author | clasohm |
Thu, 14 Mar 1996 12:19:49 +0100 | |
changeset 1577 | a84cc626ea69 |
parent 1461 | 6bcb44e4d6e5 |
child 1611 | 35e0fd1b1775 |
permissions | -rw-r--r-- |
1461 | 1 |
(* Title: ZF/Sum |
0 | 2 |
ID: $Id$ |
1461 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
0 | 4 |
Copyright 1992 University of Cambridge |
5 |
||
6 |
Disjoint sums in Zermelo-Fraenkel Set Theory |
|
7 |
*) |
|
8 |
||
9 |
open Sum; |
|
10 |
||
744 | 11 |
(*** Rules for the Part primitive ***) |
12 |
||
13 |
goalw Sum.thy [Part_def] |
|
14 |
"a : Part(A,h) <-> a:A & (EX y. a=h(y))"; |
|
15 |
by (rtac separation 1); |
|
760 | 16 |
qed "Part_iff"; |
744 | 17 |
|
18 |
goalw Sum.thy [Part_def] |
|
19 |
"!!a b A h. [| a : A; a=h(b) |] ==> a : Part(A,h)"; |
|
20 |
by (REPEAT (ares_tac [exI,CollectI] 1)); |
|
760 | 21 |
qed "Part_eqI"; |
744 | 22 |
|
23 |
val PartI = refl RSN (2,Part_eqI); |
|
24 |
||
25 |
val major::prems = goalw Sum.thy [Part_def] |
|
26 |
"[| a : Part(A,h); !!z. [| a : A; a=h(z) |] ==> P \ |
|
27 |
\ |] ==> P"; |
|
28 |
by (rtac (major RS CollectE) 1); |
|
29 |
by (etac exE 1); |
|
30 |
by (REPEAT (ares_tac prems 1)); |
|
760 | 31 |
qed "PartE"; |
744 | 32 |
|
33 |
goalw Sum.thy [Part_def] "Part(A,h) <= A"; |
|
34 |
by (rtac Collect_subset 1); |
|
760 | 35 |
qed "Part_subset"; |
744 | 36 |
|
37 |
||
38 |
(*** Rules for Disjoint Sums ***) |
|
39 |
||
0 | 40 |
val sum_defs = [sum_def,Inl_def,Inr_def,case_def]; |
41 |
||
521 | 42 |
goalw Sum.thy (bool_def::sum_defs) "Sigma(bool,C) = C(0) + C(1)"; |
43 |
by (fast_tac eq_cs 1); |
|
760 | 44 |
qed "Sigma_bool"; |
521 | 45 |
|
0 | 46 |
(** Introduction rules for the injections **) |
47 |
||
48 |
goalw Sum.thy sum_defs "!!a A B. a : A ==> Inl(a) : A+B"; |
|
49 |
by (REPEAT (ares_tac [UnI1,SigmaI,singletonI] 1)); |
|
760 | 50 |
qed "InlI"; |
0 | 51 |
|
52 |
goalw Sum.thy sum_defs "!!b A B. b : B ==> Inr(b) : A+B"; |
|
53 |
by (REPEAT (ares_tac [UnI2,SigmaI,singletonI] 1)); |
|
760 | 54 |
qed "InrI"; |
0 | 55 |
|
56 |
(** Elimination rules **) |
|
57 |
||
58 |
val major::prems = goalw Sum.thy sum_defs |
|
59 |
"[| u: A+B; \ |
|
60 |
\ !!x. [| x:A; u=Inl(x) |] ==> P; \ |
|
61 |
\ !!y. [| y:B; u=Inr(y) |] ==> P \ |
|
62 |
\ |] ==> P"; |
|
63 |
by (rtac (major RS UnE) 1); |
|
64 |
by (REPEAT (rtac refl 1 |
|
65 |
ORELSE eresolve_tac (prems@[SigmaE,singletonE,ssubst]) 1)); |
|
760 | 66 |
qed "sumE"; |
0 | 67 |
|
68 |
(** Injection and freeness equivalences, for rewriting **) |
|
69 |
||
55 | 70 |
goalw Sum.thy sum_defs "Inl(a)=Inl(b) <-> a=b"; |
435 | 71 |
by (simp_tac ZF_ss 1); |
760 | 72 |
qed "Inl_iff"; |
0 | 73 |
|
55 | 74 |
goalw Sum.thy sum_defs "Inr(a)=Inr(b) <-> a=b"; |
435 | 75 |
by (simp_tac ZF_ss 1); |
760 | 76 |
qed "Inr_iff"; |
0 | 77 |
|
55 | 78 |
goalw Sum.thy sum_defs "Inl(a)=Inr(b) <-> False"; |
435 | 79 |
by (simp_tac (ZF_ss addsimps [one_not_0 RS not_sym]) 1); |
760 | 80 |
qed "Inl_Inr_iff"; |
0 | 81 |
|
55 | 82 |
