| author | blanchet | 
| Thu, 15 Dec 2016 15:05:35 +0100 | |
| changeset 64561 | a7664ca9ffc5 | 
| parent 63167 | 0909deb8059b | 
| child 66453 | cc19f7ca2ed6 | 
| permissions | -rw-r--r-- | 
| 33028 | 1  | 
(* Title: HOL/SET_Protocol/Message_SET.thy  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
2  | 
Author: Giampaolo Bella  | 
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
3  | 
Author: Fabio Massacci  | 
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
4  | 
Author: Lawrence C Paulson  | 
| 14199 | 5  | 
*)  | 
6  | 
||
| 63167 | 7  | 
section\<open>The Message Theory, Modified for SET\<close>  | 
| 14199 | 8  | 
|
| 33028 | 9  | 
theory Message_SET  | 
| 
41413
 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 
wenzelm 
parents: 
36866 
diff
changeset
 | 
10  | 
imports Main "~~/src/HOL/Library/Nat_Bijection"  | 
| 25592 | 11  | 
begin  | 
| 14199 | 12  | 
|
| 63167 | 13  | 
subsection\<open>General Lemmas\<close>  | 
| 14199 | 14  | 
|
| 63167 | 15  | 
text\<open>Needed occasionally with \<open>spy_analz_tac\<close>, e.g. in  | 
16  | 
\<open>analz_insert_Key_newK\<close>\<close>  | 
|
| 14199 | 17  | 
|
18  | 
lemma Un_absorb3 [simp] : "A \<union> (B \<union> A) = B \<union> A"  | 
|
19  | 
by blast  | 
|
20  | 
||
| 63167 | 21  | 
text\<open>Collapses redundant cases in the huge protocol proofs\<close>  | 
| 14199 | 22  | 
lemmas disj_simps = disj_comms disj_left_absorb disj_assoc  | 
23  | 
||
| 63167 | 24  | 
text\<open>Effective with assumptions like @{term "K \<notin> range pubK"} and 
 | 
25  | 
   @{term "K \<notin> invKey`range pubK"}\<close>
 | 
|
| 14199 | 26  | 
lemma notin_image_iff: "(y \<notin> f`I) = (\<forall>i\<in>I. f i \<noteq> y)"  | 
27  | 
by blast  | 
|
28  | 
||
| 63167 | 29  | 
text\<open>Effective with the assumption @{term "KK \<subseteq> - (range(invKey o pubK))"}\<close>
 | 
| 14199 | 30  | 
lemma disjoint_image_iff: "(A <= - (f`I)) = (\<forall>i\<in>I. f i \<notin> A)"  | 
31  | 
by blast  | 
|
32  | 
||
33  | 
||
34  | 
||
| 42463 | 35  | 
type_synonym key = nat  | 
| 14199 | 36  | 
|
37  | 
consts  | 
|
| 63167 | 38  | 
all_symmetric :: bool \<comment>\<open>true if all keys are symmetric\<close>  | 
39  | 
invKey :: "key=>key" \<comment>\<open>inverse of a symmetric key\<close>  | 
|
| 14199 | 40  | 
|
41  | 
specification (invKey)  | 
|
42  | 
invKey [simp]: "invKey (invKey K) = K"  | 
|
43  | 
invKey_symmetric: "all_symmetric --> invKey = id"  | 
|
44  | 
by (rule exI [of _ id], auto)  | 
|
45  | 
||
46  | 
||
| 63167 | 47  | 
text\<open>The inverse of a symmetric key is itself; that of a public key  | 
48  | 
is the private key and vice versa\<close>  | 
|
| 14199 | 49  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35068 
diff
changeset
 | 
50  | 
definition symKeys :: "key set" where  | 
| 14199 | 51  | 
  "symKeys == {K. invKey K = K}"
 | 
52  | 
||
| 63167 | 53  | 
text\<open>Agents. We allow any number of certification authorities, cardholders  | 
54  | 
merchants, and payment gateways.\<close>  | 
|
| 58310 | 55  | 
datatype  | 
| 14199 | 56  | 
agent = CA nat | Cardholder nat | Merchant nat | PG nat | Spy  | 
57  | 
||
| 63167 | 58  | 
text\<open>Messages\<close>  | 
| 58310 | 59  | 
datatype  | 
| 63167 | 60  | 
msg = Agent agent \<comment>\<open>Agent names\<close>  | 
61  | 
| Number nat \<comment>\<open>Ordinary integers, timestamps, ...\<close>  | 
|
62  | 
| Nonce nat \<comment>\<open>Unguessable nonces\<close>  | 
|
63  | 
| Pan nat \<comment>\<open>Unguessable Primary Account Numbers (??)\<close>  | 
|
64  | 
| Key key \<comment>\<open>Crypto keys\<close>  | 
|
65  | 
| Hash msg \<comment>\<open>Hashing\<close>  | 
|
66  | 
| MPair msg msg \<comment>\<open>Compound messages\<close>  | 
|
67  | 
| Crypt key msg \<comment>\<open>Encryption, public- or shared-key\<close>  | 
|
| 14199 | 68  | 
|
69  | 
||
| 61984 | 70  | 
(*Concrete syntax: messages appear as \<open>\<lbrace>A,B,NA\<rbrace>\<close>, etc...*)  | 
| 14199 | 71  | 
syntax  | 
| 35068 | 72  | 
  "_MTuple"      :: "['a, args] => 'a * 'b"       ("(2\<lbrace>_,/ _\<rbrace>)")
 | 
| 14199 | 73  | 
translations  | 
| 61984 | 74  | 
"\<lbrace>x, y, z\<rbrace>" == "\<lbrace>x, \<lbrace>y, z\<rbrace>\<rbrace>"  | 
75  | 
"\<lbrace>x, y\<rbrace>" == "CONST MPair x y"  | 
|
| 14199 | 76  | 
|
77  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35068 
diff
changeset
 | 
78  | 
definition nat_of_agent :: "agent => nat" where  | 
| 55416 | 79  | 
"nat_of_agent == case_agent (curry prod_encode 0)  | 
| 
35703
 
29cb504abbb5
convert SET_Protocol to use Nat_Bijection library
 
huffman 
parents: 
35416 
diff
changeset
 | 
80  | 
(curry prod_encode 1)  | 
| 
 
29cb504abbb5
convert SET_Protocol to use Nat_Bijection library
 
huffman 
parents: 
35416 
diff
changeset
 | 
81  | 
(curry prod_encode 2)  | 
| 
 
29cb504abbb5
convert SET_Protocol to use Nat_Bijection library
 
huffman 
parents: 
35416 
diff
changeset
 | 
82  | 
(curry prod_encode 3)  | 
| 
 
29cb504abbb5
convert SET_Protocol to use Nat_Bijection library
 
huffman 
parents: 
35416 
diff
changeset
 | 
83  | 
(prod_encode (4,0))"  | 
| 63167 | 84  | 
\<comment>\<open>maps each agent to a unique natural number, for specifications\<close>  | 
| 14199 | 85  | 
|
| 63167 | 86  | 
text\<open>The function is indeed injective\<close>  | 
| 14199 | 87  | 
lemma inj_nat_of_agent: "inj nat_of_agent"  | 
| 
35703
 
