| author | wenzelm | 
| Sun, 31 Jan 2021 20:39:16 +0100 | |
| changeset 73215 | a81ec42bac45 | 
| parent 68780 | 54fdc8bc73a3 | 
| permissions | -rw-r--r-- | 
| 42151 | 1  | 
(* Title: HOL/HOLCF/Cont.thy  | 
| 1479 | 2  | 
Author: Franz Regensburger  | 
| 35794 | 3  | 
Author: Brian Huffman  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
4  | 
*)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
5  | 
|
| 62175 | 6  | 
section \<open>Continuity and monotonicity\<close>  | 
| 15577 | 7  | 
|
8  | 
theory Cont  | 
|
| 67312 | 9  | 
imports Pcpo  | 
| 15577 | 10  | 
begin  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
11  | 
|
| 62175 | 12  | 
text \<open>  | 
| 
15588
 
14e3228f18cc
arranged for document generation, cleaned up some proofs
 
huffman 
parents: 
15577 
diff
changeset
 | 
13  | 
Now we change the default class! Form now on all untyped type variables are  | 
| 
3323
 
194ae2e0c193
eliminated the constant less by the introduction of the axclass sq_ord
 
slotosch 
parents: 
2838 
diff
changeset
 | 
14  | 
of default class po  | 
| 62175 | 15  | 
\<close>  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
16  | 
|
| 36452 | 17  | 
default_sort po  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
18  | 
|
| 62175 | 19  | 
subsection \<open>Definitions\<close>  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
20  | 
|
| 
67443
 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 
wenzelm 
parents: 
67312 
diff
changeset
 | 
21  | 
definition monofun :: "('a \<Rightarrow> 'b) \<Rightarrow> bool"  \<comment> \<open>monotonicity\<close>
 | 
| 67312 | 22  | 
where "monofun f \<longleftrightarrow> (\<forall>x y. x \<sqsubseteq> y \<longrightarrow> f x \<sqsubseteq> f y)"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
23  | 
|
| 67312 | 24  | 
definition cont :: "('a::cpo \<Rightarrow> 'b::cpo) \<Rightarrow> bool"
 | 
25  | 
where "cont f = (\<forall>Y. chain Y \<longrightarrow> range (\<lambda>i. f (Y i)) <<| f (\<Squnion>i. Y i))"  | 
|
26  | 
||
27  | 
lemma contI: "(\<And>Y. chain Y \<Longrightarrow> range (\<lambda>i. f (Y i)) <<| f (\<Squnion>i. Y i)) \<Longrightarrow> cont f"  | 
|
28  | 
by (simp add: cont_def)  | 
|
| 15565 | 29  | 
|
| 67312 | 30  | 
lemma contE: "cont f \<Longrightarrow> chain Y \<Longrightarrow> range (\<lambda>i. f (Y i)) <<| f (\<Squnion>i. Y i)"  | 
31  | 
by (simp add: cont_def)  | 
|
| 15565 | 32  | 
|
| 67312 | 33  | 
lemma monofunI: "(\<And>x y. x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y) \<Longrightarrow> monofun f"  | 
34  | 
by (simp add: monofun_def)  | 
|
| 15565 | 35  | 
|
| 67312 | 36  | 
lemma monofunE: "monofun f \<Longrightarrow> x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y"  | 
37  | 
by (simp add: monofun_def)  | 
|
| 15565 | 38  | 
|
| 
16624
 
645b9560f3fd
cleaned up; reorganized and added section headings
 
huffman 
parents: 
16564 
diff
changeset
 | 
39  | 
|
| 62175 | 40  | 
subsection \<open>Equivalence of alternate definition\<close>  | 
| 
16624
 
