| author | wenzelm | 
| Thu, 28 Mar 2013 14:01:56 +0100 | |
| changeset 51567 | a86c5e02ba58 | 
| parent 47455 | 26315a545e26 | 
| child 54892 | 64c2d4f8d981 | 
| permissions | -rw-r--r-- | 
| 47455 | 1 | (* Title: HOL/Matrix_LP/SparseMatrix.thy | 
| 16487 | 2 | Author: Steven Obua | 
| 3 | *) | |
| 4 | ||
| 27484 | 5 | theory SparseMatrix | 
| 28637 | 6 | imports Matrix | 
| 27484 | 7 | begin | 
| 15009 | 8 | |
| 42463 | 9 | type_synonym 'a spvec = "(nat * 'a) list" | 
| 10 | type_synonym 'a spmat = "'a spvec spvec" | |
| 15009 | 11 | |
| 38273 | 12 | definition sparse_row_vector :: "('a::ab_group_add) spvec \<Rightarrow> 'a matrix"
 | 
| 13 | where "sparse_row_vector arr = foldl (% m x. m + (singleton_matrix 0 (fst x) (snd x))) 0 arr" | |
| 15009 | 14 | |
| 38273 | 15 | definition sparse_row_matrix :: "('a::ab_group_add) spmat \<Rightarrow> 'a matrix"
 | 
| 16 | where "sparse_row_matrix arr = foldl (% m r. m + (move_matrix (sparse_row_vector (snd r)) (int (fst r)) 0)) 0 arr" | |
| 15009 | 17 | |
| 27484 | 18 | code_datatype sparse_row_vector sparse_row_matrix | 
| 19 | ||
| 20 | lemma sparse_row_vector_empty [simp]: "sparse_row_vector [] = 0" | |
| 15009 | 21 | by (simp add: sparse_row_vector_def) | 
| 22 | ||
| 27484 | 23 | lemma sparse_row_matrix_empty [simp]: "sparse_row_matrix [] = 0" | 
| 15009 | 24 | by (simp add: sparse_row_matrix_def) | 
| 25 | ||
| 28562 | 26 | lemmas [code] = sparse_row_vector_empty [symmetric] | 
| 27484 | 27 | |
| 31817 | 28 | lemma foldl_distrstart: "! a x y. (f (g x y) a = g x (f y a)) \<Longrightarrow> (foldl f (g x y) l = g x (foldl f y l))" | 
| 29 | by (induct l arbitrary: x y, auto) | |
| 15009 | 30 | |
| 27653 | 31 | lemma sparse_row_vector_cons[simp]: | 
| 32 | "sparse_row_vector (a # arr) = (singleton_matrix 0 (fst a) (snd a)) + (sparse_row_vector arr)" | |
| 15009 | 33 | apply (induct arr) | 
| 34 | apply (auto simp add: sparse_row_vector_def) | |
| 27653 | 35 | apply (simp add: foldl_distrstart [of "\<lambda>m x. m + singleton_matrix 0 (fst x) (snd x)" "\<lambda>x m. singleton_matrix 0 (fst x) (snd x) + m"]) | 
| 15009 | 36 | done | 
| 37 | ||
| 27653 | 38 | lemma sparse_row_vector_append[simp]: | 
| 39 | "sparse_row_vector (a @ b) = (sparse_row_vector a) + (sparse_row_vector b)" | |
| 40 | by (induct a) auto | |
| 15009 | 41 | |
| 42 | lemma nrows_spvec[simp]: "nrows (sparse_row_vector x) <= (Suc 0)" | |
| 43 | apply (induct x) | |
| 44 | apply (simp_all add: add_nrows) | |
| 45 | done | |
| 46 | ||
| 47 | lemma sparse_row_matrix_cons: "sparse_row_matrix (a#arr) = ((move_matrix (sparse_row_vector (snd a)) (int (fst a)) 0)) + sparse_row_matrix arr" | |
| 48 | apply (induct arr) | |
| 49 | apply (auto simp add: sparse_row_matrix_def) | |
| 50 | apply (simp add: foldl_distrstart[of "\<lambda>m x. m + (move_matrix (sparse_row_vector (snd x)) (int (fst x)) 0)" | |
| 51 | "% a m. (move_matrix (sparse_row_vector (snd a)) (int (fst a)) 0) + m"]) | |
| 52 | done | |
| 53 | ||
| 54 | lemma sparse_row_matrix_append: "sparse_row_matrix (arr@brr) = (sparse_row_matrix arr) + (sparse_row_matrix brr)" | |
| 55 | apply (induct arr) | |
| 56 | apply (auto simp add: sparse_row_matrix_cons) | |
| 57 | done | |
| 58 | ||
| 38273 | 59 | primrec sorted_spvec :: "'a spvec \<Rightarrow> bool" | 
| 60 | where | |
| 27653 | 61 | "sorted_spvec [] = True" | 
| 38273 | 62 | | sorted_spvec_step: "sorted_spvec (a#as) = (case as of [] \<Rightarrow> True | b#bs \<Rightarrow> ((fst a < fst b) & (sorted_spvec as)))" | 
| 15009 | 63 | |
| 38273 | 64 | primrec sorted_spmat :: "'a spmat \<Rightarrow> bool" | 
| 65 | where | |
| 15009 | 66 | "sorted_spmat [] = True" | 
| 38273 | 67 | | "sorted_spmat (a#as) = ((sorted_spvec (snd a)) & (sorted_spmat as))" | 
| 15009 | 68 | |
| 69 | declare sorted_spvec.simps [simp del] | |
| 70 | ||
| 71 | lemma sorted_spvec_empty[simp]: "sorted_spvec [] = True" | |
| 72 | by (simp add: sorted_spvec.simps) | |
| 73 | ||
| 74 | lemma sorted_spvec_cons1: "sorted_spvec (a#as) \<Longrightarrow> sorted_spvec as" | |
| 75 | apply (induct as) | |
| 76 | apply (auto simp add: sorted_spvec.simps) | |
| 77 | done | |
| 78 | ||
| 79 | lemma sorted_spvec_cons2: "sorted_spvec (a#b#t) \<Longrightarrow> sorted_spvec (a#t)" | |
| 80 | apply (induct t) | |
| 81 | apply (auto simp add: sorted_spvec.simps) | |
| 82 | done | |
| 83 | ||
| 84 | lemma sorted_spvec_cons3: "sorted_spvec(a#b#t) \<Longrightarrow> fst a < fst b" | |
| 85 | apply (auto simp add: sorted_spvec.simps) | |
| 86 | done | |
| 87 | ||
| 31817 | 88 | lemma sorted_sparse_row_vector_zero[rule_format]: "m <= n \<Longrightarrow> sorted_spvec ((n,a)#arr) \<longrightarrow> Rep_matrix (sparse_row_vector arr) j m = 0" | 
| 15009 | 89 | apply (induct arr) | 
| 90 | apply (auto) | |
| 91 | apply (frule sorted_spvec_cons2,simp)+ | |
| 92 | apply (frule sorted_spvec_cons3, simp) | |
| 93 | done | |
| 94 | ||
| 31817 | 95 | lemma sorted_sparse_row_matrix_zero[rule_format]: "m <= n \<Longrightarrow> sorted_spvec ((n,a)#arr) \<longrightarrow> Rep_matrix (sparse_row_matrix arr) m j = 0" | 
| 15009 | 96 | apply (induct arr) | 
| 97 | apply (auto) | |
| 98 | apply (frule sorted_spvec_cons2, simp) | |
| 99 | apply (frule sorted_spvec_cons3, simp) | |
| 46702 | 100 | apply (simp add: sparse_row_matrix_cons) | 
| 15009 | 101 | done | 
| 102 | ||
| 38273 | 103 | primrec minus_spvec :: "('a::ab_group_add) spvec \<Rightarrow> 'a spvec"
 | 
| 104 | where | |
| 15178 | 105 | "minus_spvec [] = []" | 
| 38273 | 106 | | "minus_spvec (a#as) = (fst a, -(snd a))#(minus_spvec as)" | 
| 15178 | 107 | |
| 38273 | 108 | primrec abs_spvec :: "('a::lattice_ab_group_add_abs) spvec \<Rightarrow> 'a spvec"
 | 
| 109 | where | |
| 15178 | 110 | "abs_spvec [] = []" | 
| 38273 | 111 | | "abs_spvec (a#as) = (fst a, abs (snd a))#(abs_spvec as)" | 
| 15178 | 112 | |
| 113 | lemma sparse_row_vector_minus: | |
| 114 | "sparse_row_vector (minus_spvec v) = - (sparse_row_vector v)" | |
| 115 | apply (induct v) | |
| 116 | apply (simp_all add: sparse_row_vector_cons) | |
| 117 | apply (simp add: Rep_matrix_inject[symmetric]) | |
| 118 | apply (rule ext)+ | |
| 119 | apply simp | |
| 120 | done | |
| 121 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 122 | instance matrix :: (lattice_ab_group_add_abs) lattice_ab_group_add_abs | 
| 27653 | 123 | apply default | 
| 124 | unfolding abs_matrix_def .. (*FIXME move*) | |
| 125 | ||
| 15178 | 126 | lemma sparse_row_vector_abs: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 127 | "sorted_spvec (v :: 'a::lattice_ring spvec) \<Longrightarrow> sparse_row_vector (abs_spvec v) = abs (sparse_row_vector v)" | 
| 15178 | 128 | apply (induct v) | 
| 27653 | 129 | apply simp_all | 
| 15178 | 130 | apply (frule_tac sorted_spvec_cons1, simp) | 
| 131 | apply (simp only: Rep_matrix_inject[symmetric]) | |
| 132 | apply (rule ext)+ | |
| 133 | apply auto | |
| 15236 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 nipkow parents: 
15197diff
changeset | 134 | apply (subgoal_tac "Rep_matrix (sparse_row_vector v) 0 a = 0") | 
| 15178 | 135 | apply (simp) | 
| 136 | apply (rule sorted_sparse_row_vector_zero) | |
| 137 | apply auto | |
| 138 | done | |
| 139 | ||
| 140 | lemma sorted_spvec_minus_spvec: | |
| 141 | "sorted_spvec v \<Longrightarrow> sorted_spvec (minus_spvec v)" | |
| 142 | apply (induct v) | |