29cb504abbb5
convert SET_Protocol to use Nat_Bijection library
 
huffman 
parents: 
35416 
diff
changeset
 | 
88  | 
by (simp add: nat_of_agent_def inj_on_def curry_def prod_encode_eq split: agent.split)  | 
| 14199 | 89  | 
|
90  | 
||
| 36866 | 91  | 
definition  | 
| 14199 | 92  | 
(*Keys useful to decrypt elements of a message set*)  | 
93  | 
keysFor :: "msg set => key set"  | 
|
| 36866 | 94  | 
  where "keysFor H = invKey ` {K. \<exists>X. Crypt K X \<in> H}"
 | 
| 14199 | 95  | 
|
| 63167 | 96  | 
subsubsection\<open>Inductive definition of all "parts" of a message.\<close>  | 
| 14199 | 97  | 
|
| 23755 | 98  | 
inductive_set  | 
99  | 
parts :: "msg set => msg set"  | 
|
100  | 
for H :: "msg set"  | 
|
101  | 
where  | 
|
| 14199 | 102  | 
Inj [intro]: "X \<in> H ==> X \<in> parts H"  | 
| 61984 | 103  | 
| Fst: "\<lbrace>X,Y\<rbrace> \<in> parts H ==> X \<in> parts H"  | 
104  | 
| Snd: "\<lbrace>X,Y\<rbrace> \<in> parts H ==> Y \<in> parts H"  | 
|
| 23755 | 105  | 
| Body: "Crypt K X \<in> parts H ==> X \<in> parts H"  | 
| 14199 | 106  | 
|
107  | 
||
108  | 
(*Monotonicity*)  | 
|
109  | 
lemma parts_mono: "G<=H ==> parts(G) <= parts(H)"  | 
|
110  | 
apply auto  | 
|
111  | 
apply (erule parts.induct)  | 
|
112  | 
apply (auto dest: Fst Snd Body)  | 
|
113  | 
done  | 
|
114  | 
||
115  | 
||
| 63167 | 116  | 
subsubsection\<open>Inverse of keys\<close>  | 
| 14199 | 117  | 
|
118  | 
(*Equations hold because constructors are injective; cannot prove for all f*)  | 
|
119  | 
lemma Key_image_eq [simp]: "(Key x \<in> Key`A) = (x\<in>A)"  | 
|
120  | 
by auto  | 
|
121  | 
||
122  | 
lemma Nonce_Key_image_eq [simp]: "(Nonce x \<notin> Key`A)"  | 
|
123  | 
by auto  | 
|
124  | 
||
125  | 
lemma Cardholder_image_eq [simp]: "(Cardholder x \<in> Cardholder`A) = (x \<in> A)"  | 
|
126  | 
by auto  | 
|
127  | 
||
128  | 
lemma CA_image_eq [simp]: "(CA x \<in> CA`A) = (x \<in> A)"  | 
|
129  | 
by auto  | 
|
130  | 
||
131  | 
lemma Pan_image_eq [simp]: "(Pan x \<in> Pan`A) = (x \<in> A)"  | 
|
132  | 
by auto  | 
|
133  | 
||
134  | 
lemma Pan_Key_image_eq [simp]: "(Pan x \<notin> Key`A)"  | 
|
135  | 
by auto  | 
|
136  | 
||
137  | 
lemma Nonce_Pan_image_eq [simp]: "(Nonce x \<notin> Pan`A)"  | 
|
138  | 
by auto  | 
|
139  | 
||
140  | 
lemma invKey_eq [simp]: "(invKey K = invKey K') = (K=K')"  | 
|
141  | 
apply safe  | 
|
142  | 
apply (drule_tac f = invKey in arg_cong, simp)  | 
|
143  | 
done  | 
|
144  | 
||
145  | 
||
| 63167 | 146  | 
subsection\<open>keysFor operator\<close>  | 
| 14199 | 147  | 
|
148  | 
lemma keysFor_empty [simp]: "keysFor {} = {}"
 | 
|
149  | 
by (unfold keysFor_def, blast)  | 
|
150  | 
||
151  | 
lemma keysFor_Un [simp]: "keysFor (H \<union> H') = keysFor H \<union> keysFor H'"  | 
|
152  | 
by (unfold keysFor_def, blast)  | 
|
153  | 
||
154  | 
lemma keysFor_UN [simp]: "keysFor (\<Union>i\<in>A. H i) = (\<Union>i\<in>A. keysFor (H i))"  | 
|
155  | 
by (unfold keysFor_def, blast)  | 
|
156  | 
||
157  | 
(*Monotonicity*)  | 
|
158  | 
lemma keysFor_mono: "G\<subseteq>H ==> keysFor(G) \<subseteq> keysFor(H)"  | 
|
159  | 
by (unfold keysFor_def, blast)  | 
|
160  | 
||
161  | 
lemma keysFor_insert_Agent [simp]: "keysFor (insert (Agent A) H) = keysFor H"  | 
|
162  | 
by (unfold keysFor_def, auto)  | 
|
163  | 
||
164  | 
lemma keysFor_insert_Nonce [simp]: "keysFor (insert (Nonce N) H) = keysFor H"  | 
|
165  | 
by (unfold keysFor_def, auto)  | 
|
166  | 
||
167  | 
lemma keysFor_insert_Number [simp]: "keysFor (insert (Number N) H) = keysFor H"  | 
|
168  | 
by (unfold keysFor_def, auto)  | 
|
169  | 
||
170  | 
lemma keysFor_insert_Key [simp]: "keysFor (insert (Key K) H) = keysFor H"  | 
|
171  | 
by (unfold keysFor_def, auto)  | 
|
172  | 
||
173  | 
lemma keysFor_insert_Pan [simp]: "keysFor (insert (Pan A) H) = keysFor H"  | 
|
174  | 
by (unfold keysFor_def, auto)  | 
|
175  | 
||
176  | 
lemma keysFor_insert_Hash [simp]: "keysFor (insert (Hash X) H) = keysFor H"  | 
|
177  | 
by (unfold keysFor_def, auto)  | 
|
178  | 
||
| 61984 | 179  | 
lemma keysFor_insert_MPair [simp]: "keysFor (insert \<lbrace>X,Y\<rbrace> H) = keysFor H"  | 
| 14199 | 180  | 
by (unfold keysFor_def, auto)  | 
181  | 
||
182  | 
lemma keysFor_insert_Crypt [simp]:  | 
|
183  | 
"keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)"  | 
|
184  | 
by (unfold keysFor_def, auto)  | 
|
185  | 
||
186  | 
lemma keysFor_image_Key [simp]: "keysFor (Key`E) = {}"
 | 
|
187  | 
by (unfold keysFor_def, auto)  | 
|
188  | 
||
189  | 
lemma Crypt_imp_invKey_keysFor: "Crypt K X \<in> H ==> invKey K \<in> keysFor H"  | 
|
190  | 
by (unfold keysFor_def, blast)  | 
|
191  | 
||
192  | 
||
| 63167 | 193  | 
subsection\<open>Inductive relation "parts"\<close>  | 
| 14199 | 194  | 
|
195  | 
lemma MPair_parts:  | 
|
| 61984 | 196  | 
"[| \<lbrace>X,Y\<rbrace> \<in> parts H;  | 
| 14199 | 197  | 
[| X \<in> parts H; Y \<in> parts H |] ==> P |] ==> P"  | 
198  | 
by (blast dest: parts.Fst parts.Snd)  | 
|
199  | 
||
200  | 
declare MPair_parts [elim!] parts.Body [dest!]  | 
|
| 63167 | 201  | 
text\<open>NB These two rules are UNSAFE in the formal sense, as they discard the  | 
| 14199 | 202  | 
compound message. They work well on THIS FILE.  | 
| 63167 | 203  | 
\<open>MPair_parts\<close> is left as SAFE because it speeds up proofs.  | 
204  | 
The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.\<close>  | 
|
| 14199 | 205  | 
|
206  | 
lemma parts_increasing: "H \<subseteq> parts(H)"  | 
|
207  | 
by blast  | 
|
208  | 
||
| 45605 | 209  | 
lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD]  | 
| 14199 | 210  | 
|
211  | 
lemma parts_empty [simp]: "parts{} = {}"
 | 
|
212  | 
apply safe  | 
|
213  | 
apply (erule parts.induct, blast+)  | 
|
214  | 
done  | 
|
215  | 
||
216  | 
lemma parts_emptyE [elim!]: "X\<in> parts{} ==> P"
 | 
|
217  | 
by simp  | 
|
218  | 
||
219  | 
(*WARNING: loops if H = {Y}, therefore must not be repeated!*)
 | 
|
220  | 
lemma parts_singleton: "X\<in> parts H ==> \<exists>Y\<in>H. X\<in> parts {Y}"
 | 
|
| 
26807
 
