3071
|
1 |
(* Title: HOLCF/IOA/meta_theory/CompoScheds.thy
|
3275
|
2 |
ID: $Id$
|
12218
|
3 |
Author: Olaf Müller
|
17233
|
4 |
*)
|
3071
|
5 |
|
17233
|
6 |
header {* Compositionality on Schedule level *}
|
3071
|
7 |
|
17233
|
8 |
theory CompoScheds
|
|
9 |
imports CompoExecs
|
|
10 |
begin
|
3071
|
11 |
|
|
12 |
consts
|
|
13 |
|
|
14 |
mkex ::"('a,'s)ioa => ('a,'t)ioa => 'a Seq =>
|
17233
|
15 |
('a,'s)execution => ('a,'t)execution =>('a,'s*'t)execution"
|
|
16 |
mkex2 ::"('a,'s)ioa => ('a,'t)ioa => 'a Seq ->
|
|
17 |
('a,'s)pairs -> ('a,'t)pairs ->
|
3071
|
18 |
('s => 't => ('a,'s*'t)pairs)"
|
3521
|
19 |
par_scheds ::"['a schedule_module,'a schedule_module] => 'a schedule_module"
|
|
20 |
|
3071
|
21 |
|
|
22 |
defs
|
|
23 |
|
17233
|
24 |
mkex_def:
|
|
25 |
"mkex A B sch exA exB ==
|
3071
|
26 |
((fst exA,fst exB),
|
10835
|
27 |
(mkex2 A B$sch$(snd exA)$(snd exB)) (fst exA) (fst exB))"
|
3071
|
28 |
|
17233
|
29 |
mkex2_def:
|
|
30 |
"mkex2 A B == (fix$(LAM h sch exA exB. (%s t. case sch of
|
3071
|
31 |
nil => nil
|
17233
|
32 |
| x##xs =>
|
|
33 |
(case x of
|
12028
|
34 |
UU => UU
|
17233
|
35 |
| Def y =>
|
|
36 |
(if y:act A then
|
|
37 |
(if y:act B then
|
10835
|
38 |
(case HD$exA of
|
12028
|
39 |
UU => UU
|
10835
|
40 |
| Def a => (case HD$exB of
|
12028
|
41 |
UU => UU
|
17233
|
42 |
| Def b =>
|
3071
|
43 |
(y,(snd a,snd b))>>
|
10835
|
44 |
(h$xs$(TL$exA)$(TL$exB)) (snd a) (snd b)))
|
3071
|
45 |
else
|
10835
|
46 |
(case HD$exA of
|
12028
|
47 |
UU => UU
|
17233
|
48 |
| Def a =>
|
10835
|
49 |
(y,(snd a,t))>>(h$xs$(TL$exA)$exB) (snd a) t)
|
3071
|
50 |
)
|
17233
|
51 |
else
|
|
52 |
(if y:act B then
|
10835
|
53 |
(case HD$exB of
|
12028
|
54 |
UU => UU
|
17233
|
55 |
| Def b =>
|
10835
|
56 |
(y,(s,snd b))>>(h$xs$exA$(TL$exB)) s (snd b))
|
3071
|
57 |
else
|
|
58 |
UU
|
|
59 |
)
|
|
60 |
)
|
|
61 |
))))"
|
|
62 |
|
17233
|
63 |
par_scheds_def:
|
|
64 |
"par_scheds SchedsA SchedsB ==
|
|
65 |
let schA = fst SchedsA; sigA = snd SchedsA;
|
|
66 |
schB = fst SchedsB; sigB = snd SchedsB
|
3521
|
67 |
in
|
10835
|
68 |
( {sch. Filter (%a. a:actions sigA)$sch : schA}
|
|
69 |
Int {sch. Filter (%a. a:actions sigB)$sch : schB}
|
3521
|
70 |
Int {sch. Forall (%x. x:(actions sigA Un actions sigB)) sch},
|
|
71 |
asig_comp sigA sigB)"
|
|
72 |
|
19741
|
73 |
|
|
74 |
declare surjective_pairing [symmetric, simp]
|
|
75 |
|
|
76 |
|
|
77 |
subsection "mkex rewrite rules"
|
|
78 |
|
|
79 |
|
|
80 |
lemma mkex2_unfold:
|
|
81 |
"mkex2 A B = (LAM sch exA exB. (%s t. case sch of
|
|
82 |
nil => nil
|
|
83 |
| x##xs =>
|
|
84 |
(case x of
|
|
85 |
UU => UU
|
|
86 |
| Def y =>
|
|