| 143 | apply (simp) | |
| 144 | apply (frule sorted_spvec_cons1, simp) | |
| 15236 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 nipkow parents: 
15197diff
changeset | 145 | apply (simp add: sorted_spvec.simps split:list.split_asm) | 
| 15178 | 146 | done | 
| 147 | ||
| 148 | lemma sorted_spvec_abs_spvec: | |
| 149 | "sorted_spvec v \<Longrightarrow> sorted_spvec (abs_spvec v)" | |
| 150 | apply (induct v) | |
| 151 | apply (simp) | |
| 152 | apply (frule sorted_spvec_cons1, simp) | |
| 15236 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 nipkow parents: 
15197diff
changeset | 153 | apply (simp add: sorted_spvec.simps split:list.split_asm) | 
| 15178 | 154 | done | 
| 155 | ||
| 38273 | 156 | definition "smult_spvec y = map (% a. (fst a, y * snd a))" | 
| 15009 | 157 | |
| 158 | lemma smult_spvec_empty[simp]: "smult_spvec y [] = []" | |
| 159 | by (simp add: smult_spvec_def) | |
| 160 | ||
| 161 | lemma smult_spvec_cons: "smult_spvec y (a#arr) = (fst a, y * (snd a)) # (smult_spvec y arr)" | |
| 162 | by (simp add: smult_spvec_def) | |
| 163 | ||
| 38273 | 164 | fun addmult_spvec :: "('a::ring) \<Rightarrow> 'a spvec \<Rightarrow> 'a spvec \<Rightarrow> 'a spvec"
 | 
| 165 | where | |
| 166 | "addmult_spvec y arr [] = arr" | |
| 167 | | "addmult_spvec y [] brr = smult_spvec y brr" | |
| 168 | | "addmult_spvec y ((i,a)#arr) ((j,b)#brr) = ( | |
| 31816 | 169 | if i < j then ((i,a)#(addmult_spvec y arr ((j,b)#brr))) | 
| 170 | else (if (j < i) then ((j, y * b)#(addmult_spvec y ((i,a)#arr) brr)) | |
| 171 | else ((i, a + y*b)#(addmult_spvec y arr brr))))" | |
| 172 | (* Steven used termination "measure (% (y, a, b). length a + (length b))" *) | |
| 15009 | 173 | |
| 31816 | 174 | lemma addmult_spvec_empty1[simp]: "addmult_spvec y [] a = smult_spvec y a" | 
| 27484 | 175 | by (induct a) auto | 
| 15009 | 176 | |
| 31816 | 177 | lemma addmult_spvec_empty2[simp]: "addmult_spvec y a [] = a" | 
| 27484 | 178 | by (induct a) auto | 
| 15009 | 179 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 180 | lemma sparse_row_vector_map: "(! x y. f (x+y) = (f x) + (f y)) \<Longrightarrow> (f::'a\<Rightarrow>('a::lattice_ring)) 0 = 0 \<Longrightarrow> 
 | 
| 15009 | 181 | sparse_row_vector (map (% x. (fst x, f (snd x))) a) = apply_matrix f (sparse_row_vector a)" | 
| 182 | apply (induct a) | |
| 183 | apply (simp_all add: apply_matrix_add) | |
| 184 | done | |
| 185 | ||
| 186 | lemma sparse_row_vector_smult: "sparse_row_vector (smult_spvec y a) = scalar_mult y (sparse_row_vector a)" | |
| 187 | apply (induct a) | |
| 188 | apply (simp_all add: smult_spvec_cons scalar_mult_add) | |
| 189 | done | |
| 190 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 191 | lemma sparse_row_vector_addmult_spvec: "sparse_row_vector (addmult_spvec (y::'a::lattice_ring) a b) = | 
| 15009 | 192 | (sparse_row_vector a) + (scalar_mult y (sparse_row_vector b))" | 
| 31817 | 193 | apply (induct y a b rule: addmult_spvec.induct) | 
| 15009 | 194 | apply (simp add: scalar_mult_add smult_spvec_cons sparse_row_vector_smult singleton_matrix_add)+ | 
| 195 | done | |
| 196 | ||
| 31817 | 197 | lemma sorted_smult_spvec: "sorted_spvec a \<Longrightarrow> sorted_spvec (smult_spvec y a)" | 
| 15009 | 198 | apply (auto simp add: smult_spvec_def) | 
| 199 | apply (induct a) | |
| 15236 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 nipkow parents: 
15197diff
changeset | 200 | apply (auto simp add: sorted_spvec.simps split:list.split_asm) | 
| 15009 | 201 | done | 
| 202 | ||
| 31816 | 203 | lemma sorted_spvec_addmult_spvec_helper: "\<lbrakk>sorted_spvec (addmult_spvec y ((a, b) # arr) brr); aa < a; sorted_spvec ((a, b) # arr); | 
| 204 | sorted_spvec ((aa, ba) # brr)\<rbrakk> \<Longrightarrow> sorted_spvec ((aa, y * ba) # addmult_spvec y ((a, b) # arr) brr)" | |
| 15009 | 205 | apply (induct brr) | 
| 206 | apply (auto simp add: sorted_spvec.simps) | |
| 207 | done | |
| 208 | ||
| 209 | lemma sorted_spvec_addmult_spvec_helper2: | |
| 31816 | 210 | "\<lbrakk>sorted_spvec (addmult_spvec y arr ((aa, ba) # brr)); a < aa; sorted_spvec ((a, b) # arr); sorted_spvec ((aa, ba) # brr)\<rbrakk> | 
| 211 | \<Longrightarrow> sorted_spvec ((a, b) # addmult_spvec y arr ((aa, ba) # brr))" | |
| 15009 | 212 | apply (induct arr) | 
| 213 | apply (auto simp add: smult_spvec_def sorted_spvec.simps) | |
| 214 | done | |
| 215 | ||
| 216 | lemma sorted_spvec_addmult_spvec_helper3[rule_format]: | |
| 31816 | 217 | "sorted_spvec (addmult_spvec y arr brr) \<longrightarrow> sorted_spvec ((aa, b) # arr) \<longrightarrow> sorted_spvec ((aa, ba) # brr) | 
| 218 | \<longrightarrow> sorted_spvec ((aa, b + y * ba) # (addmult_spvec y arr brr))" | |
| 219 | apply (induct y arr brr rule: addmult_spvec.induct) | |
| 220 | apply (simp_all add: sorted_spvec.simps smult_spvec_def split:list.split) | |
| 15009 | 221 | done | 
| 222 | ||
| 31817 | 223 | lemma sorted_addmult_spvec: "sorted_spvec a \<Longrightarrow> sorted_spvec b \<Longrightarrow> sorted_spvec (addmult_spvec y a b)" | 
| 224 | apply (induct y a b rule: addmult_spvec.induct) | |
| 15009 | 225 | apply (simp_all add: sorted_smult_spvec) | 
| 226 | apply (rule conjI, intro strip) | |
| 31816 | 227 | apply (case_tac "~(i < j)") | 
| 15009 | 228 | apply (simp_all) | 
| 229 | apply (frule_tac as=brr in sorted_spvec_cons1) | |
| 230 | apply (simp add: sorted_spvec_addmult_spvec_helper) | |
| 231 | apply (intro strip | rule conjI)+ | |
| 232 | apply (frule_tac as=arr in sorted_spvec_cons1) | |
| 233 | apply (simp add: sorted_spvec_addmult_spvec_helper2) | |
| 234 | apply (intro strip) | |
| 235 | apply (frule_tac as=arr in sorted_spvec_cons1) | |
| 236 | apply (frule_tac as=brr in sorted_spvec_cons1) | |
| 237 | apply (simp) | |
| 238 | apply (simp_all add: sorted_spvec_addmult_spvec_helper3) | |
| 239 | done | |
| 240 | ||
| 38273 | 241 | fun mult_spvec_spmat :: "('a::lattice_ring) spvec \<Rightarrow> 'a spvec \<Rightarrow> 'a spmat  \<Rightarrow> 'a spvec"
 | 
| 242 | where | |
| 31816 | 243 | (* recdef mult_spvec_spmat "measure (% (c, arr, brr). (length arr) + (length brr))" *) | 
| 38273 | 244 | "mult_spvec_spmat c [] brr = c" | 
| 245 | | "mult_spvec_spmat c arr [] = c" | |
| 246 | | "mult_spvec_spmat c ((i,a)#arr) ((j,b)#brr) = ( | |
| 31816 | 247 | if (i < j) then mult_spvec_spmat c arr ((j,b)#brr) | 
| 248 | else if (j < i) then mult_spvec_spmat c ((i,a)#arr) brr | |
| 249 | else mult_spvec_spmat (addmult_spvec a c b) arr brr)" | |
| 15009 | 250 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 251 | lemma sparse_row_mult_spvec_spmat[rule_format]: "sorted_spvec (a::('a::lattice_ring) spvec) \<longrightarrow> sorted_spvec B \<longrightarrow> 
 | 
| 31816 | 252 | sparse_row_vector (mult_spvec_spmat c a B) = (sparse_row_vector c) + (sparse_row_vector a) * (sparse_row_matrix B)" | 
| 15009 | 253 | proof - | 
| 254 | have comp_1: "!! a b. a < b \<Longrightarrow> Suc 0 <= nat ((int b)-(int a))" by arith | |
| 255 | have not_iff: "!! a b. a = b \<Longrightarrow> (~ a) = (~ b)" by simp | |
| 256 | have max_helper: "!! a b. ~ (a <= max (Suc a) b) \<Longrightarrow> False" | |
| 257 | by arith | |
| 258 |   {
 | |
| 259 | fix a | |
| 260 | fix v | |
| 261 | assume a:"a < nrows(sparse_row_vector v)" | |
| 262 | have b:"nrows(sparse_row_vector v) <= 1" by simp | |