4cd176ea28dc
Replaced blast by fast in proof of parts_singleton, since blast looped
 
berghofe 
parents: 
26342 
diff
changeset
 | 
221  | 
by (erule parts.induct, fast+)  | 
| 14199 | 222  | 
|
223  | 
||
| 63167 | 224  | 
subsubsection\<open>Unions\<close>  | 
| 14199 | 225  | 
|
226  | 
lemma parts_Un_subset1: "parts(G) \<union> parts(H) \<subseteq> parts(G \<union> H)"  | 
|
227  | 
by (intro Un_least parts_mono Un_upper1 Un_upper2)  | 
|
228  | 
||
229  | 
lemma parts_Un_subset2: "parts(G \<union> H) \<subseteq> parts(G) \<union> parts(H)"  | 
|
230  | 
apply (rule subsetI)  | 
|
231  | 
apply (erule parts.induct, blast+)  | 
|
232  | 
done  | 
|
233  | 
||
234  | 
lemma parts_Un [simp]: "parts(G \<union> H) = parts(G) \<union> parts(H)"  | 
|
235  | 
by (intro equalityI parts_Un_subset1 parts_Un_subset2)  | 
|
236  | 
||
237  | 
lemma parts_insert: "parts (insert X H) = parts {X} \<union> parts H"
 | 
|
238  | 
apply (subst insert_is_Un [of _ H])  | 
|
239  | 
apply (simp only: parts_Un)  | 
|
240  | 
done  | 
|
241  | 
||
242  | 
(*TWO inserts to avoid looping. This rewrite is better than nothing.  | 
|
243  | 
Not suitable for Addsimps: its behaviour can be strange.*)  | 
|
244  | 
lemma parts_insert2:  | 
|
245  | 
     "parts (insert X (insert Y H)) = parts {X} \<union> parts {Y} \<union> parts H"
 | 
|
246  | 
apply (simp add: Un_assoc)  | 
|
247  | 
apply (simp add: parts_insert [symmetric])  | 
|
248  | 
done  | 
|
249  | 
||
250  | 
lemma parts_UN_subset1: "(\<Union>x\<in>A. parts(H x)) \<subseteq> parts(\<Union>x\<in>A. H x)"  | 
|
251  | 
by (intro UN_least parts_mono UN_upper)  | 
|
252  | 
||
253  | 
lemma parts_UN_subset2: "parts(\<Union>x\<in>A. H x) \<subseteq> (\<Union>x\<in>A. parts(H x))"  | 
|
254  | 
apply (rule subsetI)  | 
|
255  | 
apply (erule parts.induct, blast+)  | 
|
256  | 
done  | 
|
257  | 
||
258  | 
lemma parts_UN [simp]: "parts(\<Union>x\<in>A. H x) = (\<Union>x\<in>A. parts(H x))"  | 
|
259  | 
by (intro equalityI parts_UN_subset1 parts_UN_subset2)  | 
|
260  | 
||
261  | 
(*Added to simplify arguments to parts, analz and synth.  | 
|
262  | 
NOTE: the UN versions are no longer used!*)  | 
|
263  | 
||
264  | 
||
| 63167 | 265  | 
text\<open>This allows \<open>blast\<close> to simplify occurrences of  | 
266  | 
  @{term "parts(G\<union>H)"} in the assumption.\<close>
 | 
|
| 14199 | 267  | 
declare parts_Un [THEN equalityD1, THEN subsetD, THEN UnE, elim!]  | 
268  | 
||
269  | 
||
270  | 
lemma parts_insert_subset: "insert X (parts H) \<subseteq> parts(insert X H)"  | 
|
271  | 
by (blast intro: parts_mono [THEN [2] rev_subsetD])  | 
|
272  | 
||
| 63167 | 273  | 
subsubsection\<open>Idempotence and transitivity\<close>  | 
| 14199 | 274  | 
|
275  | 
lemma parts_partsD [dest!]: "X\<in> parts (parts H) ==> X\<in> parts H"  | 
|
276  | 
by (erule parts.induct, blast+)  | 
|
277  | 
||
278  | 
lemma parts_idem [simp]: "parts (parts H) = parts H"  | 
|
279  | 
by blast  | 
|
280  | 
||
281  | 
lemma parts_trans: "[| X\<in> parts G; G \<subseteq> parts H |] ==> X\<in> parts H"  | 
|
282  | 
by (drule parts_mono, blast)  | 
|
283  | 
||
284  | 
(*Cut*)  | 
|
285  | 
lemma parts_cut:  | 
|
286  | 
"[| Y\<in> parts (insert X G); X\<in> parts H |] ==> Y\<in> parts (G \<union> H)"  | 
|
287  | 
by (erule parts_trans, auto)  | 
|
288  | 
||
289  | 
lemma parts_cut_eq [simp]: "X\<in> parts H ==> parts (insert X H) = parts H"  | 
|
290  | 
by (force dest!: parts_cut intro: parts_insertI)  | 
|
291  | 
||
292  | 
||
| 63167 | 293  | 
subsubsection\<open>Rewrite rules for pulling out atomic messages\<close>  | 
| 14199 | 294  | 
|
295  | 
lemmas parts_insert_eq_I = equalityI [OF subsetI parts_insert_subset]  | 
|
296  | 
||
297  | 
||
298  | 
lemma parts_insert_Agent [simp]:  | 
|
299  | 
"parts (insert (Agent agt) H) = insert (Agent agt) (parts H)"  | 
|
300  | 
apply (rule parts_insert_eq_I)  | 
|
301  | 
apply (erule parts.induct, auto)  | 
|
302  | 
done  | 
|
303  | 
||
304  | 
lemma parts_insert_Nonce [simp]:  | 
|
305  | 
"parts (insert (Nonce N) H) = insert (Nonce N) (parts H)"  | 
|
306  | 
apply (rule parts_insert_eq_I)  | 
|
307  | 
apply (erule parts.induct, auto)  | 
|
308  | 
done  | 
|
309  | 
||
310  | 
lemma parts_insert_Number [simp]:  | 
|
311  | 
"parts (insert (Number N) H) = insert (Number N) (parts H)"  | 
|
312  | 
apply (rule parts_insert_eq_I)  | 
|
313  | 
apply (erule parts.induct, auto)  | 
|
314  | 
done  | 
|
315  | 
||
316  | 
lemma parts_insert_Key [simp]:  | 
|
317  | 
"parts (insert (Key K) H) = insert (Key K) (parts H)"  | 
|
318  | 
apply (rule parts_insert_eq_I)  | 
|
319  | 
apply (erule parts.induct, auto)  | 
|
320  | 
done  | 
|
321  | 
||
322  | 
lemma parts_insert_Pan [simp]:  | 
|
323  | 
"parts (insert (Pan A) H) = insert (Pan A) (parts H)"  | 
|
324  | 
apply (rule parts_insert_eq_I)  | 
|
325  | 
apply (erule parts.induct, auto)  | 
|
326  | 
done  | 
|
327  | 
||
328  | 
lemma parts_insert_Hash [simp]:  | 
|
329  | 
"parts (insert (Hash X) H) = insert (Hash X) (parts H)"  | 
|
330  | 
apply (rule parts_insert_eq_I)  | 
|
331  | 
apply (erule parts.induct, auto)  | 
|
332  | 
done  | 
|
333  | 
||
334  | 
lemma parts_insert_Crypt [simp]:  | 
|
335  | 
"parts (insert (Crypt K X) H) =  | 
|
336  | 
insert (Crypt K X) (parts (insert X H))"  | 
|
337  | 
apply (rule equalityI)  | 
|
338  | 
apply (rule subsetI)  | 
|
339  | 
apply (erule parts.induct, auto)  | 
|
340  | 
apply (erule parts.induct)  | 
|
341  | 
apply (blast intro: parts.Body)+  | 
|
342  | 
done  | 
|
343  | 
||
344  | 
lemma parts_insert_MPair [simp]:  | 
|
| 61984 | 345  | 
"parts (insert \<lbrace>X,Y\<rbrace> H) =  | 
346  | 
insert \<lbrace>X,Y\<rbrace> (parts (insert X (insert Y H)))"  | 
|
| 14199 | 347  | 
apply (rule equalityI)  | 
348  | 
apply (rule subsetI)  | 
|
349  | 
apply (erule parts.induct, auto)  | 
|
350  | 
apply (erule parts.induct)  | 
|
351  | 
apply (blast intro: parts.Fst parts.Snd)+  | 
|
352  | 
done  | 
|
353  | 
||
354  | 
lemma parts_image_Key [simp]: "parts (Key`N) = Key`N"  | 
|
355  | 
apply auto  | 
|
356  | 
apply (erule parts.induct, auto)  | 
|
357  | 
done  | 
|
358  | 
||
359  | 
lemma parts_image_Pan [simp]: "parts (Pan`A) = Pan`A"  | 
|
360  | 
apply auto  | 
|
361  | 
apply (erule parts.induct, auto)  | 
|
362  | 
done  | 
|
363  | 
||
364  | 
||
365  | 
(*In any message, there is an upper bound N on its greatest nonce.*)  | 
|
366  | 
lemma msg_Nonce_supply: "\<exists>N. \<forall>n. N\<le>n --> Nonce n \<notin> parts {msg}"
 | 
|
367  | 
apply (induct_tac "msg")  | 
|
368  | 
apply (simp_all (no_asm_simp) add: exI parts_insert2)  | 
|
369  | 
(*MPair case: blast_tac works out the necessary sum itself!*)  | 
|
370  | 
prefer 2 apply (blast elim!: add_leE)  | 
|
371  | 
(*Nonce case*)  | 
|
| 
58305
 