87 |
(if y:act A then
|
|
88 |
(if y:act B then
|
|
89 |
(case HD$exA of
|
|
90 |
UU => UU
|
|
91 |
| Def a => (case HD$exB of
|
|
92 |
UU => UU
|
|
93 |
| Def b =>
|
|
94 |
(y,(snd a,snd b))>>
|
|
95 |
(mkex2 A B$xs$(TL$exA)$(TL$exB)) (snd a) (snd b)))
|
|
96 |
else
|
|
97 |
(case HD$exA of
|
|
98 |
UU => UU
|
|
99 |
| Def a =>
|
|
100 |
(y,(snd a,t))>>(mkex2 A B$xs$(TL$exA)$exB) (snd a) t)
|
|
101 |
)
|
|
102 |
else
|
|
103 |
(if y:act B then
|
|
104 |
(case HD$exB of
|
|
105 |
UU => UU
|
|
106 |
| Def b =>
|
|
107 |
(y,(s,snd b))>>(mkex2 A B$xs$exA$(TL$exB)) s (snd b))
|
|
108 |
else
|
|
109 |
UU
|
|
110 |
)
|
|
111 |
)
|
|
112 |
)))"
|
|
113 |
apply (rule trans)
|
|
114 |
apply (rule fix_eq2)
|
|
115 |
apply (rule mkex2_def)
|
|
116 |
apply (rule beta_cfun)
|
|
117 |
apply simp
|
|
118 |
done
|
|
119 |
|
|
120 |
lemma mkex2_UU: "(mkex2 A B$UU$exA$exB) s t = UU"
|
|
121 |
apply (subst mkex2_unfold)
|
|
122 |
apply simp
|
|
123 |
done
|
|
124 |
|
|
125 |
lemma mkex2_nil: "(mkex2 A B$nil$exA$exB) s t= nil"
|
|
126 |
apply (subst mkex2_unfold)
|
|
127 |
apply simp
|
|
128 |
done
|
|
129 |
|
|
130 |
lemma mkex2_cons_1: "[| x:act A; x~:act B; HD$exA=Def a|]
|
|
131 |
==> (mkex2 A B$(x>>sch)$exA$exB) s t =
|
|
132 |
(x,snd a,t) >> (mkex2 A B$sch$(TL$exA)$exB) (snd a) t"
|
|
133 |
apply (rule trans)
|
|
134 |
apply (subst mkex2_unfold)
|
|
135 |
apply (simp add: Consq_def If_and_if)
|
|
136 |
apply (simp add: Consq_def)
|
|
137 |
done
|
|
138 |
|
|
139 |
lemma mkex2_cons_2: "[| x~:act A; x:act B; HD$exB=Def b|]
|
|
140 |
==> (mkex2 A B$(x>>sch)$exA$exB) s t =
|
|
141 |
(x,s,snd b) >> (mkex2 A B$sch$exA$(TL$exB)) s (snd b)"
|
|
142 |
apply (rule trans)
|
|
143 |
apply (subst mkex2_unfold)
|
|
144 |
apply (simp add: Consq_def If_and_if)
|
|
145 |
apply (simp add: Consq_def)
|
|
146 |
done
|
|
147 |
|
|
148 |
lemma mkex2_cons_3: "[| x:act A; x:act B; HD$exA=Def a;HD$exB=Def b|]
|
|
149 |
==> (mkex2 A B$(x>>sch)$exA$exB) s t =
|
|
150 |
(x,snd a,snd b) >>
|
|
151 |
(mkex2 A B$sch$(TL$exA)$(TL$exB)) (snd a) (snd b)"
|
|
152 |
apply (rule trans)
|
|
153 |
apply (subst mkex2_unfold)
|
|
154 |
apply (simp add: Consq_def If_and_if)
|
|
155 |
apply (simp add: Consq_def)
|
|
156 |
done
|
|
157 |
|
|
158 |
declare mkex2_UU [simp] mkex2_nil [simp] mkex2_cons_1 [simp]
|
|
159 |
mkex2_cons_2 [simp] mkex2_cons_3 [simp]
|
|
160 |
|
|
161 |
|
|
162 |
subsection {* mkex *}
|
|
163 |
|
|
164 |
lemma mkex_UU: "mkex A B UU (s,exA) (t,exB) = ((s,t),UU)"
|
|
165 |
apply (simp add: mkex_def)
|
|
166 |
done
|
|
167 |
|
|
168 |
lemma mkex_nil: "mkex A B nil (s,exA) (t,exB) = ((s,t),nil)"
|
|
169 |
apply (simp add: mkex_def)