| 263 | note dummy = less_le_trans[of a "nrows (sparse_row_vector v)" 1, OF a b] | |
| 264 | then have "a = 0" by simp | |
| 265 | } | |
| 266 | note nrows_helper = this | |
| 267 | show ?thesis | |
| 31817 | 268 | apply (induct c a B rule: mult_spvec_spmat.induct) | 
| 15009 | 269 | apply simp+ | 
| 270 | apply (rule conjI) | |
| 271 | apply (intro strip) | |
| 272 | apply (frule_tac as=brr in sorted_spvec_cons1) | |
| 29667 | 273 | apply (simp add: algebra_simps sparse_row_matrix_cons) | 
| 15481 | 274 | apply (simplesubst Rep_matrix_zero_imp_mult_zero) | 
| 15009 | 275 | apply (simp) | 
| 276 | apply (rule disjI2) | |
| 277 | apply (intro strip) | |
| 278 | apply (subst nrows) | |
| 279 | apply (rule order_trans[of _ 1]) | |
| 280 | apply (simp add: comp_1)+ | |
| 281 | apply (subst Rep_matrix_zero_imp_mult_zero) | |
| 282 | apply (intro strip) | |
| 31816 | 283 | apply (case_tac "k <= j") | 
| 284 | apply (rule_tac m1 = k and n1 = i and a1 = a in ssubst[OF sorted_sparse_row_vector_zero]) | |
| 15009 | 285 | apply (simp_all) | 
| 286 | apply (rule disjI2) | |
| 287 | apply (rule nrows) | |
| 288 | apply (rule order_trans[of _ 1]) | |
| 289 | apply (simp_all add: comp_1) | |
| 290 | ||
| 291 | apply (intro strip | rule conjI)+ | |
| 292 | apply (frule_tac as=arr in sorted_spvec_cons1) | |
| 29667 | 293 | apply (simp add: algebra_simps) | 
| 15009 | 294 | apply (subst Rep_matrix_zero_imp_mult_zero) | 
| 295 | apply (simp) | |
| 296 | apply (rule disjI2) | |
| 297 | apply (intro strip) | |
| 46702 | 298 | apply (simp add: sparse_row_matrix_cons) | 
| 31816 | 299 | apply (case_tac "i <= j") | 
| 15009 | 300 | apply (erule sorted_sparse_row_matrix_zero) | 
| 301 | apply (simp_all) | |
| 302 | apply (intro strip) | |
| 31816 | 303 | apply (case_tac "i=j") | 
| 15009 | 304 | apply (simp_all) | 
| 305 | apply (frule_tac as=arr in sorted_spvec_cons1) | |
| 306 | apply (frule_tac as=brr in sorted_spvec_cons1) | |
| 29667 | 307 | apply (simp add: sparse_row_matrix_cons algebra_simps sparse_row_vector_addmult_spvec) | 
| 15009 | 308 | apply (rule_tac B1 = "sparse_row_matrix brr" in ssubst[OF Rep_matrix_zero_imp_mult_zero]) | 
| 309 | apply (auto) | |
| 310 | apply (rule sorted_sparse_row_matrix_zero) | |
| 311 | apply (simp_all) | |
| 312 | apply (rule_tac A1 = "sparse_row_vector arr" in ssubst[OF Rep_matrix_zero_imp_mult_zero]) | |
| 313 | apply (auto) | |
| 31816 | 314 | apply (rule_tac m=k and n = j and a = a and arr=arr in sorted_sparse_row_vector_zero) | 
| 15009 | 315 | apply (simp_all) | 
| 316 | apply (drule nrows_notzero) | |
| 317 | apply (drule nrows_helper) | |
| 318 | apply (arith) | |
| 319 | ||
| 320 | apply (subst Rep_matrix_inject[symmetric]) | |
| 321 | apply (rule ext)+ | |
| 322 | apply (simp) | |
| 323 | apply (subst Rep_matrix_mult) | |
| 31816 | 324 | apply (rule_tac j1=j in ssubst[OF foldseq_almostzero]) | 
| 15009 | 325 | apply (simp_all) | 
| 20432 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20283diff
changeset | 326 | apply (intro strip, rule conjI) | 
| 15009 | 327 | apply (intro strip) | 
| 20432 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20283diff
changeset | 328 | apply (drule_tac max_helper) | 
| 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20283diff
changeset | 329 | apply (simp) | 
| 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20283diff
changeset | 330 | apply (auto) | 
| 15009 | 331 | apply (rule zero_imp_mult_zero) | 
| 332 | apply (rule disjI2) | |
| 333 | apply (rule nrows) | |
| 334 | apply (rule order_trans[of _ 1]) | |
| 20432 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20283diff
changeset | 335 | apply (simp) | 
| 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20283diff
changeset | 336 | apply (simp) | 
| 15009 | 337 | done | 
| 338 | qed | |
| 339 | ||
| 340 | lemma sorted_mult_spvec_spmat[rule_format]: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 341 |   "sorted_spvec (c::('a::lattice_ring) spvec) \<longrightarrow> sorted_spmat B \<longrightarrow> sorted_spvec (mult_spvec_spmat c a B)"
 | 
| 31817 | 342 | apply (induct c a B rule: mult_spvec_spmat.induct) | 
| 15009 | 343 | apply (simp_all add: sorted_addmult_spvec) | 
| 344 | done | |
| 345 | ||
| 38273 | 346 | primrec mult_spmat :: "('a::lattice_ring) spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat"
 | 
| 347 | where | |
| 15009 | 348 | "mult_spmat [] A = []" | 
| 38273 | 349 | | "mult_spmat (a#as) A = (fst a, mult_spvec_spmat [] (snd a) A)#(mult_spmat as A)" | 
| 15009 | 350 | |
| 31817 | 351 | lemma sparse_row_mult_spmat: | 
| 352 | "sorted_spmat A \<Longrightarrow> sorted_spvec B \<Longrightarrow> | |
| 353 | sparse_row_matrix (mult_spmat A B) = (sparse_row_matrix A) * (sparse_row_matrix B)" | |
| 15009 | 354 | apply (induct A) | 
| 29667 | 355 | apply (auto simp add: sparse_row_matrix_cons sparse_row_mult_spvec_spmat algebra_simps move_matrix_mult) | 
| 15009 | 356 | done | 
| 357 | ||
| 358 | lemma sorted_spvec_mult_spmat[rule_format]: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 359 |   "sorted_spvec (A::('a::lattice_ring) spmat) \<longrightarrow> sorted_spvec (mult_spmat A B)"
 | 
| 15009 | 360 | apply (induct A) | 
| 361 | apply (auto) | |
| 362 | apply (drule sorted_spvec_cons1, simp) | |
| 15236 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 nipkow parents: 
15197diff
changeset | 363 | apply (case_tac A) | 
| 15009 | 364 | apply (auto simp add: sorted_spvec.simps) | 
| 365 | done | |
| 366 | ||
| 31817 | 367 | lemma sorted_spmat_mult_spmat: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 368 |   "sorted_spmat (B::('a::lattice_ring) spmat) \<Longrightarrow> sorted_spmat (mult_spmat A B)"
 | 
| 15009 | 369 | apply (induct A) | 
| 370 | apply (auto simp add: sorted_mult_spvec_spmat) | |
| 371 | done | |
| 372 | ||
| 373 | ||
| 38273 | 374 | fun add_spvec :: "('a::lattice_ab_group_add) spvec \<Rightarrow> 'a spvec \<Rightarrow> 'a spvec"
 | 
| 375 | where | |
| 31816 | 376 | (* "measure (% (a, b). length a + (length b))" *) | 
| 38273 | 377 | "add_spvec arr [] = arr" | 
| 378 | | "add_spvec [] brr = brr" | |
| 379 | | "add_spvec ((i,a)#arr) ((j,b)#brr) = ( | |
| 380 | if i < j then (i,a)#(add_spvec arr ((j,b)#brr)) | |
| 31816 | 381 | else if (j < i) then (j,b) # add_spvec ((i,a)#arr) brr | 
| 382 | else (i, a+b) # add_spvec arr brr)" | |
| 15009 | 383 | |
| 31816 | 384 | lemma add_spvec_empty1[simp]: "add_spvec [] a = a" | 
| 385 | by (cases a, auto) | |
| 15009 | 386 | |
| 31816 | 387 | lemma sparse_row_vector_add: "sparse_row_vector (add_spvec a b) = (sparse_row_vector a) + (sparse_row_vector b)" | 
| 31817 | 388 | apply (induct a b rule: add_spvec.induct) | 
| 15009 | 389 | apply (simp_all add: singleton_matrix_add) | 
| 390 | done | |
| 391 | ||
| 38273 | 392 | fun add_spmat :: "('a::lattice_ab_group_add) spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat"
 | 
| 393 | where | |
| 31816 | 394 | (* "measure (% (A,B). (length A)+(length B))" *) | 
| 38273 | 395 | "add_spmat [] bs = bs" | 
| 396 | | "add_spmat as [] = as" | |
| 397 | | "add_spmat ((i,a)#as) ((j,b)#bs) = ( | |
| 398 | if i < j then | |
| 399 | (i,a) # add_spmat as ((j,b)#bs) | |
| 400 | else if j < i then | |
| 401 | (j,b) # add_spmat ((i,a)#as) bs | |
| 402 | else | |
| 403 | (i, add_spvec a b) # add_spmat as bs)" | |
| 15009 | 404 | |
