_insert_HPair [simp]: | |
| 770 | "parts (insert (Hash[X] Y) H) = | |
| 771 |      insert (Hash[X] Y) (insert (Hash{|X,Y|}) (parts (insert Y H)))"
 | |
| 772 | by (simp add: HPair_def) | |
| 773 | ||
| 774 | lemma analz_insert_HPair [simp]: | |
| 775 | "analz (insert (Hash[X] Y) H) = | |
| 776 |      insert (Hash[X] Y) (insert (Hash{|X,Y|}) (analz (insert Y H)))"
 | |
| 777 | by (simp add: HPair_def) | |
| 778 | ||
| 779 | lemma HPair_synth_analz [simp]: | |
| 780 | "X \<notin> synth (analz H) | |
| 781 | ==> (Hash[X] Y \<in> synth (analz H)) = | |
| 782 |         (Hash {|X, Y|} \<in> analz H & Y \<in> synth (analz H))"
 | |
| 39216 | 783 | by (auto simp add: HPair_def) | 
| 13926 | 784 | |
| 785 | ||
| 16818 | 786 | text{*We do NOT want Crypt... messages broken up in protocols!!*}
 | 
| 13926 | 787 | declare parts.Body [rule del] | 
| 788 | ||
| 789 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 790 | text{*Rewrites to push in Key and Crypt messages, so that other messages can
 | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 791 |     be pulled out using the @{text analz_insert} rules*}
 | 
| 13926 | 792 | |
| 45605 | 793 | lemmas pushKeys = | 
| 27225 | 794 | insert_commute [of "Key K" "Agent C"] | 
| 795 | insert_commute [of "Key K" "Nonce N"] | |
| 796 | insert_commute [of "Key K" "Number N"] | |
| 797 | insert_commute [of "Key K" "Hash X"] | |
| 798 | insert_commute [of "Key K" "MPair X Y"] | |
| 799 | insert_commute [of "Key K" "Crypt X K'"] | |
| 45605 | 800 | for K C N X Y K' | 
| 13926 | 801 | |
| 45605 | 802 | lemmas pushCrypts = | 
| 27225 | 803 | insert_commute [of "Crypt X K" "Agent C"] | 
| 804 | insert_commute [of "Crypt X K" "Agent C"] | |
| 805 | insert_commute [of "Crypt X K" "Nonce N"] | |
| 806 | insert_commute [of "Crypt X K" "Number N"] | |
| 807 | insert_commute [of "Crypt X K" "Hash X'"] | |
| 808 | insert_commute [of "Crypt X K" "MPair X' Y"] | |
| 45605 | 809 | for X K C N X' Y | 
| 13926 | 810 | |
| 811 | text{*Cannot be added with @{text "[simp]"} -- messages should not always be
 | |
| 812 | re-ordered. *} | |
| 813 | lemmas pushes = pushKeys pushCrypts | |
| 814 | ||
| 815 | ||
| 43582 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 816 | subsection{*The set of key-free messages*}
 | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 817 | |
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 818 | (*Note that even the encryption of a key-free message remains key-free. | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 819 | This concept is valuable because of the theorem analz_keyfree_into_Un, proved below. *) | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 820 | |
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 821 | inductive_set | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 822 | keyfree :: "msg set" | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 823 | where | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 824 | Agent: "Agent A \<in> keyfree" | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 825 | | Number: "Number N \<in> keyfree" | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 826 | | Nonce: "Nonce N \<in> keyfree" | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 827 | | Hash: "Hash X \<in> keyfree" | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 828 |   | MPair:  "[|X \<in> keyfree;  Y \<in> keyfree|] ==> {|X,Y|} \<in> keyfree"
 | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 829 | | Crypt: "[|X \<in> keyfree|] ==> Crypt K X \<in> keyfree" | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 830 | |
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 831 | |