|
|
170 |
done
|
|
171 |
|
|
172 |
lemma mkex_cons_1: "[| x:act A; x~:act B |]
|
|
173 |
==> mkex A B (x>>sch) (s,a>>exA) (t,exB) =
|
|
174 |
((s,t), (x,snd a,t) >> snd (mkex A B sch (snd a,exA) (t,exB)))"
|
|
175 |
apply (simp (no_asm) add: mkex_def)
|
|
176 |
apply (cut_tac exA = "a>>exA" in mkex2_cons_1)
|
|
177 |
apply auto
|
|
178 |
done
|
|
179 |
|
|
180 |
lemma mkex_cons_2: "[| x~:act A; x:act B |]
|
|
181 |
==> mkex A B (x>>sch) (s,exA) (t,b>>exB) =
|
|
182 |
((s,t), (x,s,snd b) >> snd (mkex A B sch (s,exA) (snd b,exB)))"
|
|
183 |
apply (simp (no_asm) add: mkex_def)
|
|
184 |
apply (cut_tac exB = "b>>exB" in mkex2_cons_2)
|
|
185 |
apply auto
|
|
186 |
done
|
|
187 |
|
|
188 |
lemma mkex_cons_3: "[| x:act A; x:act B |]
|
|
189 |
==> mkex A B (x>>sch) (s,a>>exA) (t,b>>exB) =
|
|
190 |
((s,t), (x,snd a,snd b) >> snd (mkex A B sch (snd a,exA) (snd b,exB)))"
|
|
191 |
apply (simp (no_asm) add: mkex_def)
|
|
192 |
apply (cut_tac exB = "b>>exB" and exA = "a>>exA" in mkex2_cons_3)
|
|
193 |
apply auto
|
|
194 |
done
|
|
195 |
|
|
196 |
declare mkex2_UU [simp del] mkex2_nil [simp del]
|
|
197 |
mkex2_cons_1 [simp del] mkex2_cons_2 [simp del] mkex2_cons_3 [simp del]
|
|
198 |
|
|
199 |
lemmas composch_simps = mkex_UU mkex_nil mkex_cons_1 mkex_cons_2 mkex_cons_3
|
|
200 |
|
|
201 |
declare composch_simps [simp]
|
|
202 |
|
|
203 |
|
|
204 |
subsection {* COMPOSITIONALITY on SCHEDULE Level *}
|
|
205 |
|
|
206 |
subsubsection "Lemmas for ==>"
|
|
207 |
|
|
208 |
(* --------------------------------------------------------------------- *)
|
|
209 |
(* Lemma_2_1 : tfilter(ex) and filter_act are commutative *)
|
|
210 |
(* --------------------------------------------------------------------- *)
|
|
211 |
|
|
212 |
lemma lemma_2_1a:
|
|
213 |
"filter_act$(Filter_ex2 (asig_of A)$xs)=
|
|
214 |
Filter (%a. a:act A)$(filter_act$xs)"
|
|
215 |
|
|
216 |
apply (unfold filter_act_def Filter_ex2_def)
|
|
217 |
apply (simp (no_asm) add: MapFilter o_def)
|
|
218 |
done
|
|
219 |
|
|
220 |
|
|
221 |
(* --------------------------------------------------------------------- *)
|
|
222 |
(* Lemma_2_2 : State-projections do not affect filter_act *)
|
|
223 |
(* --------------------------------------------------------------------- *)
|
|
224 |
|
|
225 |
lemma lemma_2_1b:
|
|
226 |
"filter_act$(ProjA2$xs) =filter_act$xs &
|
|
227 |
filter_act$(ProjB2$xs) =filter_act$xs"
|
|
228 |
apply (tactic {* pair_induct_tac "xs" [] 1 *})
|
|
229 |
done
|
|
230 |
|
|
231 |
|
|
232 |
(* --------------------------------------------------------------------- *)
|
|
233 |
(* Schedules of A||B have only A- or B-actions *)