goalw Sum.thy sum_defs "Inr(b)=Inl(a) <-> False"; |
435 | 83 |
by (simp_tac (ZF_ss addsimps [one_not_0]) 1); |
760 | 84 |
qed "Inr_Inl_iff"; |
0 | 85 |
|
55 | 86 |
(*Injection and freeness rules*) |
87 |
||
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
773
diff
changeset
|
88 |
bind_thm ("Inl_inject", (Inl_iff RS iffD1)); |
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
773
diff
changeset
|
89 |
bind_thm ("Inr_inject", (Inr_iff RS iffD1)); |
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
773
diff
changeset
|
90 |
bind_thm ("Inl_neq_Inr", (Inl_Inr_iff RS iffD1 RS FalseE)); |
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
773
diff
changeset
|
91 |
bind_thm ("Inr_neq_Inl", (Inr_Inl_iff RS iffD1 RS FalseE)); |
55 | 92 |
|
744 | 93 |
val sum_cs = ZF_cs addSIs [PartI, InlI, InrI] |
94 |
addSEs [PartE, sumE, Inl_neq_Inr, Inr_neq_Inl] |
|
95 |
addSDs [Inl_inject, Inr_inject]; |
|
0 | 96 |
|
55 | 97 |
goal Sum.thy "!!A B. Inl(a): A+B ==> a: A"; |
98 |
by (fast_tac sum_cs 1); |
|
760 | 99 |
qed "InlD"; |
55 | 100 |
|
101 |
goal Sum.thy "!!A B. Inr(b): A+B ==> b: B"; |
|
102 |
by (fast_tac sum_cs 1); |
|
760 | 103 |
qed "InrD"; |
55 | 104 |
|
0 | 105 |
goal Sum.thy "u: A+B <-> (EX x. x:A & u=Inl(x)) | (EX y. y:B & u=Inr(y))"; |
106 |
by (fast_tac sum_cs 1); |
|
760 | 107 |
qed "sum_iff"; |
0 | 108 |
|
109 |
goal Sum.thy "A+B <= C+D <-> A<=C & B<=D"; |
|
110 |
by (fast_tac sum_cs 1); |
|
760 | 111 |
qed "sum_subset_iff"; |
0 | 112 |
|
113 |
goal Sum.thy "A+B = C+D <-> A=C & B=D"; |
|
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
114 |
by (simp_tac (ZF_ss addsimps [extension,sum_subset_iff]) 1); |
0 | 115 |
by (fast_tac ZF_cs 1); |
760 | 116 |
qed "sum_equal_iff"; |
0 | 117 |
|
521 | 118 |
|
0 | 119 |
(*** Eliminator -- case ***) |
120 |
||
121 |
goalw Sum.thy sum_defs "case(c, d, Inl(a)) = c(a)"; |
|
1107 | 122 |
by (simp_tac (ZF_ss addsimps [cond_0]) 1); |
760 | 123 |
qed "case_Inl"; |
0 | 124 |
|
125 |
goalw Sum.thy sum_defs "case(c, d, Inr(b)) = d(b)"; |
|
1107 | 126 |
by (simp_tac (ZF_ss addsimps [cond_1]) 1); |
760 | 127 |
qed "case_Inr"; |
0 | 128 |
|
129 |
val major::prems = goal Sum.thy |
|
130 |
"[| u: A+B; \ |
|
131 |
\ !!x. x: A ==> c(x): C(Inl(x)); \ |
|
132 |
\ !!y. y: B ==> d(y): C(Inr(y)) \ |
|
133 |
\ |] ==> case(c,d,u) : C(u)"; |
|
134 |
by (rtac (major RS sumE) 1); |
|
135 |
by (ALLGOALS (etac ssubst)); |
|
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
136 |
by (ALLGOALS (asm_simp_tac (ZF_ss addsimps |
1461 | 137 |
(prems@[case_Inl,case_Inr])))); |
760 | 138 |
qed "case_type"; |
0 | 139 |
|
435 | 140 |
goal Sum.thy |
141 |
"!!u. u: A+B ==> \ |
|
142 |
\ R(case(c,d,u)) <-> \ |
|
143 |
\ ((ALL x:A. u = Inl(x) --> R(c(x))) & \ |
|
144 |
\ (ALL y:B. u = Inr(y) --> R(d(y))))"; |
|
145 |
by (etac sumE 1); |
|
146 |
by (asm_simp_tac (ZF_ss addsimps [case_Inl]) 1); |
|
147 |
by (fast_tac sum_cs 1); |
|
148 |
by (asm_simp_tac (ZF_ss addsimps [case_Inr]) 1); |