645b9560f3fd
cleaned up; reorganized and added section headings
 
huffman 
parents: 
16564 
diff
changeset
 | 
41  | 
|
| 62175 | 42  | 
text \<open>monotone functions map chains to chains\<close>  | 
| 15565 | 43  | 
|
| 67312 | 44  | 
lemma ch2ch_monofun: "monofun f \<Longrightarrow> chain Y \<Longrightarrow> chain (\<lambda>i. f (Y i))"  | 
45  | 
apply (rule chainI)  | 
|
46  | 
apply (erule monofunE)  | 
|
47  | 
apply (erule chainE)  | 
|
48  | 
done  | 
|
| 15565 | 49  | 
|
| 62175 | 50  | 
text \<open>monotone functions map upper bound to upper bounds\<close>  | 
| 15565 | 51  | 
|
| 67312 | 52  | 
lemma ub2ub_monofun: "monofun f \<Longrightarrow> range Y <| u \<Longrightarrow> range (\<lambda>i. f (Y i)) <| f u"  | 
53  | 
apply (rule ub_rangeI)  | 
|
54  | 
apply (erule monofunE)  | 
|
55  | 
apply (erule ub_rangeD)  | 
|
56  | 
done  | 
|
| 15565 | 57  | 
|
| 62175 | 58  | 
text \<open>a lemma about binary chains\<close>  | 
| 15565 | 59  | 
|
| 67312 | 60  | 
lemma binchain_cont: "cont f \<Longrightarrow> x \<sqsubseteq> y \<Longrightarrow> range (\<lambda>i::nat. f (if i = 0 then x else y)) <<| f y"  | 
61  | 
apply (subgoal_tac "f (\<Squnion>i::nat. if i = 0 then x else y) = f y")  | 
|
62  | 
apply (erule subst)  | 
|
63  | 
apply (erule contE)  | 
|
64  | 
apply (erule bin_chain)  | 
|
65  | 
apply (rule_tac f=f in arg_cong)  | 
|
66  | 
apply (erule is_lub_bin_chain [THEN lub_eqI])  | 
|
67  | 
done  | 
|
| 15565 | 68  | 
|
| 62175 | 69  | 
text \<open>continuity implies monotonicity\<close>  | 
| 15565 | 70  | 
|
| 
16204
 
5dd79d3f0105
renamed theorems monofun, contlub, cont to monofun_def, etc.; changed intro/elim rules for these predicates into more useful rule_format; removed all MF2 lemmas (Pcpo.thy has more general versions now); cleaned up many proofs.
 
huffman 
parents: 
16096 
diff
changeset
 | 
71  | 
lemma cont2mono: "cont f \<Longrightarrow> monofun f"  | 
| 67312 | 72  | 
apply (rule monofunI)  | 
73  | 
apply (drule (1) binchain_cont)  | 
|
74  | 
apply (drule_tac i=0 in is_lub_rangeD1)  | 
|
75  | 
apply simp  | 
|
76  | 
done  | 
|
| 15565 | 77  | 
|
| 29532 | 78  | 
lemmas cont2monofunE = cont2mono [THEN monofunE]  | 
79  | 
||
| 16737 | 80  | 
lemmas ch2ch_cont = cont2mono [THEN ch2ch_monofun]  | 
81  | 
||
| 62175 | 82  | 
text \<open>continuity implies preservation of lubs\<close>  | 
| 15565 | 83  | 
|
| 67312 | 84  | 
lemma cont2contlubE: "cont f \<Longrightarrow> chain Y \<Longrightarrow> f (\<Squnion>i. Y i) = (\<Squnion>i. f (Y i))"  | 
85  | 
apply (rule lub_eqI [symmetric])  | 
|
86  | 
apply (erule (1) contE)  | 
|
87  | 
done  | 
|
| 15565 | 88  | 
|
| 25896 | 89  | 
lemma contI2:  | 
| 40736 | 90  | 
fixes f :: "'a::cpo \<Rightarrow> 'b::cpo"  | 
| 25896 | 91  | 
assumes mono: "monofun f"  | 
| 67312 | 92  | 
assumes below: "\<And>Y. \<lbrakk>chain Y; chain (\<lambda>i. f (Y i))\<rbrakk> \<Longrightarrow> f (\<Squnion>i. Y i) \<sqsubseteq> (\<Squnion>i. f (Y i))"  | 
| 25896 | 93  | 
shows "cont f"  | 
| 40736 | 94  | 
proof (rule contI)  | 
95  | 
fix Y :: "nat \<Rightarrow> 'a"  | 
|
96  | 
assume Y: "chain Y"  | 
|
97  | 
with mono have fY: "chain (\<lambda>i. f (Y i))"  | 
|
98  | 
by (rule ch2ch_monofun)  | 
|
99  | 
have "(\<Squnion>i. f (Y i)) = f (\<Squnion>i. Y i)"  | 
|
100  | 
apply (rule below_antisym)  | 
|
| 67312 | 101  | 
apply (rule lub_below [OF fY])  | 
102  | 
apply (rule monofunE [OF mono])  | 
|
103  | 
apply (rule is_ub_thelub [OF Y])  | 
|
| 40736 | 104  | 
apply (rule below [OF Y fY])  | 
105  | 
done  | 
|
106  | 
with fY show "range (\<lambda>i. f (Y i)) <<| f (\<Squnion>i. Y i)"  | 
|
107  | 
by (rule thelubE)  | 
|
108  | 
qed  | 
|
| 25896 | 109  | 
|
| 67312 | 110  | 
|
| 62175 | 111  | 
subsection \<open>Collection of continuity rules\<close>  | 
| 
29530
 