|
|
234 |
(* --------------------------------------------------------------------- *)
|
|
235 |
|
|
236 |
(* very similar to lemma_1_1c, but it is not checking if every action element of
|
|
237 |
an ex is in A or B, but after projecting it onto the action schedule. Of course, this
|
|
238 |
is the same proposition, but we cannot change this one, when then rather lemma_1_1c *)
|
|
239 |
|
|
240 |
lemma sch_actions_in_AorB: "!s. is_exec_frag (A||B) (s,xs)
|
|
241 |
--> Forall (%x. x:act (A||B)) (filter_act$xs)"
|
|
242 |
|
|
243 |
apply (tactic {* pair_induct_tac "xs" [thm "is_exec_frag_def", thm "Forall_def",
|
|
244 |
thm "sforall_def"] 1 *})
|
|
245 |
(* main case *)
|
|
246 |
apply (tactic "safe_tac set_cs")
|
|
247 |
apply (auto simp add: trans_of_defs2 actions_asig_comp asig_of_par)
|
|
248 |
done
|
|
249 |
|
|
250 |
|
|
251 |
subsubsection "Lemmas for <=="
|
|
252 |
|
|
253 |
(*---------------------------------------------------------------------------
|
|
254 |
Filtering actions out of mkex(sch,exA,exB) yields the oracle sch
|
|
255 |
structural induction
|
|
256 |
--------------------------------------------------------------------------- *)
|
|
257 |
|
|
258 |
lemma Mapfst_mkex_is_sch: "! exA exB s t.
|
|
259 |
Forall (%x. x:act (A||B)) sch &
|
|
260 |
Filter (%a. a:act A)$sch << filter_act$exA &
|
|
261 |
Filter (%a. a:act B)$sch << filter_act$exB
|
|
262 |
--> filter_act$(snd (mkex A B sch (s,exA) (t,exB))) = sch"
|
|
263 |
|
|
264 |
apply (tactic {* Seq_induct_tac "sch" [thm "Filter_def", thm "Forall_def",
|
|
265 |
thm "sforall_def", thm "mkex_def"] 1 *})
|
|
266 |
|
|
267 |
(* main case *)
|
|
268 |
(* splitting into 4 cases according to a:A, a:B *)
|
|
269 |
apply (tactic "safe_tac set_cs")
|
|
270 |
|
|
271 |
(* Case y:A, y:B *)
|
|
272 |
apply (tactic {* Seq_case_simp_tac "exA" 1 *})
|
|
273 |
(* Case exA=UU, Case exA=nil*)
|
|
274 |
(* These UU and nil cases are the only places where the assumption filter A sch<<f_act exA
|
|
275 |
is used! --> to generate a contradiction using ~a>>ss<< UU(nil), using theorems
|
|
276 |
Cons_not_less_UU and Cons_not_less_nil *)
|
|
277 |
apply (tactic {* Seq_case_simp_tac "exB" 1 *})
|
|
278 |
(* Case exA=a>>x, exB=b>>y *)
|
|
279 |
(* here it is important that Seq_case_simp_tac uses no !full!_simp_tac for the cons case,
|
|
280 |
as otherwise mkex_cons_3 would not be rewritten without use of rotate_tac: then tactic
|
|
281 |
would not be generally applicable *)
|
|
282 |
apply simp
|
|
283 |
|
|
284 |
(* Case y:A, y~:B *)
|
|
285 |
apply (tactic {* Seq_case_simp_tac "exA" 1 *})
|
|
286 |
apply simp
|
|
287 |
|
|
288 |
(* Case y~:A, y:B *)