| 31816 | 405 | lemma add_spmat_Nil2[simp]: "add_spmat as [] = as" | 
| 406 | by(cases as) auto | |
| 407 | ||
| 408 | lemma sparse_row_add_spmat: "sparse_row_matrix (add_spmat A B) = (sparse_row_matrix A) + (sparse_row_matrix B)" | |
| 31817 | 409 | apply (induct A B rule: add_spmat.induct) | 
| 15009 | 410 | apply (auto simp add: sparse_row_matrix_cons sparse_row_vector_add move_matrix_add) | 
| 411 | done | |
| 412 | ||
| 28562 | 413 | lemmas [code] = sparse_row_add_spmat [symmetric] | 
| 414 | lemmas [code] = sparse_row_vector_add [symmetric] | |
| 27484 | 415 | |
| 31816 | 416 | lemma sorted_add_spvec_helper1[rule_format]: "add_spvec ((a,b)#arr) brr = (ab, bb) # list \<longrightarrow> (ab = a | (brr \<noteq> [] & ab = fst (hd brr)))" | 
| 15009 | 417 | proof - | 
| 31816 | 418 | have "(! x ab a. x = (a,b)#arr \<longrightarrow> add_spvec x brr = (ab, bb) # list \<longrightarrow> (ab = a | (ab = fst (hd brr))))" | 
| 31817 | 419 | by (induct brr rule: add_spvec.induct) (auto split:if_splits) | 
| 15009 | 420 | then show ?thesis | 
| 421 | by (case_tac brr, auto) | |
| 422 | qed | |
| 423 | ||
| 31816 | 424 | lemma sorted_add_spmat_helper1[rule_format]: "add_spmat ((a,b)#arr) brr = (ab, bb) # list \<longrightarrow> (ab = a | (brr \<noteq> [] & ab = fst (hd brr)))" | 
| 15009 | 425 | proof - | 
| 31816 | 426 | have "(! x ab a. x = (a,b)#arr \<longrightarrow> add_spmat x brr = (ab, bb) # list \<longrightarrow> (ab = a | (ab = fst (hd brr))))" | 
| 31817 | 427 | by (rule add_spmat.induct) (auto split:if_splits) | 
| 15009 | 428 | then show ?thesis | 
| 429 | by (case_tac brr, auto) | |
| 430 | qed | |
| 431 | ||
| 31817 | 432 | lemma sorted_add_spvec_helper: "add_spvec arr brr = (ab, bb) # list \<Longrightarrow> ((arr \<noteq> [] & ab = fst (hd arr)) | (brr \<noteq> [] & ab = fst (hd brr)))" | 
| 433 | apply (induct arr brr rule: add_spvec.induct) | |
| 434 | apply (auto split:if_splits) | |
| 15009 | 435 | done | 
| 436 | ||
| 31817 | 437 | lemma sorted_add_spmat_helper: "add_spmat arr brr = (ab, bb) # list \<Longrightarrow> ((arr \<noteq> [] & ab = fst (hd arr)) | (brr \<noteq> [] & ab = fst (hd brr)))" | 
| 438 | apply (induct arr brr rule: add_spmat.induct) | |
| 439 | apply (auto split:if_splits) | |
| 15009 | 440 | done | 
| 441 | ||
| 31816 | 442 | lemma add_spvec_commute: "add_spvec a b = add_spvec b a" | 
| 31817 | 443 | by (induct a b rule: add_spvec.induct) auto | 
| 15009 | 444 | |
| 31816 | 445 | lemma add_spmat_commute: "add_spmat a b = add_spmat b a" | 
| 31817 | 446 | apply (induct a b rule: add_spmat.induct) | 
| 15009 | 447 | apply (simp_all add: add_spvec_commute) | 
| 448 | done | |
| 449 | ||
| 31816 | 450 | lemma sorted_add_spvec_helper2: "add_spvec ((a,b)#arr) brr = (ab, bb) # list \<Longrightarrow> aa < a \<Longrightarrow> sorted_spvec ((aa, ba) # brr) \<Longrightarrow> aa < ab" | 
| 15009 | 451 | apply (drule sorted_add_spvec_helper1) | 
| 452 | apply (auto) | |
| 453 | apply (case_tac brr) | |
| 454 | apply (simp_all) | |
| 455 | apply (drule_tac sorted_spvec_cons3) | |
| 456 | apply (simp) | |
| 457 | done | |
| 458 | ||
| 31816 | 459 | lemma sorted_add_spmat_helper2: "add_spmat ((a,b)#arr) brr = (ab, bb) # list \<Longrightarrow> aa < a \<Longrightarrow> sorted_spvec ((aa, ba) # brr) \<Longrightarrow> aa < ab" | 
| 15009 | 460 | apply (drule sorted_add_spmat_helper1) | 
| 461 | apply (auto) | |
| 462 | apply (case_tac brr) | |
| 463 | apply (simp_all) | |
| 464 | apply (drule_tac sorted_spvec_cons3) | |
| 465 | apply (simp) | |
| 466 | done | |
| 467 | ||
| 31816 | 468 | lemma sorted_spvec_add_spvec[rule_format]: "sorted_spvec a \<longrightarrow> sorted_spvec b \<longrightarrow> sorted_spvec (add_spvec a b)" | 
| 31817 | 469 | apply (induct a b rule: add_spvec.induct) | 
| 15009 | 470 | apply (simp_all) | 
| 471 | apply (rule conjI) | |
| 31816 | 472 | apply (clarsimp) | 
| 15009 | 473 | apply (frule_tac as=brr in sorted_spvec_cons1) | 
| 474 | apply (simp) | |
| 475 | apply (subst sorted_spvec_step) | |
| 31816 | 476 | apply (clarsimp simp: sorted_add_spvec_helper2 split: list.split) | 
| 15009 | 477 | apply (clarify) | 
| 478 | apply (rule conjI) | |
| 479 | apply (clarify) | |
| 480 | apply (frule_tac as=arr in sorted_spvec_cons1, simp) | |
| 481 | apply (subst sorted_spvec_step) | |
| 31816 | 482 | apply (clarsimp simp: sorted_add_spvec_helper2 add_spvec_commute split: list.split) | 
| 15009 | 483 | apply (clarify) | 
| 484 | apply (frule_tac as=arr in sorted_spvec_cons1) | |
| 485 | apply (frule_tac as=brr in sorted_spvec_cons1) | |
| 486 | apply (simp) | |
| 487 | apply (subst sorted_spvec_step) | |
| 488 | apply (simp split: list.split) | |
| 31816 | 489 | apply (clarsimp) | 
| 15009 | 490 | apply (drule_tac sorted_add_spvec_helper) | 
| 31816 | 491 | apply (auto simp: neq_Nil_conv) | 
| 15009 | 492 | apply (drule sorted_spvec_cons3) | 
| 493 | apply (simp) | |
| 494 | apply (drule sorted_spvec_cons3) | |
| 495 | apply (simp) | |
| 496 | done | |
| 497 | ||
| 31816 | 498 | lemma sorted_spvec_add_spmat[rule_format]: "sorted_spvec A \<longrightarrow> sorted_spvec B \<longrightarrow> sorted_spvec (add_spmat A B)" | 
| 31817 | 499 | apply (induct A B rule: add_spmat.induct) | 
| 15009 | 500 | apply (simp_all) | 
| 501 | apply (rule conjI) | |
| 502 | apply (intro strip) | |
| 503 | apply (simp) | |
| 504 | apply (frule_tac as=bs in sorted_spvec_cons1) | |
| 505 | apply (simp) | |
| 506 | apply (subst sorted_spvec_step) | |
| 507 | apply (simp split: list.split) | |
| 508 | apply (clarify, simp) | |
| 509 | apply (simp add: sorted_add_spmat_helper2) | |
| 510 | apply (clarify) | |
| 511 | apply (rule conjI) | |
| 512 | apply (clarify) | |
| 513 | apply (frule_tac as=as in sorted_spvec_cons1, simp) | |
| 514 | apply (subst sorted_spvec_step) | |
| 31816 | 515 | apply (clarsimp simp: sorted_add_spmat_helper2 add_spmat_commute split: list.split) | 
| 516 | apply (clarsimp) | |
| 15009 | 517 | apply (frule_tac as=as in sorted_spvec_cons1) | 
| 518 | apply (frule_tac as=bs in sorted_spvec_cons1) | |
| 519 | apply (simp) | |
| 520 | apply (subst sorted_spvec_step) | |
| 521 | apply (simp split: list.split) | |
| 522 | apply (clarify, simp) | |
| 523 | apply (drule_tac sorted_add_spmat_helper) | |
| 31816 | 524 | apply (auto simp:neq_Nil_conv) | 
| 15009 | 525 | apply (drule sorted_spvec_cons3) | 
| 526 | apply (simp) | |
| 527 | apply (drule sorted_spvec_cons3) | |
| 528 | apply (simp) | |
| 529 | done | |
| 530 | ||
| 31817 | 531 | lemma sorted_spmat_add_spmat[rule_format]: "sorted_spmat A \<Longrightarrow> sorted_spmat B \<Longrightarrow> sorted_spmat (add_spmat A B)" | 
| 532 | apply (induct A B rule: add_spmat.induct) | |
| 15009 | 533 | apply (simp_all add: sorted_spvec_add_spvec) | 
| 534 | done | |
| 535 | ||
| 38273 | 536 | fun le_spvec :: "('a::lattice_ab_group_add) spvec \<Rightarrow> 'a spvec \<Rightarrow> bool"
 | 
| 537 | where | |
| 31816 | 538 | (* "measure (% (a,b). (length a) + (length b))" *) | 
| 38273 | 539 | "le_spvec [] [] = True" | 
| 540 | | "le_spvec ((_,a)#as) [] = (a <= 0 & le_spvec as [])" | |
| 541 | | "le_spvec [] ((_,b)#bs) = (0 <= b & le_spvec [] bs)" | |
| 542 | | "le_spvec ((i,a)#as) ((j,b)#bs) = ( | |
| 543 | if (i < j) then a <= 0 & le_spvec as ((j,b)#bs) | |
| 544 | else if (j < i) then 0 <= b & le_spvec ((i,a)#as) bs | |
| 545 | else a <= b & le_spvec as bs)" | |