9905b660612b
change to simpler, more extensible continuity simproc
 
huffman 
parents: 
29138 
diff
changeset
 | 
112  | 
|
| 
57945
 
cacb00a569e0
prefer 'named_theorems' over Named_Thms, with subtle change of semantics due to visual order vs. internal reverse order;
 
wenzelm 
parents: 
45294 
diff
changeset
 | 
113  | 
named_theorems cont2cont "continuity intro rule"  | 
| 
29530
 
9905b660612b
change to simpler, more extensible continuity simproc
 
huffman 
parents: 
29138 
diff
changeset
 | 
114  | 
|
| 
 
9905b660612b
change to simpler, more extensible continuity simproc
 
huffman 
parents: 
29138 
diff
changeset
 | 
115  | 
|
| 62175 | 116  | 
subsection \<open>Continuity of basic functions\<close>  | 
| 
16624
 
645b9560f3fd
cleaned up; reorganized and added section headings
 
huffman 
parents: 
16564 
diff
changeset
 | 
117  | 
|
| 62175 | 118  | 
text \<open>The identity function is continuous\<close>  | 
| 15565 | 119  | 
|
| 
37079
 
0cd15d8c90a0
remove cont2cont simproc; instead declare cont2cont rules as simp rules
 
huffman 
parents: 
36658 
diff
changeset
 | 
120  | 
lemma cont_id [simp, cont2cont]: "cont (\<lambda>x. x)"  | 
| 67312 | 121  | 
apply (rule contI)  | 
122  | 
apply (erule cpo_lubI)  | 
|
123  | 
done  | 
|
| 15565 | 124  | 
|
| 62175 | 125  | 
text \<open>constant functions are continuous\<close>  | 
| 
16624
 
645b9560f3fd
cleaned up; reorganized and added section headings
 
huffman 
parents: 
16564 
diff
changeset
 | 
126  | 
|
| 
37079
 
0cd15d8c90a0
remove cont2cont simproc; instead declare cont2cont rules as simp rules
 
huffman 
parents: 
36658 
diff
changeset
 | 
127  | 
lemma cont_const [simp, cont2cont]: "cont (\<lambda>x. c)"  | 
| 40771 | 128  | 
using is_lub_const by (rule contI)  | 
| 15565 | 129  | 
|
| 62175 | 130  | 
text \<open>application of functions is continuous\<close>  | 
| 29532 | 131  | 
|
| 
31041
 
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
 
huffman 
parents: 
31030 
diff
changeset
 | 
132  | 
lemma cont_apply:  | 
| 29532 | 133  | 
fixes f :: "'a::cpo \<Rightarrow> 'b::cpo \<Rightarrow> 'c::cpo" and t :: "'a \<Rightarrow> 'b"  | 
| 
31041
 
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
 
huffman 
parents: 
31030 
diff
changeset
 | 
134  | 
assumes 1: "cont (\<lambda>x. t x)"  | 
| 
 
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
 
huffman 
parents: 
31030 
diff
changeset
 | 
135  | 
assumes 2: "\<And>x. cont (\<lambda>y. f x y)"  | 
| 
 