|
|
289 |
apply (tactic {* Seq_case_simp_tac "exB" 1 *})
|
|
290 |
apply simp
|
|
291 |
|
|
292 |
(* Case y~:A, y~:B *)
|
|
293 |
apply (simp add: asig_of_par actions_asig_comp)
|
|
294 |
done
|
|
295 |
|
|
296 |
|
|
297 |
(* generalizing the proof above to a tactic *)
|
|
298 |
|
|
299 |
ML {*
|
|
300 |
|
|
301 |
local
|
|
302 |
val defs = [thm "Filter_def", thm "Forall_def", thm "sforall_def", thm "mkex_def",
|
|
303 |
thm "stutter_def"]
|
|
304 |
val asigs = [thm "asig_of_par", thm "actions_asig_comp"]
|
|
305 |
in
|
|
306 |
|
|
307 |
fun mkex_induct_tac sch exA exB =
|
|
308 |
EVERY1[Seq_induct_tac sch defs,
|
|
309 |
SIMPSET' asm_full_simp_tac,
|
|
310 |
SELECT_GOAL (safe_tac set_cs),
|
|
311 |
Seq_case_simp_tac exA,
|
|
312 |
Seq_case_simp_tac exB,
|
|
313 |
SIMPSET' asm_full_simp_tac,
|
|
314 |
Seq_case_simp_tac exA,
|
|
315 |
SIMPSET' asm_full_simp_tac,
|
|
316 |
Seq_case_simp_tac exB,
|
|
317 |
SIMPSET' asm_full_simp_tac,
|
|
318 |
SIMPSET' (fn ss => asm_full_simp_tac (ss addsimps asigs))
|
|
319 |
]
|
17233
|
320 |
|
3521
|
321 |
end
|
19741
|
322 |
*}
|
|
323 |
|
|
324 |
|
|
325 |
(*---------------------------------------------------------------------------
|
|
326 |
Projection of mkex(sch,exA,exB) onto A stutters on A
|
|
327 |
structural induction
|
|
328 |
--------------------------------------------------------------------------- *)
|
|
329 |
|
|
330 |
lemma stutterA_mkex: "! exA exB s t.
|
|
331 |
Forall (%x. x:act (A||B)) sch &
|
|
332 |
Filter (%a. a:act A)$sch << filter_act$exA &
|
|
333 |
Filter (%a. a:act B)$sch << filter_act$exB
|
|
334 |
--> stutter (asig_of A) (s,ProjA2$(snd (mkex A B sch (s,exA) (t,exB))))"
|
|
335 |
|
|
336 |
apply (tactic {* mkex_induct_tac "sch" "exA" "exB" *})
|
|
337 |
done
|
|
338 |
|
|
339 |
|
|
340 |
lemma stutter_mkex_on_A: "[|
|
|
341 |
Forall (%x. x:act (A||B)) sch ;
|
|
342 |
Filter (%a. a:act A)$sch << filter_act$(snd exA) ;
|
|
343 |
Filter (%a. a:act B)$sch << filter_act$(snd exB) |]
|
|
344 |
==> stutter (asig_of A) (ProjA (mkex A B sch exA exB))"
|
|
345 |
|
|
346 |
apply (cut_tac stutterA_mkex)
|
|
347 |
apply (simp add: stutter_def ProjA_def mkex_def)
|
|
348 |
apply (erule allE)+
|
|
349 |
apply (drule mp)
|
|
350 |
prefer 2 apply (assumption)
|
|
351 |
apply simp
|
|
352 |
done
|
|
353 |
|
|
354 |
|
|
355 |
(*---------------------------------------------------------------------------
|
|
356 |
Projection of mkex(sch,exA,exB) onto B stutters on B
|
|
357 |
structural induction
|
|
358 |
--------------------------------------------------------------------------- *)
|
|
359 |
|
|
360 |
lemma stutterB_mkex: "! exA exB s t.