57752a91eec4
renamed 'datatype' to 'old_datatype'; 'datatype' is now alias for 'datatype_new'
 
blanchet 
parents: 
55416 
diff
changeset
 | 
372  | 
apply (rename_tac nat)  | 
| 14199 | 373  | 
apply (rule_tac x = "N + Suc nat" in exI)  | 
374  | 
apply (auto elim!: add_leE)  | 
|
375  | 
done  | 
|
376  | 
||
377  | 
(* Ditto, for numbers.*)  | 
|
378  | 
lemma msg_Number_supply: "\<exists>N. \<forall>n. N<=n --> Number n \<notin> parts {msg}"
 | 
|
379  | 
apply (induct_tac "msg")  | 
|
380  | 
apply (simp_all (no_asm_simp) add: exI parts_insert2)  | 
|
381  | 
prefer 2 apply (blast elim!: add_leE)  | 
|
| 
58305
 
57752a91eec4
renamed 'datatype' to 'old_datatype'; 'datatype' is now alias for 'datatype_new'
 
blanchet 
parents: 
55416 
diff
changeset
 | 
382  | 
apply (rename_tac nat)  | 
| 14199 | 383  | 
apply (rule_tac x = "N + Suc nat" in exI, auto)  | 
384  | 
done  | 
|
385  | 
||
| 63167 | 386  | 
subsection\<open>Inductive relation "analz"\<close>  | 
| 14199 | 387  | 
|
| 63167 | 388  | 
text\<open>Inductive definition of "analz" -- what can be broken down from a set of  | 
| 14199 | 389  | 
messages, including keys. A form of downward closure. Pairs can  | 
| 63167 | 390  | 
be taken apart; messages decrypted with known keys.\<close>  | 
| 14199 | 391  | 
|
| 23755 | 392  | 
inductive_set  | 
393  | 
analz :: "msg set => msg set"  | 
|
394  | 
for H :: "msg set"  | 
|
395  | 
where  | 
|
| 14199 | 396  | 
Inj [intro,simp] : "X \<in> H ==> X \<in> analz H"  | 
| 61984 | 397  | 
| Fst: "\<lbrace>X,Y\<rbrace> \<in> analz H ==> X \<in> analz H"  | 
398  | 
| Snd: "\<lbrace>X,Y\<rbrace> \<in> analz H ==> Y \<in> analz H"  | 
|
| 23755 | 399  | 
| Decrypt [dest]:  | 
| 14199 | 400  | 
"[|Crypt K X \<in> analz H; Key(invKey K): analz H|] ==> X \<in> analz H"  | 
401  | 
||
402  | 
||
403  | 
(*Monotonicity; Lemma 1 of Lowe's paper*)  | 
|
404  | 
lemma analz_mono: "G<=H ==> analz(G) <= analz(H)"  | 
|
405  | 
apply auto  | 
|
406  | 
apply (erule analz.induct)  | 
|
407  | 
apply (auto dest: Fst Snd)  | 
|
408  | 
done  | 
|
409  | 
||
| 63167 | 410  | 
text\<open>Making it safe speeds up proofs\<close>  | 
| 14199 | 411  | 
lemma MPair_analz [elim!]:  | 
| 61984 | 412  | 
"[| \<lbrace>X,Y\<rbrace> \<in> analz H;  | 
| 14199 | 413  | 
[| X \<in> analz H; Y \<in> analz H |] ==> P  | 
414  | 
|] ==> P"  | 
|
415  | 
by (blast dest: analz.Fst analz.Snd)  | 
|
416  | 
||
417  | 
lemma analz_increasing: "H \<subseteq> analz(H)"  | 
|
418  | 
by blast  | 
|
419  | 
||
420  | 
lemma analz_subset_parts: "analz H \<subseteq> parts H"  | 
|
421  | 
apply (rule subsetI)  | 
|
422  | 
apply (erule analz.induct, blast+)  | 
|
423  | 
done  | 
|
424  | 
||
| 45605 | 425  | 
lemmas analz_into_parts = analz_subset_parts [THEN subsetD]  | 
| 14199 | 426  | 
|
| 45605 | 427  | 
lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD]  | 
| 14199 | 428  | 
|
429  | 
||
430  | 
lemma parts_analz [simp]: "parts (analz H) = parts H"  | 
|
431  | 
apply (rule equalityI)  | 
|
432  | 
apply (rule analz_subset_parts [THEN parts_mono, THEN subset_trans], simp)  | 
|
433  | 
apply (blast intro: analz_increasing [THEN parts_mono, THEN subsetD])  | 
|
434  | 
done  | 
|
435  | 
||
436  | 
lemma analz_parts [simp]: "analz (parts H) = parts H"  | 
|
437  | 
apply auto  | 
|
438  | 
apply (erule analz.induct, auto)  | 
|
439  | 
done  | 
|
440  | 
||
| 45605 | 441  | 
lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD]  | 
| 14199 | 442  | 
|
| 63167 | 443  | 
subsubsection\<open>General equational properties\<close>  | 
| 14199 | 444  | 
|
445  | 
lemma analz_empty [simp]: "analz{} = {}"
 | 
|
446  | 
apply safe  | 
|
447  | 
apply (erule analz.induct, blast+)  | 
|
448  | 
done  | 
|
449  | 
||
450  | 
(*Converse fails: we can analz more from the union than from the  | 
|
451  | 
separate parts, as a key in one might decrypt a message in the other*)  | 
|
452  | 
lemma analz_Un: "analz(G) \<union> analz(H) \<subseteq> analz(G \<union> H)"  | 
|
453  | 
by (intro Un_least analz_mono Un_upper1 Un_upper2)  | 
|
454  | 
||
455  | 
lemma analz_insert: "insert X (analz H) \<subseteq> analz(insert X H)"  | 
|
456  | 
by (blast intro: analz_mono [THEN [2] rev_subsetD])  | 
|
457  | 
||
| 63167 | 458  | 
subsubsection\<open>Rewrite rules for pulling out atomic messages\<close>  | 
| 14199 | 459  | 
|
460  | 
lemmas analz_insert_eq_I = equalityI [OF subsetI analz_insert]  | 
|
461  | 
||
462  | 
lemma analz_insert_Agent [simp]:  | 
|
463  | 
"analz (insert (Agent agt) H) = insert (Agent agt) (analz H)"  | 
|
464  | 
apply (rule analz_insert_eq_I)  | 
|
465  | 
apply (erule analz.induct, auto)  | 
|
466  | 
done  | 
|
467  | 
||
468  | 
lemma analz_insert_Nonce [simp]:  | 
|
469  | 
"analz (insert (Nonce N) H) = insert (Nonce N) (analz H)"  | 
|
470  | 
apply (rule analz_insert_eq_I)  | 
|
471  | 
apply (erule analz.induct, auto)  | 
|
472  | 
done  | 
|
473  | 
||
474  | 
lemma analz_insert_Number [simp]:  | 
|
475  | 
"analz (insert (Number N) H) = insert (Number N) (analz H)"  | 
|
476  | 
apply (rule analz_insert_eq_I)  | 
|
477  | 
apply (erule analz.induct, auto)  | 
|
478  | 
done  | 
|
479  | 
||
480  | 
lemma analz_insert_Hash [simp]:  | 
|
481  | 
"analz (insert (Hash X) H) = insert (Hash X) (analz H)"  | 
|
482  | 
apply (rule analz_insert_eq_I)  | 
|
483  | 
apply (erule analz.induct, auto)  | 
|
484  | 
done  | 
|
485  | 
||
486  | 
(*Can only pull out Keys if they are not needed to decrypt the rest*)  | 
|
487  | 
lemma analz_insert_Key [simp]:  | 
|
488  | 
"K \<notin> keysFor (analz H) ==>  | 
|
489  | 