| 15009 | 546 | |
| 38273 | 547 | fun le_spmat :: "('a::lattice_ab_group_add) spmat \<Rightarrow> 'a spmat \<Rightarrow> bool"
 | 
| 548 | where | |
| 31816 | 549 | (* "measure (% (a,b). (length a) + (length b))" *) | 
| 38273 | 550 | "le_spmat [] [] = True" | 
| 551 | | "le_spmat ((i,a)#as) [] = (le_spvec a [] & le_spmat as [])" | |
| 552 | | "le_spmat [] ((j,b)#bs) = (le_spvec [] b & le_spmat [] bs)" | |
| 553 | | "le_spmat ((i,a)#as) ((j,b)#bs) = ( | |
| 554 | if i < j then (le_spvec a [] & le_spmat as ((j,b)#bs)) | |
| 555 | else if j < i then (le_spvec [] b & le_spmat ((i,a)#as) bs) | |
| 556 | else (le_spvec a b & le_spmat as bs))" | |
| 15009 | 557 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35028diff
changeset | 558 | definition disj_matrices :: "('a::zero) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool" where
 | 
| 38273 | 559 | "disj_matrices A B \<longleftrightarrow> | 
| 560 | (! j i. (Rep_matrix A j i \<noteq> 0) \<longrightarrow> (Rep_matrix B j i = 0)) & (! j i. (Rep_matrix B j i \<noteq> 0) \<longrightarrow> (Rep_matrix A j i = 0))" | |
| 15009 | 561 | |
| 24124 
4399175e3014
turned simp_depth_limit into configuration option;
 wenzelm parents: 
23477diff
changeset | 562 | declare [[simp_depth_limit = 6]] | 
| 15009 | 563 | |
| 15580 | 564 | lemma disj_matrices_contr1: "disj_matrices A B \<Longrightarrow> Rep_matrix A j i \<noteq> 0 \<Longrightarrow> Rep_matrix B j i = 0" | 
| 565 | by (simp add: disj_matrices_def) | |
| 566 | ||
| 567 | lemma disj_matrices_contr2: "disj_matrices A B \<Longrightarrow> Rep_matrix B j i \<noteq> 0 \<Longrightarrow> Rep_matrix A j i = 0" | |
| 568 | by (simp add: disj_matrices_def) | |
| 569 | ||
| 570 | ||
| 15009 | 571 | lemma disj_matrices_add: "disj_matrices A B \<Longrightarrow> disj_matrices C D \<Longrightarrow> disj_matrices A D \<Longrightarrow> disj_matrices B C \<Longrightarrow> | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 572 |   (A + B <= C + D) = (A <= C & B <= (D::('a::lattice_ab_group_add) matrix))"
 | 
| 15009 | 573 | apply (auto) | 
| 574 | apply (simp (no_asm_use) only: le_matrix_def disj_matrices_def) | |
| 575 | apply (intro strip) | |
| 576 | apply (erule conjE)+ | |
| 577 | apply (drule_tac j=j and i=i in spec2)+ | |
| 578 | apply (case_tac "Rep_matrix B j i = 0") | |
| 579 | apply (case_tac "Rep_matrix D j i = 0") | |
| 580 | apply (simp_all) | |
| 581 | apply (simp (no_asm_use) only: le_matrix_def disj_matrices_def) | |
| 582 | apply (intro strip) | |
| 583 | apply (erule conjE)+ | |
| 584 | apply (drule_tac j=j and i=i in spec2)+ | |
| 585 | apply (case_tac "Rep_matrix A j i = 0") | |
| 586 | apply (case_tac "Rep_matrix C j i = 0") | |
| 587 | apply (simp_all) | |
| 588 | apply (erule add_mono) | |
| 589 | apply (assumption) | |
| 590 | done | |
| 591 | ||
| 592 | lemma disj_matrices_zero1[simp]: "disj_matrices 0 B" | |
| 593 | by (simp add: disj_matrices_def) | |
| 594 | ||
| 595 | lemma disj_matrices_zero2[simp]: "disj_matrices A 0" | |
| 596 | by (simp add: disj_matrices_def) | |
| 597 | ||
| 598 | lemma disj_matrices_commute: "disj_matrices A B = disj_matrices B A" | |
| 599 | by (auto simp add: disj_matrices_def) | |
| 600 | ||
| 601 | lemma disj_matrices_add_le_zero: "disj_matrices A B \<Longrightarrow> | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 602 |   (A + B <= 0) = (A <= 0 & (B::('a::lattice_ab_group_add) matrix) <= 0)"
 | 
| 15009 | 603 | by (rule disj_matrices_add[of A B 0 0, simplified]) | 
| 604 | ||
| 605 | lemma disj_matrices_add_zero_le: "disj_matrices A B \<Longrightarrow> | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 606 |   (0 <= A + B) = (0 <= A & 0 <= (B::('a::lattice_ab_group_add) matrix))"
 | 
| 15009 | 607 | by (rule disj_matrices_add[of 0 0 A B, simplified]) | 
| 608 | ||
| 609 | lemma disj_matrices_add_x_le: "disj_matrices A B \<Longrightarrow> disj_matrices B C \<Longrightarrow> | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 610 |   (A <= B + C) = (A <= C & 0 <= (B::('a::lattice_ab_group_add) matrix))"
 | 
| 15009 | 611 | by (auto simp add: disj_matrices_add[of 0 A B C, simplified]) | 
| 612 | ||
| 613 | lemma disj_matrices_add_le_x: "disj_matrices A B \<Longrightarrow> disj_matrices B C \<Longrightarrow> | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 614 |   (B + A <= C) = (A <= C &  (B::('a::lattice_ab_group_add) matrix) <= 0)"
 | 
| 15009 | 615 | by (auto simp add: disj_matrices_add[of B A 0 C,simplified] disj_matrices_commute) | 
| 616 | ||
| 617 | lemma disj_sparse_row_singleton: "i <= j \<Longrightarrow> sorted_spvec((j,y)#v) \<Longrightarrow> disj_matrices (sparse_row_vector v) (singleton_matrix 0 i x)" | |
| 618 | apply (simp add: disj_matrices_def) | |
| 619 | apply (rule conjI) | |
| 620 | apply (rule neg_imp) | |
| 621 | apply (simp) | |
| 622 | apply (intro strip) | |
| 623 | apply (rule sorted_sparse_row_vector_zero) | |
| 624 | apply (simp_all) | |
| 625 | apply (intro strip) | |
| 626 | apply (rule sorted_sparse_row_vector_zero) | |
| 627 | apply (simp_all) | |
| 628 | done | |
| 629 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 630 | lemma disj_matrices_x_add: "disj_matrices A B \<Longrightarrow> disj_matrices A C \<Longrightarrow> disj_matrices (A::('a::lattice_ab_group_add) matrix) (B+C)"
 | 
| 15009 | 631 | apply (simp add: disj_matrices_def) | 
| 632 | apply (auto) | |
| 633 | apply (drule_tac j=j and i=i in spec2)+ | |
| 634 | apply (case_tac "Rep_matrix B j i = 0") | |
| 635 | apply (case_tac "Rep_matrix C j i = 0") | |
| 636 | apply (simp_all) | |
| 637 | done | |
| 638 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 639 | lemma disj_matrices_add_x: "disj_matrices A B \<Longrightarrow> disj_matrices A C \<Longrightarrow> disj_matrices (B+C) (A::('a::lattice_ab_group_add) matrix)" 
 | 
| 15009 | 640 | by (simp add: disj_matrices_x_add disj_matrices_commute) | 
| 641 | ||
| 642 | lemma disj_singleton_matrices[simp]: "disj_matrices (singleton_matrix j i x) (singleton_matrix u v y) = (j \<noteq> u | i \<noteq> v | x = 0 | y = 0)" | |
| 643 | by (auto simp add: disj_matrices_def) | |
| 644 | ||
| 645 | lemma disj_move_sparse_vec_mat[simplified disj_matrices_commute]: | |
| 646 | "j <= a \<Longrightarrow> sorted_spvec((a,c)#as) \<Longrightarrow> disj_matrices (move_matrix (sparse_row_vector b) (int j) i) (sparse_row_matrix as)" | |
| 46702 | 647 | apply (auto simp add: disj_matrices_def) | 
| 15009 | 648 | apply (drule nrows_notzero) | 
| 649 | apply (drule less_le_trans[OF _ nrows_spvec]) | |
| 650 | apply (subgoal_tac "ja = j") | |
| 651 | apply (simp add: sorted_sparse_row_matrix_zero) | |
| 652 | apply (arith) | |
| 653 | apply (rule nrows) | |
| 654 | apply (rule order_trans[of _ 1 _]) | |
| 655 | apply (simp) | |
| 656 | apply (case_tac "nat (int ja - int j) = 0") | |
| 657 | apply (case_tac "ja = j") | |
| 658 | apply (simp add: sorted_sparse_row_matrix_zero) | |
| 659 | apply arith+ | |
| 660 | done | |
| 661 | ||
| 662 | lemma disj_move_sparse_row_vector_twice: | |
| 663 | "j \<noteq> u \<Longrightarrow> disj_matrices (move_matrix (sparse_row_vector a) j i) (move_matrix (sparse_row_vector b) u v)" | |
| 46702 | 664 | apply (auto simp add: disj_matrices_def) | 
| 15009 | 665 | apply (rule nrows, rule order_trans[of _ 1], simp, drule nrows_notzero, drule less_le_trans[OF _ nrows_spvec], arith)+ | 