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
 
huffman 
parents: 
31030 
diff
changeset
 | 
136  | 
assumes 3: "\<And>y. cont (\<lambda>x. f x y)"  | 
| 29532 | 137  | 
shows "cont (\<lambda>x. (f x) (t x))"  | 
| 35914 | 138  | 
proof (rule contI2 [OF monofunI])  | 
| 67312 | 139  | 
fix x y :: "'a"  | 
140  | 
assume "x \<sqsubseteq> y"  | 
|
| 29532 | 141  | 
then show "f x (t x) \<sqsubseteq> f y (t y)"  | 
| 
31041
 
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
 
huffman 
parents: 
31030 
diff
changeset
 | 
142  | 
by (auto intro: cont2monofunE [OF 1]  | 
| 67312 | 143  | 
cont2monofunE [OF 2]  | 
144  | 
cont2monofunE [OF 3]  | 
|
145  | 
below_trans)  | 
|
| 29532 | 146  | 
next  | 
| 67312 | 147  | 
fix Y :: "nat \<Rightarrow> 'a"  | 
148  | 
assume "chain Y"  | 
|
| 35914 | 149  | 
then show "f (\<Squnion>i. Y i) (t (\<Squnion>i. Y i)) \<sqsubseteq> (\<Squnion>i. f (Y i) (t (Y i)))"  | 
| 
31041
 
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
 
huffman 
parents: 
31030 
diff
changeset
 | 
150  | 
by (simp only: cont2contlubE [OF 1] ch2ch_cont [OF 1]  | 
| 67312 | 151  | 
cont2contlubE [OF 2] ch2ch_cont [OF 2]  | 
152  | 
cont2contlubE [OF 3] ch2ch_cont [OF 3]  | 
|
153  | 
diag_lub below_refl)  | 
|
| 29532 | 154  | 
qed  | 
155  | 
||
| 67312 | 156  | 
lemma cont_compose: "cont c \<Longrightarrow> cont (\<lambda>x. f x) \<Longrightarrow> cont (\<lambda>x. c (f x))"  | 
157  | 
by (rule cont_apply [OF _ _ cont_const])  | 
|
| 29532 | 158  | 
|
| 62175 | 159  | 
text \<open>Least upper bounds preserve continuity\<close>  | 
| 
40004
 
9f6ed6840e8d
reformulate lemma cont2cont_lub and move to Cont.thy
 
huffman 
parents: 
37099 
diff
changeset
 | 
160  | 
|
| 
 
9f6ed6840e8d
reformulate lemma cont2cont_lub and move to Cont.thy
 
huffman 
parents: 
37099 
diff
changeset
 | 
161  | 
lemma cont2cont_lub [simp]:  | 
| 67312 | 162  | 
assumes chain: "\<And>x. chain (\<lambda>i. F i x)"  | 
163  | 
and cont: "\<And>i. cont (\<lambda>x. F i x)"  | 
|
| 
40004
 
9f6ed6840e8d
reformulate lemma cont2cont_lub and move to Cont.thy
 
huffman 
parents: 
37099 
diff
changeset
 | 
164  | 
shows "cont (\<lambda>x. \<Squnion>i. F i x)"  | 
| 67312 | 165  | 
apply (rule contI2)  | 
166  | 
apply (simp add: monofunI cont2monofunE [OF cont] lub_mono chain)  | 
|
167  | 
apply (simp add: cont2contlubE [OF cont])  | 
|
168  | 
apply (simp add: diag_lub ch2ch_cont [OF cont] chain)  | 
|
169  | 
done  | 
|
| 
40004
 
9f6ed6840e8d
reformulate lemma cont2cont_lub and move to Cont.thy
 
huffman 
parents: 
37099 
diff
changeset
 | 
170  | 
|
| 62175 | 171  | 
text \<open>if-then-else is continuous\<close>  | 
| 
16624
 
645b9560f3fd
cleaned up; reorganized and added section headings
 
huffman 
parents: 
16564 
diff
changeset
 | 
172  | 
|
| 67312 | 173  | 
lemma cont_if [simp, cont2cont]: "cont f \<Longrightarrow> cont g \<Longrightarrow> cont (\<lambda>x. if b then f x else g x)"  | 
174  | 
by (induct b) simp_all  | 
|
175  | 
||
| 
16624
 