analz (insert (Key K) H) = insert (Key K) (analz H)"  | 
|
490  | 
apply (unfold keysFor_def)  | 
|
491  | 
apply (rule analz_insert_eq_I)  | 
|
492  | 
apply (erule analz.induct, auto)  | 
|
493  | 
done  | 
|
494  | 
||
495  | 
lemma analz_insert_MPair [simp]:  | 
|
| 61984 | 496  | 
"analz (insert \<lbrace>X,Y\<rbrace> H) =  | 
497  | 
insert \<lbrace>X,Y\<rbrace> (analz (insert X (insert Y H)))"  | 
|
| 14199 | 498  | 
apply (rule equalityI)  | 
499  | 
apply (rule subsetI)  | 
|
500  | 
apply (erule analz.induct, auto)  | 
|
501  | 
apply (erule analz.induct)  | 
|
502  | 
apply (blast intro: analz.Fst analz.Snd)+  | 
|
503  | 
done  | 
|
504  | 
||
505  | 
(*Can pull out enCrypted message if the Key is not known*)  | 
|
506  | 
lemma analz_insert_Crypt:  | 
|
507  | 
"Key (invKey K) \<notin> analz H  | 
|
508  | 
==> analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)"  | 
|
509  | 
apply (rule analz_insert_eq_I)  | 
|
510  | 
apply (erule analz.induct, auto)  | 
|
511  | 
done  | 
|
512  | 
||
513  | 
lemma analz_insert_Pan [simp]:  | 
|
514  | 
"analz (insert (Pan A) H) = insert (Pan A) (analz H)"  | 
|
515  | 
apply (rule analz_insert_eq_I)  | 
|
516  | 
apply (erule analz.induct, auto)  | 
|
517  | 
done  | 
|
518  | 
||
519  | 
lemma lemma1: "Key (invKey K) \<in> analz H ==>  | 
|
520  | 
analz (insert (Crypt K X) H) \<subseteq>  | 
|
521  | 
insert (Crypt K X) (analz (insert X H))"  | 
|
522  | 
apply (rule subsetI)  | 
|
| 23755 | 523  | 
apply (erule_tac x = x in analz.induct, auto)  | 
| 14199 | 524  | 
done  | 
525  | 
||
526  | 
lemma lemma2: "Key (invKey K) \<in> analz H ==>  | 
|
527  | 
insert (Crypt K X) (analz (insert X H)) \<subseteq>  | 
|
528  | 
analz (insert (Crypt K X) H)"  | 
|
529  | 
apply auto  | 
|
| 23755 | 530  | 
apply (erule_tac x = x in analz.induct, auto)  | 
| 14199 | 531  | 
apply (blast intro: analz_insertI analz.Decrypt)  | 
532  | 
done  | 
|
533  | 
||
534  | 
lemma analz_insert_Decrypt:  | 
|
535  | 
"Key (invKey K) \<in> analz H ==>  | 
|
536  | 
analz (insert (Crypt K X) H) =  | 
|
537  | 
insert (Crypt K X) (analz (insert X H))"  | 
|
538  | 
by (intro equalityI lemma1 lemma2)  | 
|
539  | 
||
540  | 
(*Case analysis: either the message is secure, or it is not!  | 
|
541  | 
Effective, but can cause subgoals to blow up!  | 
|
| 62390 | 542  | 
Use with if_split; apparently split_tac does not cope with patterns  | 
| 14199 | 543  | 
such as "analz (insert (Crypt K X) H)" *)  | 
544  | 
lemma analz_Crypt_if [simp]:  | 
|
545  | 
"analz (insert (Crypt K X) H) =  | 
|
546  | 
(if (Key (invKey K) \<in> analz H)  | 
|
547  | 
then insert (Crypt K X) (analz (insert X H))  | 
|
548  | 
else insert (Crypt K X) (analz H))"  | 
|
549  | 
by (simp add: analz_insert_Crypt analz_insert_Decrypt)  | 
|
550  | 
||
551  | 
||
552  | 
(*This rule supposes "for the sake of argument" that we have the key.*)  | 
|
553  | 
lemma analz_insert_Crypt_subset:  | 
|
554  | 
"analz (insert (Crypt K X) H) \<subseteq>  | 
|
555  | 
insert (Crypt K X) (analz (insert X H))"  | 
|
556  | 
apply (rule subsetI)  | 
|
557  | 
apply (erule analz.induct, auto)  | 
|
558  | 
done  | 
|
559  | 
||
560  | 
lemma analz_image_Key [simp]: "analz (Key`N) = Key`N"  | 
|
561  | 
apply auto  | 
|
562  | 
apply (erule analz.induct, auto)  | 
|
563  | 
done  | 
|
564  | 
||
565  | 
lemma analz_image_Pan [simp]: "analz (Pan`A) = Pan`A"  | 
|
566  | 
apply auto  | 
|
567  | 
apply (erule analz.induct, auto)  | 
|
568  | 
done  | 
|
569  | 
||
570  | 
||
| 63167 | 571  | 
subsubsection\<open>Idempotence and transitivity\<close>  | 
| 14199 | 572  | 
|
573  | 
lemma analz_analzD [dest!]: "X\<in> analz (analz H) ==> X\<in> analz H"  | 
|
574  | 
by (erule analz.induct, blast+)  | 
|
575  | 
||
576  | 
lemma analz_idem [simp]: "analz (analz H) = analz H"  | 
|
577  | 
by blast  | 
|
578  | 
||
579  | 
lemma analz_trans: "[| X\<in> analz G; G \<subseteq> analz H |] ==> X\<in> analz H"  | 
|
580  | 
by (drule analz_mono, blast)  | 
|
581  | 
||
582  | 
(*Cut; Lemma 2 of Lowe*)  | 
|
583  | 
lemma analz_cut: "[| Y\<in> analz (insert X H); X\<in> analz H |] ==> Y\<in> analz H"  | 
|
584  | 
by (erule analz_trans, blast)  | 
|
585  | 
||
586  | 
(*Cut can be proved easily by induction on  | 
|
587  | 
"Y: analz (insert X H) ==> X: analz H --> Y: analz H"  | 
|
588  | 
*)  | 
|
589  | 
||
590  | 
(*This rewrite rule helps in the simplification of messages that involve  | 
|
591  | 
the forwarding of unknown components (X). Without it, removing occurrences  | 
|
592  | 
of X can be very complicated. *)  | 
|
593  | 
lemma analz_insert_eq: "X\<in> analz H ==> analz (insert X H) = analz H"  | 
|
594  | 
by (blast intro: analz_cut analz_insertI)  | 
|
595  | 
||
596  | 
||
| 63167 | 597  | 
text\<open>A congruence rule for "analz"\<close>  | 
| 14199 | 598  | 
|
599  | 
lemma analz_subset_cong:  | 
|
600  | 
"[| analz G \<subseteq> analz G'; analz H \<subseteq> analz H'  | 
|
601  | 
|] ==> analz (G \<union> H) \<subseteq> analz (G' \<union> H')"  | 
|
602  | 
apply clarify  | 
|
603  | 
apply (erule analz.induct)  | 
|
604  | 
apply (best intro: analz_mono [THEN subsetD])+  | 
|
605  | 
done  | 
|
606  | 
||
607  | 
lemma analz_cong:  | 
|
608  | 
"[| analz G = analz G'; analz H = analz H'  | 
|
609  | 
|] ==> analz (G \<union> H) = analz (G' \<union> H')"  | 
|
610  | 
by (intro equalityI analz_subset_cong, simp_all)  | 
|
611  | 
||
612  | 
lemma analz_insert_cong:  | 
|
613  | 
"analz H = analz H' ==> analz(insert X H) = analz(insert X H')"  | 
|
614  | 
by (force simp only: insert_def intro!: analz_cong)  | 
|
615  | 