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 832 | declare keyfree.intros [intro] | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 833 | |
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 834 | inductive_cases keyfree_KeyE: "Key K \<in> keyfree" | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 835 | inductive_cases keyfree_MPairE: "{|X,Y|} \<in> keyfree"
 | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 836 | inductive_cases keyfree_CryptE: "Crypt K X \<in> keyfree" | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 837 | |
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 838 | lemma parts_keyfree: "parts (keyfree) \<subseteq> keyfree" | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 839 | by (clarify, erule parts.induct, auto elim!: keyfree_KeyE keyfree_MPairE keyfree_CryptE) | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 840 | |
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 841 | (*The key-free part of a set of messages can be removed from the scope of the analz operator.*) | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 842 | lemma analz_keyfree_into_Un: "\<lbrakk>X \<in> analz (G \<union> H); G \<subseteq> keyfree\<rbrakk> \<Longrightarrow> X \<in> parts G \<union> analz H" | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 843 | apply (erule analz.induct, auto) | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 844 | apply (blast dest:parts.Body) | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 845 | apply (blast dest: parts.Body) | 
| 44174 
d1d79f0e1ea6
make more HOL theories work with separate set type
 huffman parents: 
43582diff
changeset | 846 | apply (metis Un_absorb2 keyfree_KeyE parts_Un parts_keyfree UnI2) | 
| 43582 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 847 | done | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 848 | |
| 13926 | 849 | subsection{*Tactics useful for many protocol proofs*}
 | 
| 850 | ML | |
| 851 | {*
 | |
| 852 | (*Analysis of Fake cases. Also works for messages that forward unknown parts, | |
| 853 | but this application is no longer necessary if analz_insert_eq is used. | |
| 854 | DEPENDS UPON "X" REFERRING TO THE FRADULENT MESSAGE *) | |
| 855 | ||
| 32117 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
30607diff
changeset | 856 | fun impOfSubs th = th RSN (2, @{thm rev_subsetD})
 | 
| 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
30607diff
changeset | 857 | |
| 13926 | 858 | (*Apply rules to break down assumptions of the form | 
| 859 | Y \<in> parts(insert X H) and Y \<in> analz(insert X H) | |
| 860 | *) | |
| 861 | val Fake_insert_tac = | |
| 24122 | 862 |     dresolve_tac [impOfSubs @{thm Fake_analz_insert},
 | 
| 863 |                   impOfSubs @{thm Fake_parts_insert}] THEN'
 | |
| 864 |     eresolve_tac [asm_rl, @{thm synth.Inj}];
 | |
| 13926 | 865 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51702diff
changeset | 866 | fun Fake_insert_simp_tac ctxt i = | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51702diff
changeset | 867 | REPEAT (Fake_insert_tac i) THEN asm_full_simp_tac ctxt i; | 
| 13926 | 868 | |
| 42474 | 869 | fun atomic_spy_analz_tac ctxt = | 
| 42793 | 870 | SELECT_GOAL | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51702diff
changeset | 871 | (Fake_insert_simp_tac ctxt 1 THEN | 
| 42793 | 872 | IF_UNSOLVED | 
| 873 | (Blast.depth_tac | |
| 874 |         (ctxt addIs [@{thm analz_insertI}, impOfSubs @{thm analz_subset_parts}]) 4 1));
 | |
| 13926 | 875 | |
| 42474 | 876 | fun spy_analz_tac ctxt i = | 
| 42793 | 877 | DETERM | 
| 878 | (SELECT_GOAL | |
| 879 | (EVERY | |
| 880 | [ (*push in occurrences of X...*) | |
| 881 | (REPEAT o CHANGED) | |