| 666 | done | |
| 667 | ||
| 31816 | 668 | lemma le_spvec_iff_sparse_row_le[rule_format]: "(sorted_spvec a) \<longrightarrow> (sorted_spvec b) \<longrightarrow> (le_spvec a b) = (sparse_row_vector a <= sparse_row_vector b)" | 
| 31817 | 669 | apply (induct a b rule: le_spvec.induct) | 
| 15178 | 670 | apply (simp_all add: sorted_spvec_cons1 disj_matrices_add_le_zero disj_matrices_add_zero_le | 
| 671 | disj_sparse_row_singleton[OF order_refl] disj_matrices_commute) | |
| 672 | apply (rule conjI, intro strip) | |
| 673 | apply (simp add: sorted_spvec_cons1) | |
| 674 | apply (subst disj_matrices_add_x_le) | |
| 675 | apply (simp add: disj_sparse_row_singleton[OF less_imp_le] disj_matrices_x_add disj_matrices_commute) | |
| 676 | apply (simp add: disj_sparse_row_singleton[OF order_refl] disj_matrices_commute) | |
| 677 | apply (simp, blast) | |
| 678 | apply (intro strip, rule conjI, intro strip) | |
| 679 | apply (simp add: sorted_spvec_cons1) | |
| 680 | apply (subst disj_matrices_add_le_x) | |
| 681 | apply (simp_all add: disj_sparse_row_singleton[OF order_refl] disj_sparse_row_singleton[OF less_imp_le] disj_matrices_commute disj_matrices_x_add) | |
| 682 | apply (blast) | |
| 683 | apply (intro strip) | |
| 684 | apply (simp add: sorted_spvec_cons1) | |
| 31816 | 685 | apply (case_tac "a=b", simp_all) | 
| 15178 | 686 | apply (subst disj_matrices_add) | 
| 687 | apply (simp_all add: disj_sparse_row_singleton[OF order_refl] disj_matrices_commute) | |
| 15009 | 688 | done | 
| 689 | ||
| 31816 | 690 | lemma le_spvec_empty2_sparse_row[rule_format]: "sorted_spvec b \<longrightarrow> le_spvec b [] = (sparse_row_vector b <= 0)" | 
| 15009 | 691 | apply (induct b) | 
| 692 | apply (simp_all add: sorted_spvec_cons1) | |
| 693 | apply (intro strip) | |
| 694 | apply (subst disj_matrices_add_le_zero) | |
| 31816 | 695 | apply (auto simp add: disj_matrices_commute disj_sparse_row_singleton[OF order_refl] sorted_spvec_cons1) | 
| 15009 | 696 | done | 
| 697 | ||
| 31816 | 698 | lemma le_spvec_empty1_sparse_row[rule_format]: "(sorted_spvec b) \<longrightarrow> (le_spvec [] b = (0 <= sparse_row_vector b))" | 
| 15009 | 699 | apply (induct b) | 
| 700 | apply (simp_all add: sorted_spvec_cons1) | |
| 701 | apply (intro strip) | |
| 702 | apply (subst disj_matrices_add_zero_le) | |
| 31816 | 703 | apply (auto simp add: disj_matrices_commute disj_sparse_row_singleton[OF order_refl] sorted_spvec_cons1) | 
| 15009 | 704 | done | 
| 705 | ||
| 706 | lemma le_spmat_iff_sparse_row_le[rule_format]: "(sorted_spvec A) \<longrightarrow> (sorted_spmat A) \<longrightarrow> (sorted_spvec B) \<longrightarrow> (sorted_spmat B) \<longrightarrow> | |
| 31816 | 707 | le_spmat A B = (sparse_row_matrix A <= sparse_row_matrix B)" | 
| 31817 | 708 | apply (induct A B rule: le_spmat.induct) | 
| 15009 | 709 | apply (simp add: sparse_row_matrix_cons disj_matrices_add_le_zero disj_matrices_add_zero_le disj_move_sparse_vec_mat[OF order_refl] | 
| 710 | disj_matrices_commute sorted_spvec_cons1 le_spvec_empty2_sparse_row le_spvec_empty1_sparse_row)+ | |
| 711 | apply (rule conjI, intro strip) | |
| 712 | apply (simp add: sorted_spvec_cons1) | |
| 713 | apply (subst disj_matrices_add_x_le) | |
| 714 | apply (rule disj_matrices_add_x) | |
| 715 | apply (simp add: disj_move_sparse_row_vector_twice) | |
| 716 | apply (simp add: disj_move_sparse_vec_mat[OF less_imp_le] disj_matrices_commute) | |
| 717 | apply (simp add: disj_move_sparse_vec_mat[OF order_refl] disj_matrices_commute) | |
| 718 | apply (simp, blast) | |
| 719 | apply (intro strip, rule conjI, intro strip) | |
| 720 | apply (simp add: sorted_spvec_cons1) | |
| 721 | apply (subst disj_matrices_add_le_x) | |
| 722 | apply (simp add: disj_move_sparse_vec_mat[OF order_refl]) | |
| 723 | apply (rule disj_matrices_x_add) | |
| 724 | apply (simp add: disj_move_sparse_row_vector_twice) | |
| 725 | apply (simp add: disj_move_sparse_vec_mat[OF less_imp_le] disj_matrices_commute) | |
| 726 | apply (simp, blast) | |
| 727 | apply (intro strip) | |
| 31816 | 728 | apply (case_tac "i=j") | 
| 15009 | 729 | apply (simp_all) | 
| 730 | apply (subst disj_matrices_add) | |
| 731 | apply (simp_all add: disj_matrices_commute disj_move_sparse_vec_mat[OF order_refl]) | |
| 732 | apply (simp add: sorted_spvec_cons1 le_spvec_iff_sparse_row_le) | |
| 733 | done | |
| 734 | ||
| 24124 
4399175e3014
turned simp_depth_limit into configuration option;
 wenzelm parents: 
23477diff
changeset | 735 | declare [[simp_depth_limit = 999]] | 
| 15178 | 736 | |
| 38273 | 737 | primrec abs_spmat :: "('a::lattice_ring) spmat \<Rightarrow> 'a spmat"
 | 
| 738 | where | |
| 739 | "abs_spmat [] = []" | |
| 740 | | "abs_spmat (a#as) = (fst a, abs_spvec (snd a))#(abs_spmat as)" | |
| 15178 | 741 | |
| 38273 | 742 | primrec minus_spmat :: "('a::lattice_ring) spmat \<Rightarrow> 'a spmat"
 | 
| 743 | where | |
| 744 | "minus_spmat [] = []" | |
| 745 | | "minus_spmat (a#as) = (fst a, minus_spvec (snd a))#(minus_spmat as)" | |
| 15178 | 746 | |
| 747 | lemma sparse_row_matrix_minus: | |
| 748 | "sparse_row_matrix (minus_spmat A) = - (sparse_row_matrix A)" | |
| 749 | apply (induct A) | |
| 750 | apply (simp_all add: sparse_row_vector_minus sparse_row_matrix_cons) | |
| 751 | apply (subst Rep_matrix_inject[symmetric]) | |
| 752 | apply (rule ext)+ | |
| 753 | apply simp | |
| 754 | done | |
| 15009 | 755 | |
| 15178 | 756 | lemma Rep_sparse_row_vector_zero: "x \<noteq> 0 \<Longrightarrow> Rep_matrix (sparse_row_vector v) x y = 0" | 
| 757 | proof - | |
| 758 | assume x:"x \<noteq> 0" | |
| 759 | have r:"nrows (sparse_row_vector v) <= Suc 0" by (rule nrows_spvec) | |
| 760 | show ?thesis | |
| 761 | apply (rule nrows) | |
| 762 | apply (subgoal_tac "Suc 0 <= x") | |
| 763 | apply (insert r) | |
| 764 | apply (simp only:) | |
| 765 | apply (insert x) | |
| 766 | apply arith | |
| 767 | done | |
| 768 | qed | |
| 769 | ||
| 770 | lemma sparse_row_matrix_abs: | |
| 771 | "sorted_spvec A \<Longrightarrow> sorted_spmat A \<Longrightarrow> sparse_row_matrix (abs_spmat A) = abs (sparse_row_matrix A)" | |
| 772 | apply (induct A) | |
| 773 | apply (simp_all add: sparse_row_vector_abs sparse_row_matrix_cons) | |
| 774 | apply (frule_tac sorted_spvec_cons1, simp) | |
| 15580 | 775 | apply (simplesubst Rep_matrix_inject[symmetric]) | 
| 15178 | 776 | apply (rule ext)+ | 
| 777 | apply auto | |
| 778 | apply (case_tac "x=a") | |
| 779 | apply (simp) | |
| 15481 | 780 | apply (simplesubst sorted_sparse_row_matrix_zero) | 
| 15178 | 781 | apply auto | 
| 15481 | 782 | apply (simplesubst Rep_sparse_row_vector_zero) | 
| 46702 | 783 | apply simp_all | 
| 15178 | 784 | done | 
| 785 | ||
| 786 | lemma sorted_spvec_minus_spmat: "sorted_spvec A \<Longrightarrow> sorted_spvec (minus_spmat A)" | |
| 787 | apply (induct A) | |
| 788 | apply (simp) | |
| 789 | apply (frule sorted_spvec_cons1, simp) | |
| 15236 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 nipkow parents: 
15197diff
changeset | 790 | apply (simp add: sorted_spvec.simps split:list.split_asm) | 
| 15178 | 791 | done | 
| 792 | ||
| 793 | lemma sorted_spvec_abs_spmat: "sorted_spvec A \<Longrightarrow> sorted_spvec (abs_spmat A)" | |
| 794 | apply (induct A) | |
| 795 | apply (simp) | |
| 796 | apply (frule sorted_spvec_cons1, simp) | |