|
149 |
by (fast_tac sum_cs 1); |
|
760 | 150 |
qed "expand_case"; |
435 | 151 |
|
858 | 152 |
val major::prems = goal Sum.thy |
1461 | 153 |
"[| z: A+B; \ |
154 |
\ !!x. x:A ==> c(x)=c'(x); \ |
|
155 |
\ !!y. y:B ==> d(y)=d'(y) \ |
|
858 | 156 |
\ |] ==> case(c,d,z) = case(c',d',z)"; |
157 |
by (resolve_tac [major RS sumE] 1); |
|
158 |
by (ALLGOALS (asm_simp_tac (ZF_ss addsimps ([case_Inl, case_Inr] @ prems)))); |
|
159 |
qed "case_cong"; |
|
160 |
||
161 |
val [major] = goal Sum.thy |
|
1461 | 162 |
"z: A+B ==> \ |
858 | 163 |
\ case(c, d, case(%x. Inl(c'(x)), %y. Inr(d'(y)), z)) = \ |
164 |
\ case(%x. c(c'(x)), %y. d(d'(y)), z)"; |
|
165 |
by (resolve_tac [major RS sumE] 1); |
|
166 |
by (ALLGOALS (asm_simp_tac (ZF_ss addsimps [case_Inl, case_Inr]))); |
|
167 |
qed "case_case"; |
|
168 |
||
773
9f8bcf1a4cff
sum_ss: moved down and added the rewrite rules for "case"
lcp
parents:
760
diff
changeset
|
169 |
val sum_ss = ZF_ss addsimps [InlI, InrI, Inl_iff, Inr_iff, |
1461 | 170 |
Inl_Inr_iff, Inr_Inl_iff, |
171 |
case_Inl, case_Inr]; |
|
773
9f8bcf1a4cff
sum_ss: moved down and added the rewrite rules for "case"
lcp
parents:
760
diff
changeset
|
172 |
|
9f8bcf1a4cff
sum_ss: moved down and added the rewrite rules for "case"
lcp
parents:
760
diff
changeset
|
173 |
(*** More rules for Part(A,h) ***) |
9f8bcf1a4cff
sum_ss: moved down and added the rewrite rules for "case"
lcp
parents:
760
diff
changeset
|
174 |
|
0 | 175 |
goal Sum.thy "!!A B h. A<=B ==> Part(A,h)<=Part(B,h)"; |
744 | 176 |
by (fast_tac sum_cs 1); |
760 | 177 |
qed "Part_mono"; |
0 | 178 |
|
744 | 179 |
goal Sum.thy "Part(Collect(A,P), h) = Collect(Part(A,h), P)"; |
180 |
by (fast_tac (sum_cs addSIs [equalityI]) 1); |
|
760 | 181 |
qed "Part_Collect"; |
744 | 182 |
|
803
4c8333ab3eae
changed useless "qed" calls for lemmas back to uses of "result",
lcp
parents:
782
diff
changeset
|
183 |
bind_thm ("Part_CollectE", Part_Collect RS equalityD1 RS subsetD RS CollectE); |
744 | 184 |
|
0 | 185 |
goal Sum.thy "Part(A+B,Inl) = {Inl(x). x: A}"; |
744 | 186 |
by (fast_tac (sum_cs addIs [equalityI]) 1); |
760 | 187 |
qed "Part_Inl"; |
0 | 188 |
|
189 |
goal Sum.thy "Part(A+B,Inr) = {Inr(y). y: B}"; |
|
744 | 190 |
by (fast_tac (sum_cs addIs [equalityI]) 1); |
760 | 191 |
qed "Part_Inr"; |
0 | 192 |
|
193 |
goalw Sum.thy [Part_def] "!!a. a : Part(A,h) ==> a : A"; |
|
194 |
by (etac CollectD1 1); |
|
760 | 195 |
qed "PartD1"; |
0 | 196 |
|
197 |
goal Sum.thy "Part(A,%x.x) = A"; |
|
744 | 198 |
by (fast_tac (sum_cs addIs [equalityI]) 1); |
760 | 199 |
qed "Part_id"; |
0 | 200 |
|
201 |
goal Sum.thy "Part(A+B, %x.Inr(h(x))) = {Inr(y). y: Part(B,h)}"; |
|
744 | 202 |
by (fast_tac (sum_cs addIs [equalityI]) 1); |
760 | 203 |
qed "Part_Inr2"; |
0 | 204 |
|
205 |
goal Sum.thy "!!A B C. C <= A+B ==> Part(C,Inl) Un Part(C,Inr) = C"; |
|
744 | 206 |
by (fast_tac (sum_cs addIs [equalityI]) 1); |
760 | 207 |
qed "Part_sum_equality"; |