||
616  | 
(*If there are no pairs or encryptions then analz does nothing*)  | 
|
617  | 
lemma analz_trivial:  | 
|
| 61984 | 618  | 
"[| \<forall>X Y. \<lbrace>X,Y\<rbrace> \<notin> H; \<forall>X K. Crypt K X \<notin> H |] ==> analz H = H"  | 
| 14199 | 619  | 
apply safe  | 
620  | 
apply (erule analz.induct, blast+)  | 
|
621  | 
done  | 
|
622  | 
||
623  | 
(*These two are obsolete (with a single Spy) but cost little to prove...*)  | 
|
624  | 
lemma analz_UN_analz_lemma:  | 
|
625  | 
"X\<in> analz (\<Union>i\<in>A. analz (H i)) ==> X\<in> analz (\<Union>i\<in>A. H i)"  | 
|
626  | 
apply (erule analz.induct)  | 
|
627  | 
apply (blast intro: analz_mono [THEN [2] rev_subsetD])+  | 
|
628  | 
done  | 
|
629  | 
||
630  | 
lemma analz_UN_analz [simp]: "analz (\<Union>i\<in>A. analz (H i)) = analz (\<Union>i\<in>A. H i)"  | 
|
631  | 
by (blast intro: analz_UN_analz_lemma analz_mono [THEN [2] rev_subsetD])  | 
|
632  | 
||
633  | 
||
| 63167 | 634  | 
subsection\<open>Inductive relation "synth"\<close>  | 
| 14199 | 635  | 
|
| 63167 | 636  | 
text\<open>Inductive definition of "synth" -- what can be built up from a set of  | 
| 14199 | 637  | 
messages. A form of upward closure. Pairs can be built, messages  | 
638  | 
encrypted with known keys. Agent names are public domain.  | 
|
| 63167 | 639  | 
Numbers can be guessed, but Nonces cannot be.\<close>  | 
| 14199 | 640  | 
|
| 23755 | 641  | 
inductive_set  | 
642  | 
synth :: "msg set => msg set"  | 
|
643  | 
for H :: "msg set"  | 
|
644  | 
where  | 
|
| 14199 | 645  | 
Inj [intro]: "X \<in> H ==> X \<in> synth H"  | 
| 23755 | 646  | 
| Agent [intro]: "Agent agt \<in> synth H"  | 
647  | 
| Number [intro]: "Number n \<in> synth H"  | 
|
648  | 
| Hash [intro]: "X \<in> synth H ==> Hash X \<in> synth H"  | 
|
| 61984 | 649  | 
| MPair [intro]: "[|X \<in> synth H; Y \<in> synth H|] ==> \<lbrace>X,Y\<rbrace> \<in> synth H"  | 
| 23755 | 650  | 
| Crypt [intro]: "[|X \<in> synth H; Key(K) \<in> H|] ==> Crypt K X \<in> synth H"  | 
| 14199 | 651  | 
|
652  | 
(*Monotonicity*)  | 
|
653  | 
lemma synth_mono: "G<=H ==> synth(G) <= synth(H)"  | 
|
654  | 
apply auto  | 
|
655  | 
apply (erule synth.induct)  | 
|
656  | 
apply (auto dest: Fst Snd Body)  | 
|
657  | 
done  | 
|
658  | 
||
659  | 
(*NO Agent_synth, as any Agent name can be synthesized. Ditto for Number*)  | 
|
660  | 
inductive_cases Nonce_synth [elim!]: "Nonce n \<in> synth H"  | 
|
661  | 
inductive_cases Key_synth [elim!]: "Key K \<in> synth H"  | 
|
662  | 
inductive_cases Hash_synth [elim!]: "Hash X \<in> synth H"  | 
|
| 61984 | 663  | 
inductive_cases MPair_synth [elim!]: "\<lbrace>X,Y\<rbrace> \<in> synth H"  | 
| 14199 | 664  | 
inductive_cases Crypt_synth [elim!]: "Crypt K X \<in> synth H"  | 
665  | 
inductive_cases Pan_synth [elim!]: "Pan A \<in> synth H"  | 
|
666  | 
||
667  | 
||
668  | 
lemma synth_increasing: "H \<subseteq> synth(H)"  | 
|
669  | 
by blast  | 
|
670  | 
||
| 63167 | 671  | 
subsubsection\<open>Unions\<close>  | 
| 14199 | 672  | 
|
673  | 
(*Converse fails: we can synth more from the union than from the  | 
|
674  | 
separate parts, building a compound message using elements of each.*)  | 
|
675  | 
lemma synth_Un: "synth(G) \<union> synth(H) \<subseteq> synth(G \<union> H)"  | 
|
676  | 
by (intro Un_least synth_mono Un_upper1 Un_upper2)  | 
|
677  | 
||
678  | 
lemma synth_insert: "insert X (synth H) \<subseteq> synth(insert X H)"  | 
|
679  | 
by (blast intro: synth_mono [THEN [2] rev_subsetD])  | 
|
680  | 
||
| 63167 | 681  | 
subsubsection\<open>Idempotence and transitivity\<close>  | 
| 14199 | 682  | 
|
683  | 
lemma synth_synthD [dest!]: "X\<in> synth (synth H) ==> X\<in> synth H"  | 
|
684  | 
by (erule synth.induct, blast+)  | 
|
685  | 
||
686  | 
lemma synth_idem: "synth (synth H) = synth H"  | 
|
687  | 
by blast  | 
|
688  | 
||
689  | 
lemma synth_trans: "[| X\<in> synth G; G \<subseteq> synth H |] ==> X\<in> synth H"  | 
|
690  | 
by (drule synth_mono, blast)  | 
|
691  | 
||
692  | 
(*Cut; Lemma 2 of Lowe*)  | 
|
693  | 
lemma synth_cut: "[| Y\<in> synth (insert X H); X\<in> synth H |] ==> Y\<in> synth H"  | 
|
694  | 
by (erule synth_trans, blast)  | 
|
695  | 
||
696  | 
lemma Agent_synth [simp]: "Agent A \<in> synth H"  | 
|
697  | 
by blast  | 
|
698  | 
||
699  | 
lemma Number_synth [simp]: "Number n \<in> synth H"  | 
|
700  | 
by blast  | 
|
701  | 
||
702  | 
lemma Nonce_synth_eq [simp]: "(Nonce N \<in> synth H) = (Nonce N \<in> H)"  | 
|
703  | 
by blast  | 
|
704  | 
||
705  | 
lemma Key_synth_eq [simp]: "(Key K \<in> synth H) = (Key K \<in> H)"  | 
|
706  | 
by blast  | 
|
707  | 
||
708  | 
lemma Crypt_synth_eq [simp]: "Key K \<notin> H ==> (Crypt K X \<in> synth H) = (Crypt K X \<in> H)"  | 
|
709  | 
by blast  | 
|
710  | 
||
711  | 
lemma Pan_synth_eq [simp]: "(Pan A \<in> synth H) = (Pan A \<in> H)"  | 
|
712  | 
by blast  | 
|
713  | 
||
714  | 
lemma keysFor_synth [simp]:  | 
|
715  | 
    "keysFor (synth H) = keysFor H \<union> invKey`{K. Key K \<in> H}"
 | 
|
716  | 
by (unfold keysFor_def, blast)  | 
|
717  | 
||
718  | 
||
| 63167 | 719  | 
subsubsection\<open>Combinations of parts, analz and synth\<close>  | 
| 14199 | 720  | 
|
721  | 
lemma parts_synth [simp]: "parts (synth H) = parts H \<union> synth H"  | 
|
722  | 
apply (rule equalityI)  | 
|
723  | 
apply (rule subsetI)  | 
|
724  | 
apply (erule parts.induct)  | 
|
725  | 
apply (blast intro: synth_increasing [THEN parts_mono, THEN subsetD]  | 
|
726  | 
parts.Fst parts.Snd parts.Body)+  | 
|
727  | 
done  | 
|
728  | 
||
729  | 