|
|
361 |
Forall (%x. x:act (A||B)) sch &
|
|
362 |
Filter (%a. a:act A)$sch << filter_act$exA &
|
|
363 |
Filter (%a. a:act B)$sch << filter_act$exB
|
|
364 |
--> stutter (asig_of B) (t,ProjB2$(snd (mkex A B sch (s,exA) (t,exB))))"
|
|
365 |
apply (tactic {* mkex_induct_tac "sch" "exA" "exB" *})
|
|
366 |
done
|
|
367 |
|
|
368 |
|
|
369 |
lemma stutter_mkex_on_B: "[|
|
|
370 |
Forall (%x. x:act (A||B)) sch ;
|
|
371 |
Filter (%a. a:act A)$sch << filter_act$(snd exA) ;
|
|
372 |
Filter (%a. a:act B)$sch << filter_act$(snd exB) |]
|
|
373 |
==> stutter (asig_of B) (ProjB (mkex A B sch exA exB))"
|
|
374 |
apply (cut_tac stutterB_mkex)
|
|
375 |
apply (simp add: stutter_def ProjB_def mkex_def)
|
|
376 |
apply (erule allE)+
|
|
377 |
apply (drule mp)
|
|
378 |
prefer 2 apply (assumption)
|
|
379 |
apply simp
|
|
380 |
done
|
|
381 |
|
|
382 |
|
|
383 |
(*---------------------------------------------------------------------------
|
|
384 |
Filter of mkex(sch,exA,exB) to A after projection onto A is exA
|
|
385 |
-- using zip$(proj1$exA)$(proj2$exA) instead of exA --
|
|
386 |
-- because of admissibility problems --
|
|
387 |
structural induction
|
|
388 |
--------------------------------------------------------------------------- *)
|
|
389 |
|
|
390 |
lemma filter_mkex_is_exA_tmp: "! exA exB s t.
|
|
391 |
Forall (%x. x:act (A||B)) sch &
|
|
392 |
Filter (%a. a:act A)$sch << filter_act$exA &
|
|
393 |
Filter (%a. a:act B)$sch << filter_act$exB
|
|
394 |
--> Filter_ex2 (asig_of A)$(ProjA2$(snd (mkex A B sch (s,exA) (t,exB)))) =
|
|
395 |
Zip$(Filter (%a. a:act A)$sch)$(Map snd$exA)"
|
|
396 |
apply (tactic {* mkex_induct_tac "sch" "exB" "exA" *})
|
|
397 |
done
|
|
398 |
|
|
399 |
(*---------------------------------------------------------------------------
|
|
400 |
zip$(proj1$y)$(proj2$y) = y (using the lift operations)
|
|
401 |
lemma for admissibility problems
|
|
402 |
--------------------------------------------------------------------------- *)
|
|
403 |
|
|
404 |
lemma Zip_Map_fst_snd: "Zip$(Map fst$y)$(Map snd$y) = y"
|
|
405 |
apply (tactic {* Seq_induct_tac "y" [] 1 *})
|
|
406 |
done
|
|
407 |
|
|
408 |
|
|
409 |
(*---------------------------------------------------------------------------
|
|
410 |
filter A$sch = proj1$ex --> zip$(filter A$sch)$(proj2$ex) = ex
|
|
411 |
lemma for eliminating non admissible equations in assumptions
|
|
412 |
--------------------------------------------------------------------------- *)
|
|
413 |
|
|
414 |
lemma trick_against_eq_in_ass: "!! sch ex.
|
|
415 |
Filter (%a. a:act AB)$sch = filter_act$ex
|
|
416 |
==> ex = Zip$(Filter (%a. a:act AB)$sch)$(Map snd$ex)"
|
|
417 |
apply (simp add: filter_act_def)
|
|
418 |
apply (rule Zip_Map_fst_snd [symmetric])
|
|
419 |
done
|
|
420 |
|
|
421 |
(*---------------------------------------------------------------------------
|
|
422 |
Filter of mkex(sch,exA,exB) to A after projection onto A is exA
|
|
423 |
using the above trick
|
|
424 |
--------------------------------------------------------------------------- *)
|
|
425 |
|
|
426 |
|
|
427 |
lemma filter_mkex_is_exA: "!!sch exA exB.