| 882 |            (res_inst_tac ctxt [(("x", 1), "X")] (insert_commute RS ssubst) 1),
 | |
| 883 | (*...allowing further simplifications*) | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51702diff
changeset | 884 | simp_tac ctxt 1, | 
| 42793 | 885 | REPEAT (FIRSTGOAL (resolve_tac [allI,impI,notI,conjI,iffI])), | 
| 886 | DEPTH_SOLVE (atomic_spy_analz_tac ctxt 1)]) i); | |
| 13926 | 887 | *} | 
| 888 | ||
| 16818 | 889 | text{*By default only @{text o_apply} is built-in.  But in the presence of
 | 
| 890 | eta-expansion this means that some terms displayed as @{term "f o g"} will be
 | |
| 891 | rewritten, and others will not!*} | |
| 13926 | 892 | declare o_def [simp] | 
| 893 | ||
| 11189 | 894 | |
| 13922 | 895 | lemma Crypt_notin_image_Key [simp]: "Crypt K X \<notin> Key ` A" | 
| 896 | by auto | |
| 897 | ||
| 898 | lemma Hash_notin_image_Key [simp] :"Hash X \<notin> Key ` A" | |
| 899 | by auto | |
| 900 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 901 | lemma synth_analz_mono: "G\<subseteq>H ==> synth (analz(G)) \<subseteq> synth (analz(H))" | 
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 902 | by (iprover intro: synth_mono analz_mono) | 
| 13922 | 903 | |
| 904 | lemma Fake_analz_eq [simp]: | |
| 905 | "X \<in> synth(analz H) ==> synth (analz (insert X H)) = synth (analz H)" | |
| 35566 
3c01f5ad1d34
Simplified a couple of proofs and corrected a comment
 paulson parents: 
35416diff
changeset | 906 | by (metis Fake_analz_insert Un_absorb Un_absorb1 Un_commute | 
| 34185 | 907 | subset_insertI synth_analz_mono synth_increasing synth_subset_iff) | 
| 13922 | 908 | |
| 909 | text{*Two generalizations of @{text analz_insert_eq}*}
 | |
| 910 | lemma gen_analz_insert_eq [rule_format]: | |
| 35566 
3c01f5ad1d34
Simplified a couple of proofs and corrected a comment
 paulson parents: 
35416diff
changeset | 911 | "X \<in> analz H ==> ALL G. H \<subseteq> G --> analz (insert X G) = analz G" | 
| 13922 | 912 | by (blast intro: analz_cut analz_insertI analz_mono [THEN [2] rev_subsetD]) | 
| 913 | ||
| 914 | lemma synth_analz_insert_eq [rule_format]: | |
| 915 | "X \<in> synth (analz H) | |
| 35566 
3c01f5ad1d34
Simplified a couple of proofs and corrected a comment
 paulson parents: 
35416diff
changeset | 916 | ==> ALL G. H \<subseteq> G --> (Key K \<in> analz (insert X G)) = (Key K \<in> analz G)" | 
| 13922 | 917 | apply (erule synth.induct) | 
| 918 | apply (simp_all add: gen_analz_insert_eq subset_trans [OF _ subset_insertI]) | |
| 919 | done | |
| 920 | ||
| 921 | lemma Fake_parts_sing: | |
| 34185 | 922 |      "X \<in> synth (analz H) ==> parts{X} \<subseteq> synth (analz H) \<union> parts H"
 | 
| 923 | by (metis Fake_parts_insert empty_subsetI insert_mono parts_mono subset_trans) | |
| 13922 | 924 | |
| 14145 
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
 paulson parents: 
14126diff
changeset | 925 | lemmas Fake_parts_sing_imp_Un = Fake_parts_sing [THEN [2] rev_subsetD] | 
| 
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
 paulson parents: 
14126diff
changeset | 926 | |
| 11189 | 927 | method_setup spy_analz = {*
 | 
| 42474 | 928 | Scan.succeed (SIMPLE_METHOD' o spy_analz_tac) *} | 
| 11189 | 929 | "for proving the Fake case when analz is involved" | 
| 1839 | 930 | |
| 11264 | 931 | method_setup atomic_spy_analz = {*
 | 
| 42474 | 932 | Scan.succeed (SIMPLE_METHOD' o atomic_spy_analz_tac) *} | 
| 11264 | 933 | "for debugging spy_analz" | 
| 934 | ||
| 935 | method_setup Fake_insert_simp = {*
 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51702diff
changeset | 936 | Scan.succeed (SIMPLE_METHOD' o Fake_insert_simp_tac) *} | 
| 11264 | 937 | "for debugging spy_analz" | 
| 938 | ||
| 1839 | 939 | end |