| 15236 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 nipkow parents: 
15197diff
changeset | 797 | apply (simp add: sorted_spvec.simps split:list.split_asm) | 
| 15178 | 798 | done | 
| 799 | ||
| 800 | lemma sorted_spmat_minus_spmat: "sorted_spmat A \<Longrightarrow> sorted_spmat (minus_spmat A)" | |
| 801 | apply (induct A) | |
| 802 | apply (simp_all add: sorted_spvec_minus_spvec) | |
| 803 | done | |
| 804 | ||
| 805 | lemma sorted_spmat_abs_spmat: "sorted_spmat A \<Longrightarrow> sorted_spmat (abs_spmat A)" | |
| 806 | apply (induct A) | |
| 807 | apply (simp_all add: sorted_spvec_abs_spvec) | |
| 808 | done | |
| 15009 | 809 | |
| 38273 | 810 | definition diff_spmat :: "('a::lattice_ring) spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat"
 | 
| 811 | where "diff_spmat A B = add_spmat A (minus_spmat B)" | |
| 15178 | 812 | |
| 813 | lemma sorted_spmat_diff_spmat: "sorted_spmat A \<Longrightarrow> sorted_spmat B \<Longrightarrow> sorted_spmat (diff_spmat A B)" | |
| 814 | by (simp add: diff_spmat_def sorted_spmat_minus_spmat sorted_spmat_add_spmat) | |
| 815 | ||
| 816 | lemma sorted_spvec_diff_spmat: "sorted_spvec A \<Longrightarrow> sorted_spvec B \<Longrightarrow> sorted_spvec (diff_spmat A B)" | |
| 817 | by (simp add: diff_spmat_def sorted_spvec_minus_spmat sorted_spvec_add_spmat) | |
| 818 | ||
| 819 | lemma sparse_row_diff_spmat: "sparse_row_matrix (diff_spmat A B ) = (sparse_row_matrix A) - (sparse_row_matrix B)" | |
| 820 | by (simp add: diff_spmat_def sparse_row_add_spmat sparse_row_matrix_minus) | |
| 821 | ||
| 38273 | 822 | definition sorted_sparse_matrix :: "'a spmat \<Rightarrow> bool" | 
| 823 | where "sorted_sparse_matrix A \<longleftrightarrow> sorted_spvec A & sorted_spmat A" | |
| 15178 | 824 | |
| 825 | lemma sorted_sparse_matrix_imp_spvec: "sorted_sparse_matrix A \<Longrightarrow> sorted_spvec A" | |
| 826 | by (simp add: sorted_sparse_matrix_def) | |
| 827 | ||
| 828 | lemma sorted_sparse_matrix_imp_spmat: "sorted_sparse_matrix A \<Longrightarrow> sorted_spmat A" | |
| 829 | by (simp add: sorted_sparse_matrix_def) | |
| 830 | ||
| 831 | lemmas sorted_sp_simps = | |
| 832 | sorted_spvec.simps | |
| 833 | sorted_spmat.simps | |
| 834 | sorted_sparse_matrix_def | |
| 835 | ||
| 836 | lemma bool1: "(\<not> True) = False" by blast | |
| 837 | lemma bool2: "(\<not> False) = True" by blast | |
| 838 | lemma bool3: "((P\<Colon>bool) \<and> True) = P" by blast | |
| 839 | lemma bool4: "(True \<and> (P\<Colon>bool)) = P" by blast | |
| 840 | lemma bool5: "((P\<Colon>bool) \<and> False) = False" by blast | |
| 841 | lemma bool6: "(False \<and> (P\<Colon>bool)) = False" by blast | |
| 842 | lemma bool7: "((P\<Colon>bool) \<or> True) = True" by blast | |
| 843 | lemma bool8: "(True \<or> (P\<Colon>bool)) = True" by blast | |
| 844 | lemma bool9: "((P\<Colon>bool) \<or> False) = P" by blast | |
| 845 | lemma bool10: "(False \<or> (P\<Colon>bool)) = P" by blast | |
| 846 | lemmas boolarith = bool1 bool2 bool3 bool4 bool5 bool6 bool7 bool8 bool9 bool10 | |
| 847 | ||
| 848 | lemma if_case_eq: "(if b then x else y) = (case b of True => x | False => y)" by simp | |
| 849 | ||
| 38273 | 850 | primrec pprt_spvec :: "('a::{lattice_ab_group_add}) spvec \<Rightarrow> 'a spvec"
 | 
| 851 | where | |
| 852 | "pprt_spvec [] = []" | |
| 853 | | "pprt_spvec (a#as) = (fst a, pprt (snd a)) # (pprt_spvec as)" | |
| 15580 | 854 | |
| 38273 | 855 | primrec nprt_spvec :: "('a::{lattice_ab_group_add}) spvec \<Rightarrow> 'a spvec"
 | 
| 856 | where | |
| 15580 | 857 | "nprt_spvec [] = []" | 
| 38273 | 858 | | "nprt_spvec (a#as) = (fst a, nprt (snd a)) # (nprt_spvec as)" | 
| 15580 | 859 | |
| 38273 | 860 | primrec pprt_spmat :: "('a::{lattice_ab_group_add}) spmat \<Rightarrow> 'a spmat"
 | 
| 861 | where | |
| 15580 | 862 | "pprt_spmat [] = []" | 
| 38273 | 863 | | "pprt_spmat (a#as) = (fst a, pprt_spvec (snd a))#(pprt_spmat as)" | 
| 15580 | 864 | |
| 38273 | 865 | primrec nprt_spmat :: "('a::{lattice_ab_group_add}) spmat \<Rightarrow> 'a spmat"
 | 
| 866 | where | |
| 15580 | 867 | "nprt_spmat [] = []" | 
| 38273 | 868 | | "nprt_spmat (a#as) = (fst a, nprt_spvec (snd a))#(nprt_spmat as)" | 
| 15580 | 869 | |
| 870 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 871 | lemma pprt_add: "disj_matrices A (B::(_::lattice_ring) matrix) \<Longrightarrow> pprt (A+B) = pprt A + pprt B" | 
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
20432diff
changeset | 872 | apply (simp add: pprt_def sup_matrix_def) | 
| 15580 | 873 | apply (simp add: Rep_matrix_inject[symmetric]) | 
| 874 | apply (rule ext)+ | |
| 875 | apply simp | |
| 876 | apply (case_tac "Rep_matrix A x xa \<noteq> 0") | |
| 877 | apply (simp_all add: disj_matrices_contr1) | |
| 878 | done | |
| 879 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 880 | lemma nprt_add: "disj_matrices A (B::(_::lattice_ring) matrix) \<Longrightarrow> nprt (A+B) = nprt A + nprt B" | 
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
20432diff
changeset | 881 | apply (simp add: nprt_def inf_matrix_def) | 
| 15580 | 882 | apply (simp add: Rep_matrix_inject[symmetric]) | 
| 883 | apply (rule ext)+ | |
| 884 | apply simp | |
| 885 | apply (case_tac "Rep_matrix A x xa \<noteq> 0") | |
| 886 | apply (simp_all add: disj_matrices_contr1) | |
| 887 | done | |
| 888 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 889 | lemma pprt_singleton[simp]: "pprt (singleton_matrix j i (x::_::lattice_ring)) = singleton_matrix j i (pprt x)" | 
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
20432diff
changeset | 890 | apply (simp add: pprt_def sup_matrix_def) | 
| 15580 | 891 | apply (simp add: Rep_matrix_inject[symmetric]) | 
| 892 | apply (rule ext)+ | |
| 893 | apply simp | |
| 894 | done | |
| 895 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 896 | lemma nprt_singleton[simp]: "nprt (singleton_matrix j i (x::_::lattice_ring)) = singleton_matrix j i (nprt x)" | 
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
20432diff
changeset | 897 | apply (simp add: nprt_def inf_matrix_def) | 
| 15580 | 898 | apply (simp add: Rep_matrix_inject[symmetric]) | 
| 899 | apply (rule ext)+ | |
| 900 | apply simp | |
| 901 | done | |
| 902 | ||
| 903 | lemma less_imp_le: "a < b \<Longrightarrow> a <= (b::_::order)" by (simp add: less_def) | |
| 904 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 905 | lemma sparse_row_vector_pprt: "sorted_spvec (v :: 'a::lattice_ring spvec) \<Longrightarrow> sparse_row_vector (pprt_spvec v) = pprt (sparse_row_vector v)" | 
| 15580 | 906 | apply (induct v) | 
| 907 | apply (simp_all) | |
| 908 | apply (frule sorted_spvec_cons1, auto) | |
| 909 | apply (subst pprt_add) | |
| 910 | apply (subst disj_matrices_commute) | |
| 911 | apply (rule disj_sparse_row_singleton) | |
| 912 | apply auto | |
| 913 | done | |
| 914 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 915 | lemma sparse_row_vector_nprt: "sorted_spvec (v :: 'a::lattice_ring spvec) \<Longrightarrow> sparse_row_vector (nprt_spvec v) = nprt (sparse_row_vector v)" | 
| 15580 | 916 | apply (induct v) | 
| 917 | apply (simp_all) | |
| 918 | apply (frule sorted_spvec_cons1, auto) | |
| 919 | apply (subst nprt_add) | |
| 920 | apply (subst disj_matrices_commute) | |
| 921 | apply (rule disj_sparse_row_singleton) | |
| 922 | apply auto | |
| 923 | done | |
| 924 | ||