|
|
428 |
[| Forall (%a. a:act (A||B)) sch ;
|
|
429 |
Filter (%a. a:act A)$sch = filter_act$(snd exA) ;
|
|
430 |
Filter (%a. a:act B)$sch = filter_act$(snd exB) |]
|
|
431 |
==> Filter_ex (asig_of A) (ProjA (mkex A B sch exA exB)) = exA"
|
|
432 |
apply (simp add: ProjA_def Filter_ex_def)
|
|
433 |
apply (tactic {* pair_tac "exA" 1 *})
|
|
434 |
apply (tactic {* pair_tac "exB" 1 *})
|
|
435 |
apply (rule conjI)
|
|
436 |
apply (simp (no_asm) add: mkex_def)
|
|
437 |
apply (simplesubst trick_against_eq_in_ass)
|
|
438 |
back
|
|
439 |
apply assumption
|
|
440 |
apply (simp add: filter_mkex_is_exA_tmp)
|
|
441 |
done
|
|
442 |
|
|
443 |
|
|
444 |
(*---------------------------------------------------------------------------
|
|
445 |
Filter of mkex(sch,exA,exB) to B after projection onto B is exB
|
|
446 |
-- using zip$(proj1$exB)$(proj2$exB) instead of exB --
|
|
447 |
-- because of admissibility problems --
|
|
448 |
structural induction
|
|
449 |
--------------------------------------------------------------------------- *)
|
|
450 |
|
|
451 |
lemma filter_mkex_is_exB_tmp: "! exA exB s t.
|
|
452 |
Forall (%x. x:act (A||B)) sch &
|
|
453 |
Filter (%a. a:act A)$sch << filter_act$exA &
|
|
454 |
Filter (%a. a:act B)$sch << filter_act$exB
|
|
455 |
--> Filter_ex2 (asig_of B)$(ProjB2$(snd (mkex A B sch (s,exA) (t,exB)))) =
|
|
456 |
Zip$(Filter (%a. a:act B)$sch)$(Map snd$exB)"
|
|
457 |
|
|
458 |
(* notice necessary change of arguments exA and exB *)
|
|
459 |
apply (tactic {* mkex_induct_tac "sch" "exA" "exB" *})
|
|
460 |
done
|
|
461 |
|
|
462 |
|
|
463 |
(*---------------------------------------------------------------------------
|
|
464 |
Filter of mkex(sch,exA,exB) to A after projection onto B is exB
|
|
465 |
using the above trick
|
|
466 |
--------------------------------------------------------------------------- *)
|
|
467 |
|
|
468 |
|
|
469 |
lemma filter_mkex_is_exB: "!!sch exA exB.
|
|
470 |
[| Forall (%a. a:act (A||B)) sch ;
|
|
471 |
Filter (%a. a:act A)$sch = filter_act$(snd exA) ;
|
|
472 |
Filter (%a. a:act B)$sch = filter_act$(snd exB) |]
|
|
473 |
==> Filter_ex (asig_of B) (ProjB (mkex A B sch exA exB)) = exB"
|
|
474 |
apply (simp add: ProjB_def Filter_ex_def)
|
|
475 |
apply (tactic {* pair_tac "exA" 1 *})
|
|
476 |
apply (tactic {* pair_tac "exB" 1 *})
|
|
477 |
apply (rule conjI)
|
|
478 |
apply (simp (no_asm) add: mkex_def)
|
|
479 |
apply (simplesubst trick_against_eq_in_ass)
|
|
480 |
back
|
|
481 |
apply assumption
|
|
482 |
apply (simp add: filter_mkex_is_exB_tmp)
|
|
483 |
done
|
|
484 |
|
|
485 |
(* --------------------------------------------------------------------- *)
|
|
486 |
(* mkex has only A- or B-actions *)
|
|
487 |
(* --------------------------------------------------------------------- *)
|
|
488 |
|
|
489 |
|
|
490 |
lemma mkex_actions_in_AorB: "!s t exA exB.