lemma analz_analz_Un [simp]: "analz (analz G \<union> H) = analz (G \<union> H)"  | 
|
730  | 
apply (intro equalityI analz_subset_cong)+  | 
|
731  | 
apply simp_all  | 
|
732  | 
done  | 
|
733  | 
||
734  | 
lemma analz_synth_Un [simp]: "analz (synth G \<union> H) = analz (G \<union> H) \<union> synth G"  | 
|
735  | 
apply (rule equalityI)  | 
|
736  | 
apply (rule subsetI)  | 
|
737  | 
apply (erule analz.induct)  | 
|
738  | 
prefer 5 apply (blast intro: analz_mono [THEN [2] rev_subsetD])  | 
|
739  | 
apply (blast intro: analz.Fst analz.Snd analz.Decrypt)+  | 
|
740  | 
done  | 
|
741  | 
||
742  | 
lemma analz_synth [simp]: "analz (synth H) = analz H \<union> synth H"  | 
|
743  | 
apply (cut_tac H = "{}" in analz_synth_Un)
 | 
|
744  | 
apply (simp (no_asm_use))  | 
|
745  | 
done  | 
|
746  | 
||
747  | 
||
| 63167 | 748  | 
subsubsection\<open>For reasoning about the Fake rule in traces\<close>  | 
| 14199 | 749  | 
|
750  | 
lemma parts_insert_subset_Un: "X\<in> G ==> parts(insert X H) \<subseteq> parts G \<union> parts H"  | 
|
751  | 
by (rule subset_trans [OF parts_mono parts_Un_subset2], blast)  | 
|
752  | 
||
753  | 
(*More specifically for Fake. Very occasionally we could do with a version  | 
|
754  | 
  of the form  parts{X} \<subseteq> synth (analz H) \<union> parts H *)
 | 
|
755  | 
lemma Fake_parts_insert: "X \<in> synth (analz H) ==>  | 
|
756  | 
parts (insert X H) \<subseteq> synth (analz H) \<union> parts H"  | 
|
757  | 
apply (drule parts_insert_subset_Un)  | 
|
758  | 
apply (simp (no_asm_use))  | 
|
759  | 
apply blast  | 
|
760  | 
done  | 
|
761  | 
||
762  | 
lemma Fake_parts_insert_in_Un:  | 
|
763  | 
"[|Z \<in> parts (insert X H); X: synth (analz H)|]  | 
|
| 58860 | 764  | 
==> Z \<in> synth (analz H) \<union> parts H"  | 
| 14199 | 765  | 
by (blast dest: Fake_parts_insert [THEN subsetD, dest])  | 
766  | 
||
767  | 
(*H is sometimes (Key ` KK \<union> spies evs), so can't put G=H*)  | 
|
768  | 
lemma Fake_analz_insert:  | 
|
769  | 
"X\<in> synth (analz G) ==>  | 
|
770  | 
analz (insert X H) \<subseteq> synth (analz G) \<union> analz (G \<union> H)"  | 
|
771  | 
apply (rule subsetI)  | 
|
772  | 
apply (subgoal_tac "x \<in> analz (synth (analz G) \<union> H) ")  | 
|
773  | 
prefer 2 apply (blast intro: analz_mono [THEN [2] rev_subsetD] analz_mono [THEN synth_mono, THEN [2] rev_subsetD])  | 
|
774  | 
apply (simp (no_asm_use))  | 
|
775  | 
apply blast  | 
|
776  | 
done  | 
|
777  | 
||
778  | 
lemma analz_conj_parts [simp]:  | 
|
779  | 
"(X \<in> analz H & X \<in> parts H) = (X \<in> analz H)"  | 
|
780  | 
by (blast intro: analz_subset_parts [THEN subsetD])  | 
|
781  | 
||
782  | 
lemma analz_disj_parts [simp]:  | 
|
783  | 
"(X \<in> analz H | X \<in> parts H) = (X \<in> parts H)"  | 
|
784  | 
by (blast intro: analz_subset_parts [THEN subsetD])  | 
|
785  | 
||
786  | 
(*Without this equation, other rules for synth and analz would yield  | 
|
787  | 
redundant cases*)  | 
|
788  | 
lemma MPair_synth_analz [iff]:  | 
|
| 61984 | 789  | 
"(\<lbrace>X,Y\<rbrace> \<in> synth (analz H)) =  | 
| 14199 | 790  | 
(X \<in> synth (analz H) & Y \<in> synth (analz H))"  | 
791  | 
by blast  | 
|
792  | 
||
793  | 
lemma Crypt_synth_analz:  | 
|
794  | 
"[| Key K \<in> analz H; Key (invKey K) \<in> analz H |]  | 
|
795  | 
==> (Crypt K X \<in> synth (analz H)) = (X \<in> synth (analz H))"  | 
|
796  | 
by blast  | 
|
797  | 
||
798  | 
||
799  | 
lemma Hash_synth_analz [simp]:  | 
|
800  | 
"X \<notin> synth (analz H)  | 
|
| 61984 | 801  | 
==> (Hash\<lbrace>X,Y\<rbrace> \<in> synth (analz H)) = (Hash\<lbrace>X,Y\<rbrace> \<in> analz H)"  | 
| 14199 | 802  | 
by blast  | 
803  | 
||
804  | 
||
805  | 
(*We do NOT want Crypt... messages broken up in protocols!!*)  | 
|
806  | 
declare parts.Body [rule del]  | 
|
807  | 
||
808  | 
||
| 63167 | 809  | 
text\<open>Rewrites to push in Key and Crypt messages, so that other messages can  | 
810  | 
be pulled out using the \<open>analz_insert\<close> rules\<close>  | 
|
| 14199 | 811  | 
|
| 45605 | 812  | 
lemmas pushKeys =  | 
| 27225 | 813  | 
insert_commute [of "Key K" "Agent C"]  | 
814  | 
insert_commute [of "Key K" "Nonce N"]  | 
|
815  | 
insert_commute [of "Key K" "Number N"]  | 
|
816  | 
insert_commute [of "Key K" "Pan PAN"]  | 
|
817  | 
insert_commute [of "Key K" "Hash X"]  | 
|
818  | 
insert_commute [of "Key K" "MPair X Y"]  | 
|
819  | 
insert_commute [of "Key K" "Crypt X K'"]  | 
|
| 45605 | 820  | 
for K C N PAN X Y K'  | 
| 14199 | 821  | 
|
| 45605 | 822  | 
lemmas pushCrypts =  | 
| 27225 | 823  | 
insert_commute [of "Crypt X K" "Agent C"]  | 
824  | 
insert_commute [of "Crypt X K" "Nonce N"]  | 
|
825  | 
insert_commute [of "Crypt X K" "Number N"]  | 
|
826  | 
insert_commute [of "Crypt X K" "Pan PAN"]  | 
|
827  | 
insert_commute [of "Crypt X K" "Hash X'"]  | 
|
828  | 
insert_commute [of "Crypt X K" "MPair X' Y"]  | 
|
| 45605 | 829  | 
for X K C N PAN X' Y  | 
| 14199 | 830  | 
|
| 63167 | 831  | 
text\<open>Cannot be added with \<open>[simp]\<close> -- messages should not always be  | 
832  | 
re-ordered.\<close>  | 
|
| 14199 | 833  | 
lemmas pushes = pushKeys pushCrypts  | 
834  | 
||
835  | 
||
| 63167 | 836  | 
subsection\<open>Tactics useful for many protocol proofs\<close>  | 
| 14218 | 837  | 
(*<*)  | 
| 14199 | 838  | 
ML  | 
| 63167 | 839  | 
\<open>  | 
| 14199 | 840  | 
(*Analysis of Fake cases. Also works for messages that forward unknown parts,  | 
841  | 
but this application is no longer necessary if analz_insert_eq is used.  | 
|
842  | 
DEPENDS UPON "X" REFERRING TO THE FRADULENT MESSAGE *)  | 
|
843  | 