645b9560f3fd
cleaned up; reorganized and added section headings
 
huffman 
parents: 
16564 
diff
changeset
 | 
176  | 
|
| 62175 | 177  | 
subsection \<open>Finite chains and flat pcpos\<close>  | 
| 15565 | 178  | 
|
| 62175 | 179  | 
text \<open>Monotone functions map finite chains to finite chains.\<close>  | 
| 15565 | 180  | 
|
| 67312 | 181  | 
lemma monofun_finch2finch: "monofun f \<Longrightarrow> finite_chain Y \<Longrightarrow> finite_chain (\<lambda>n. f (Y n))"  | 
182  | 
by (force simp add: finite_chain_def ch2ch_monofun max_in_chain_def)  | 
|
| 15565 | 183  | 
|
| 62175 | 184  | 
text \<open>The same holds for continuous functions.\<close>  | 
| 15565 | 185  | 
|
| 67312 | 186  | 
lemma cont_finch2finch: "cont f \<Longrightarrow> finite_chain Y \<Longrightarrow> finite_chain (\<lambda>n. f (Y n))"  | 
187  | 
by (rule cont2mono [THEN monofun_finch2finch])  | 
|
| 15565 | 188  | 
|
| 62175 | 189  | 
text \<open>All monotone functions with chain-finite domain are continuous.\<close>  | 
| 40010 | 190  | 
|
| 67312 | 191  | 
lemma chfindom_monofun2cont: "monofun f \<Longrightarrow> cont f"  | 
192  | 
for f :: "'a::chfin \<Rightarrow> 'b::cpo"  | 
|
193  | 
apply (erule contI2)  | 
|
194  | 
apply (frule chfin2finch)  | 
|
195  | 
apply (clarsimp simp add: finite_chain_def)  | 
|
196  | 
apply (subgoal_tac "max_in_chain i (\<lambda>i. f (Y i))")  | 
|
197  | 
apply (simp add: maxinch_is_thelub ch2ch_monofun)  | 
|
198  | 
apply (force simp add: max_in_chain_def)  | 
|
199  | 
done  | 
|
| 15565 | 200  | 
|
| 62175 | 201  | 
text \<open>All strict functions with flat domain are continuous.\<close>  | 
| 
16624
 
645b9560f3fd
cleaned up; reorganized and added section headings
 
huffman 
parents: 
16564 
diff
changeset
 | 
202  | 
|
| 67312 | 203  | 
lemma flatdom_strict2mono: "f \<bottom> = \<bottom> \<Longrightarrow> monofun f"  | 
204  | 
for f :: "'a::flat \<Rightarrow> 'b::pcpo"  | 
|
205  | 
apply (rule monofunI)  | 
|
206  | 
apply (drule ax_flat)  | 
|
207  | 
apply auto  | 
|
208  | 
done  | 
|
| 
16624
 
645b9560f3fd
cleaned up; reorganized and added section headings
 
huffman 
parents: 
16564 
diff
changeset
 | 
209  | 
|
| 67312 | 210  | 
lemma flatdom_strict2cont: "f \<bottom> = \<bottom> \<Longrightarrow> cont f"  | 
211  | 
for f :: "'a::flat \<Rightarrow> 'b::pcpo"  | 
|
212  | 
by (rule flatdom_strict2mono [THEN chfindom_monofun2cont])  | 
|
| 15565 | 213  | 
|
| 62175 | 214  | 
text \<open>All functions with discrete domain are continuous.\<close>  | 
| 26024 | 215  | 
|
| 67312 | 216  | 
lemma cont_discrete_cpo [simp, cont2cont]: "cont f"  | 
217  | 
for f :: "'a::discrete_cpo \<Rightarrow> 'b::cpo"  | 
|
218  | 
apply (rule contI)  | 
|
219  | 
apply (drule discrete_chain_const, clarify)  | 
|
| 68780 | 220  | 
apply simp  | 
| 67312 | 221  | 
done  | 
| 26024 | 222  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
223  | 
end  |