|
|
491 |
Forall (%x. x : act (A || B)) sch &
|
|
492 |
Filter (%a. a:act A)$sch << filter_act$exA &
|
|
493 |
Filter (%a. a:act B)$sch << filter_act$exB
|
|
494 |
--> Forall (%x. fst x : act (A ||B))
|
|
495 |
(snd (mkex A B sch (s,exA) (t,exB)))"
|
|
496 |
apply (tactic {* mkex_induct_tac "sch" "exA" "exB" *})
|
|
497 |
done
|
|
498 |
|
|
499 |
|
|
500 |
(* ------------------------------------------------------------------ *)
|
|
501 |
(* COMPOSITIONALITY on SCHEDULE Level *)
|
|
502 |
(* Main Theorem *)
|
|
503 |
(* ------------------------------------------------------------------ *)
|
|
504 |
|
|
505 |
lemma compositionality_sch:
|
|
506 |
"(sch : schedules (A||B)) =
|
|
507 |
(Filter (%a. a:act A)$sch : schedules A &
|
|
508 |
Filter (%a. a:act B)$sch : schedules B &
|
|
509 |
Forall (%x. x:act (A||B)) sch)"
|
|
510 |
apply (simp (no_asm) add: schedules_def has_schedule_def)
|
|
511 |
apply (tactic "safe_tac set_cs")
|
|
512 |
(* ==> *)
|
|
513 |
apply (rule_tac x = "Filter_ex (asig_of A) (ProjA ex) " in bexI)
|
|
514 |
prefer 2
|
|
515 |
apply (simp add: compositionality_ex)
|
|
516 |
apply (simp (no_asm) add: Filter_ex_def ProjA_def lemma_2_1a lemma_2_1b)
|
|
517 |
apply (rule_tac x = "Filter_ex (asig_of B) (ProjB ex) " in bexI)
|
|
518 |
prefer 2
|
|
519 |
apply (simp add: compositionality_ex)
|
|
520 |
apply (simp (no_asm) add: Filter_ex_def ProjB_def lemma_2_1a lemma_2_1b)
|
|
521 |
apply (simp add: executions_def)
|
|
522 |
apply (tactic {* pair_tac "ex" 1 *})
|
|
523 |
apply (erule conjE)
|
|
524 |
apply (simp add: sch_actions_in_AorB)
|
|
525 |
|
|
526 |
(* <== *)
|
|
527 |
|
|
528 |
(* mkex is exactly the construction of exA||B out of exA, exB, and the oracle sch,
|
|
529 |
we need here *)
|
|
530 |
apply (rename_tac exA exB)
|
|
531 |
apply (rule_tac x = "mkex A B sch exA exB" in bexI)
|
|
532 |
(* mkex actions are just the oracle *)
|
|
533 |
apply (tactic {* pair_tac "exA" 1 *})
|
|
534 |
apply (tactic {* pair_tac "exB" 1 *})
|
|
535 |
apply (simp add: Mapfst_mkex_is_sch)
|
|
536 |
|
|
537 |
(* mkex is an execution -- use compositionality on ex-level *)
|
|
538 |
apply (simp add: compositionality_ex)
|
|
539 |
apply (simp add: stutter_mkex_on_A stutter_mkex_on_B filter_mkex_is_exB filter_mkex_is_exA)
|
|
540 |
apply (tactic {* pair_tac "exA" 1 *})
|
|
541 |
apply (tactic {* pair_tac "exB" 1 *})
|
|
542 |
apply (simp add: mkex_actions_in_AorB)
|
|
543 |
done
|
|
544 |
|
|
545 |
|
|
546 |
subsection {* COMPOSITIONALITY on SCHEDULE Level -- for Modules *}
|
|
547 |
|
|
548 |
lemma compositionality_sch_modules:
|
|
549 |
"Scheds (A||B) = par_scheds (Scheds A) (Scheds B)"
|
|
550 |
|
|
551 |
apply (unfold Scheds_def par_scheds_def)
|
|
552 |
apply (simp add: asig_of_par)
|
|
553 |
apply (rule set_ext)
|
|
554 |
apply (simp add: compositionality_sch actions_of_par)
|
|
555 |
done
|
|
556 |
|
|
557 |
|
|
558 |
declare compoex_simps [simp del]
|
|
559 |
declare composch_simps [simp del]
|
|
560 |
|
|
561 |
end
|