||
| 
32117
 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 
haftmann 
parents: 
30607 
diff
changeset
 | 
844  | 
fun impOfSubs th = th RSN (2, @{thm rev_subsetD})
 | 
| 
 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 
haftmann 
parents: 
30607 
diff
changeset
 | 
845  | 
|
| 14199 | 846  | 
(*Apply rules to break down assumptions of the form  | 
847  | 
Y \<in> parts(insert X H) and Y \<in> analz(insert X H)  | 
|
848  | 
*)  | 
|
| 
59498
 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 
wenzelm 
parents: 
58889 
diff
changeset
 | 
849  | 
fun Fake_insert_tac ctxt =  | 
| 
 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 
wenzelm 
parents: 
58889 
diff
changeset
 | 
850  | 
    dresolve_tac ctxt [impOfSubs @{thm Fake_analz_insert},
 | 
| 24123 | 851  | 
                  impOfSubs @{thm Fake_parts_insert}] THEN'
 | 
| 
59498
 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 
wenzelm 
parents: 
58889 
diff
changeset
 | 
852  | 
    eresolve_tac ctxt [asm_rl, @{thm synth.Inj}];
 | 
| 14199 | 853  | 
|
| 
51717
 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 
wenzelm 
parents: 
51702 
diff
changeset
 | 
854  | 
fun Fake_insert_simp_tac ctxt i =  | 
| 
59498
 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 
wenzelm 
parents: 
58889 
diff
changeset
 | 
855  | 
REPEAT (Fake_insert_tac ctxt i) THEN asm_full_simp_tac ctxt i;  | 
| 14199 | 856  | 
|
| 42474 | 857  | 
fun atomic_spy_analz_tac ctxt =  | 
| 42793 | 858  | 
SELECT_GOAL  | 
| 
51717
 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 
wenzelm 
parents: 
51702 
diff
changeset
 | 
859  | 
(Fake_insert_simp_tac ctxt 1 THEN  | 
| 42793 | 860  | 
IF_UNSOLVED  | 
861  | 
        (Blast.depth_tac (ctxt addIs [@{thm analz_insertI},
 | 
|
862  | 
            impOfSubs @{thm analz_subset_parts}]) 4 1));
 | 
|
| 14199 | 863  | 
|
| 42474 | 864  | 
fun spy_analz_tac ctxt i =  | 
| 42793 | 865  | 
DETERM  | 
866  | 
(SELECT_GOAL  | 
|
867  | 
(EVERY  | 
|
868  | 
[ (*push in occurrences of X...*)  | 
|
869  | 
(REPEAT o CHANGED)  | 
|
| 59780 | 870  | 
         (Rule_Insts.res_inst_tac ctxt [((("x", 1), Position.none), "X")] []
 | 
871  | 
(insert_commute RS ssubst) 1),  | 
|
| 42793 | 872  | 
(*...allowing further simplifications*)  | 
| 
51717
 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 
wenzelm 
parents: 
51702 
diff
changeset
 | 
873  | 
simp_tac ctxt 1,  | 
| 
59498
 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 
wenzelm 
parents: 
58889 
diff
changeset
 | 
874  | 
REPEAT (FIRSTGOAL (resolve_tac ctxt [allI,impI,notI,conjI,iffI])),  | 
| 42793 | 875  | 
DEPTH_SOLVE (atomic_spy_analz_tac ctxt 1)]) i);  | 
| 63167 | 876  | 
\<close>  | 
| 14218 | 877  | 
(*>*)  | 
878  | 
||
| 14199 | 879  | 
|
880  | 
(*By default only o_apply is built-in. But in the presence of eta-expansion  | 
|
881  | 
this means that some terms displayed as (f o g) will be rewritten, and others  | 
|
882  | 
will not!*)  | 
|
883  | 
declare o_def [simp]  | 
|
884  | 
||
885  | 
||
886  | 
lemma Crypt_notin_image_Key [simp]: "Crypt K X \<notin> Key ` A"  | 
|
887  | 
by auto  | 
|
888  | 
||
889  | 
lemma Hash_notin_image_Key [simp] :"Hash X \<notin> Key ` A"  | 
|
890  | 
by auto  | 
|
891  | 
||
892  | 
lemma synth_analz_mono: "G<=H ==> synth (analz(G)) <= synth (analz(H))"  | 
|
893  | 
by (simp add: synth_mono analz_mono)  | 
|
894  | 
||
895  | 
lemma Fake_analz_eq [simp]:  | 
|
896  | 
"X \<in> synth(analz H) ==> synth (analz (insert X H)) = synth (analz H)"  | 
|
897  | 
apply (drule Fake_analz_insert[of _ _ "H"])  | 
|
898  | 
apply (simp add: synth_increasing[THEN Un_absorb2])  | 
|
899  | 
apply (drule synth_mono)  | 
|
900  | 
apply (simp add: synth_idem)  | 
|
901  | 
apply (blast intro: synth_analz_mono [THEN [2] rev_subsetD])  | 
|
902  | 
done  | 
|
903  | 
||
| 63167 | 904  | 
text\<open>Two generalizations of \<open>analz_insert_eq\<close>\<close>  | 
| 14199 | 905  | 
lemma gen_analz_insert_eq [rule_format]:  | 
| 58860 | 906  | 
"X \<in> analz H ==> ALL G. H \<subseteq> G --> analz (insert X G) = analz G"  | 
| 14199 | 907  | 
by (blast intro: analz_cut analz_insertI analz_mono [THEN [2] rev_subsetD])  | 
908  | 
||
909  | 
lemma synth_analz_insert_eq [rule_format]:  | 
|
910  | 
"X \<in> synth (analz H)  | 
|
| 58860 | 911  | 
==> ALL G. H \<subseteq> G --> (Key K \<in> analz (insert X G)) = (Key K \<in> analz G)"  | 
| 14199 | 912  | 
apply (erule synth.induct)  | 
913  | 
apply (simp_all add: gen_analz_insert_eq subset_trans [OF _ subset_insertI])  | 
|
914  | 
done  | 
|
915  | 
||
916  | 
lemma Fake_parts_sing:  | 
|
| 58860 | 917  | 
     "X \<in> synth (analz H) ==> parts{X} \<subseteq> synth (analz H) \<union> parts H"
 | 
| 14199 | 918  | 
apply (rule subset_trans)  | 
919  | 
apply (erule_tac [2] Fake_parts_insert)  | 
|
920  | 
apply (simp add: parts_mono)  | 
|
921  | 
done  | 
|
922  | 
||
923  | 
lemmas Fake_parts_sing_imp_Un = Fake_parts_sing [THEN [2] rev_subsetD]  | 
|
924  | 
||
| 63167 | 925  | 
method_setup spy_analz = \<open>  | 
926  | 
Scan.succeed (SIMPLE_METHOD' o spy_analz_tac)\<close>  | 
|
| 14199 | 927  | 
"for proving the Fake case when analz is involved"  | 
928  | 
||
| 63167 | 929  | 
method_setup atomic_spy_analz = \<open>  | 
930  | 
Scan.succeed (SIMPLE_METHOD' o atomic_spy_analz_tac)\<close>  | 
|
| 14199 | 931  | 
"for debugging spy_analz"  | 
932  | 
||
| 63167 | 933  | 
method_setup Fake_insert_simp = \<open>  | 
934  | 
Scan.succeed (SIMPLE_METHOD' o Fake_insert_simp_tac)\<close>  | 
|
| 14199 | 935  | 
"for debugging spy_analz"  | 
936  | 
||
937  | 
end  |