| 925 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 926 | lemma pprt_move_matrix: "pprt (move_matrix (A::('a::lattice_ring) matrix) j i) = move_matrix (pprt A) j i"
 | 
| 15580 | 927 | apply (simp add: pprt_def) | 
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
20432diff
changeset | 928 | apply (simp add: sup_matrix_def) | 
| 15580 | 929 | apply (simp add: Rep_matrix_inject[symmetric]) | 
| 930 | apply (rule ext)+ | |
| 931 | apply (simp) | |
| 932 | done | |
| 933 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 934 | lemma nprt_move_matrix: "nprt (move_matrix (A::('a::lattice_ring) matrix) j i) = move_matrix (nprt A) j i"
 | 
| 15580 | 935 | apply (simp add: nprt_def) | 
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
20432diff
changeset | 936 | apply (simp add: inf_matrix_def) | 
| 15580 | 937 | apply (simp add: Rep_matrix_inject[symmetric]) | 
| 938 | apply (rule ext)+ | |
| 939 | apply (simp) | |
| 940 | done | |
| 941 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 942 | lemma sparse_row_matrix_pprt: "sorted_spvec (m :: 'a::lattice_ring spmat) \<Longrightarrow> sorted_spmat m \<Longrightarrow> sparse_row_matrix (pprt_spmat m) = pprt (sparse_row_matrix m)" | 
| 15580 | 943 | apply (induct m) | 
| 944 | apply simp | |
| 945 | apply simp | |
| 946 | apply (frule sorted_spvec_cons1) | |
| 947 | apply (simp add: sparse_row_matrix_cons sparse_row_vector_pprt) | |
| 948 | apply (subst pprt_add) | |
| 949 | apply (subst disj_matrices_commute) | |
| 950 | apply (rule disj_move_sparse_vec_mat) | |
| 951 | apply auto | |
| 952 | apply (simp add: sorted_spvec.simps) | |
| 953 | apply (simp split: list.split) | |
| 954 | apply auto | |
| 955 | apply (simp add: pprt_move_matrix) | |
| 956 | done | |
| 957 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 958 | lemma sparse_row_matrix_nprt: "sorted_spvec (m :: 'a::lattice_ring spmat) \<Longrightarrow> sorted_spmat m \<Longrightarrow> sparse_row_matrix (nprt_spmat m) = nprt (sparse_row_matrix m)" | 
| 15580 | 959 | apply (induct m) | 
| 960 | apply simp | |
| 961 | apply simp | |
| 962 | apply (frule sorted_spvec_cons1) | |
| 963 | apply (simp add: sparse_row_matrix_cons sparse_row_vector_nprt) | |
| 964 | apply (subst nprt_add) | |
| 965 | apply (subst disj_matrices_commute) | |
| 966 | apply (rule disj_move_sparse_vec_mat) | |
| 967 | apply auto | |
| 968 | apply (simp add: sorted_spvec.simps) | |
| 969 | apply (simp split: list.split) | |
| 970 | apply auto | |
| 971 | apply (simp add: nprt_move_matrix) | |
| 972 | done | |
| 973 | ||
| 974 | lemma sorted_pprt_spvec: "sorted_spvec v \<Longrightarrow> sorted_spvec (pprt_spvec v)" | |
| 975 | apply (induct v) | |
| 976 | apply (simp) | |
| 977 | apply (frule sorted_spvec_cons1) | |
| 978 | apply simp | |
| 979 | apply (simp add: sorted_spvec.simps split:list.split_asm) | |
| 980 | done | |
| 981 | ||
| 982 | lemma sorted_nprt_spvec: "sorted_spvec v \<Longrightarrow> sorted_spvec (nprt_spvec v)" | |
| 983 | apply (induct v) | |
| 984 | apply (simp) | |
| 985 | apply (frule sorted_spvec_cons1) | |
| 986 | apply simp | |
| 987 | apply (simp add: sorted_spvec.simps split:list.split_asm) | |
| 988 | done | |
| 989 | ||
| 990 | lemma sorted_spvec_pprt_spmat: "sorted_spvec m \<Longrightarrow> sorted_spvec (pprt_spmat m)" | |
| 991 | apply (induct m) | |
| 992 | apply (simp) | |
| 993 | apply (frule sorted_spvec_cons1) | |
| 994 | apply simp | |
| 995 | apply (simp add: sorted_spvec.simps split:list.split_asm) | |
| 996 | done | |
| 997 | ||
| 998 | lemma sorted_spvec_nprt_spmat: "sorted_spvec m \<Longrightarrow> sorted_spvec (nprt_spmat m)" | |
| 999 | apply (induct m) | |
| 1000 | apply (simp) | |
| 1001 | apply (frule sorted_spvec_cons1) | |
| 1002 | apply simp | |
| 1003 | apply (simp add: sorted_spvec.simps split:list.split_asm) | |
| 1004 | done | |
| 1005 | ||
| 1006 | lemma sorted_spmat_pprt_spmat: "sorted_spmat m \<Longrightarrow> sorted_spmat (pprt_spmat m)" | |
| 1007 | apply (induct m) | |
| 1008 | apply (simp_all add: sorted_pprt_spvec) | |
| 1009 | done | |
| 1010 | ||
| 1011 | lemma sorted_spmat_nprt_spmat: "sorted_spmat m \<Longrightarrow> sorted_spmat (nprt_spmat m)" | |
| 1012 | apply (induct m) | |
| 1013 | apply (simp_all add: sorted_nprt_spvec) | |
| 1014 | done | |
| 1015 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35028diff
changeset | 1016 | definition mult_est_spmat :: "('a::lattice_ring) spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat" where
 | 
| 38273 | 1017 | "mult_est_spmat r1 r2 s1 s2 = | 
| 31816 | 1018 | add_spmat (mult_spmat (pprt_spmat s2) (pprt_spmat r2)) (add_spmat (mult_spmat (pprt_spmat s1) (nprt_spmat r2)) | 
| 1019 | (add_spmat (mult_spmat (nprt_spmat s2) (pprt_spmat r1)) (mult_spmat (nprt_spmat s1) (nprt_spmat r1))))" | |
| 15580 | 1020 | |
| 1021 | lemmas sparse_row_matrix_op_simps = | |
| 1022 | sorted_sparse_matrix_imp_spmat sorted_sparse_matrix_imp_spvec | |
| 1023 | sparse_row_add_spmat sorted_spvec_add_spmat sorted_spmat_add_spmat | |
| 1024 | sparse_row_diff_spmat sorted_spvec_diff_spmat sorted_spmat_diff_spmat | |
| 1025 | sparse_row_matrix_minus sorted_spvec_minus_spmat sorted_spmat_minus_spmat | |
| 1026 | sparse_row_mult_spmat sorted_spvec_mult_spmat sorted_spmat_mult_spmat | |
| 1027 | sparse_row_matrix_abs sorted_spvec_abs_spmat sorted_spmat_abs_spmat | |
| 1028 | le_spmat_iff_sparse_row_le | |
| 1029 | sparse_row_matrix_pprt sorted_spvec_pprt_spmat sorted_spmat_pprt_spmat | |
| 1030 | sparse_row_matrix_nprt sorted_spvec_nprt_spmat sorted_spmat_nprt_spmat | |
| 1031 | ||
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46988diff
changeset | 1032 | lemmas sparse_row_matrix_arith_simps = | 
| 15580 | 1033 | mult_spmat.simps mult_spvec_spmat.simps | 
| 1034 | addmult_spvec.simps | |
| 1035 | smult_spvec_empty smult_spvec_cons | |
| 1036 | add_spmat.simps add_spvec.simps | |
| 1037 | minus_spmat.simps minus_spvec.simps | |
| 1038 | abs_spmat.simps abs_spvec.simps | |
| 1039 | diff_spmat_def | |
| 1040 | le_spmat.simps le_spvec.simps | |
| 1041 | pprt_spmat.simps pprt_spvec.simps | |
| 1042 | nprt_spmat.simps nprt_spvec.simps | |
| 1043 | mult_est_spmat_def | |
| 1044 | ||
| 1045 | ||
| 1046 | (*lemma spm_linprog_dual_estimate_1: | |
| 15178 | 1047 | assumes | 
| 1048 | "sorted_sparse_matrix A1" | |
| 1049 | "sorted_sparse_matrix A2" | |
| 1050 | "sorted_sparse_matrix c1" | |
| 1051 | "sorted_sparse_matrix c2" | |
| 1052 | "sorted_sparse_matrix y" | |
| 1053 | "sorted_spvec b" | |
| 1054 | "sorted_spvec r" | |
| 1055 | "le_spmat ([], y)" | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32491diff
changeset | 1056 |   "A * x \<le> sparse_row_matrix (b::('a::lattice_ring) spmat)"
 | 
| 15178 | 1057 | "sparse_row_matrix A1 <= A" | 
| 1058 | "A <= sparse_row_matrix A2" | |
| 1059 | "sparse_row_matrix c1 <= c" | |
| 1060 | "c <= sparse_row_matrix c2" | |
| 1061 | "abs x \<le> sparse_row_matrix r" | |
| 1062 | shows | |
| 1063 | "c * x \<le> sparse_row_matrix (add_spmat (mult_spmat y b, mult_spmat (add_spmat (add_spmat (mult_spmat y (diff_spmat A2 A1), | |
| 1064 | abs_spmat (diff_spmat (mult_spmat y A1) c1)), diff_spmat c2 c1)) r))" | |
| 1065 | by (insert prems, simp add: sparse_row_matrix_op_simps linprog_dual_estimate_1[where A=A]) | |
| 15580 | 1066 | *) | 
| 15009 | 1067 | |
| 1068 | end |