| author | nipkow | 
| Mon, 02 Nov 2015 18:35:30 +0100 | |
| changeset 61534 | a88e07c8d0d5 | 
| parent 61378 | 3e04c9ca001a | 
| child 61609 | 77b453bd616f | 
| permissions | -rw-r--r-- | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32155diff
changeset | 1 | (* Title: HOL/NSA/NSA.thy | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32155diff
changeset | 2 | Author: Jacques D. Fleuriot, University of Cambridge | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32155diff
changeset | 3 | Author: Lawrence C Paulson, University of Cambridge | 
| 27468 | 4 | *) | 
| 5 | ||
| 58878 | 6 | section{*Infinite Numbers, Infinitesimals, Infinitely Close Relation*}
 | 
| 27468 | 7 | |
| 8 | theory NSA | |
| 58810 | 9 | imports HyperDef "~~/src/HOL/Library/Lub_Glb" | 
| 27468 | 10 | begin | 
| 11 | ||
| 12 | definition | |
| 31449 | 13 | hnorm :: "'a::real_normed_vector star \<Rightarrow> real star" where | 
| 27468 | 14 | [transfer_unfold]: "hnorm = *f* norm" | 
| 15 | ||
| 16 | definition | |
| 17 |   Infinitesimal  :: "('a::real_normed_vector) star set" where
 | |
| 37765 | 18 |   "Infinitesimal = {x. \<forall>r \<in> Reals. 0 < r --> hnorm x < r}"
 | 
| 27468 | 19 | |
| 20 | definition | |
| 21 |   HFinite :: "('a::real_normed_vector) star set" where
 | |
| 37765 | 22 |   "HFinite = {x. \<exists>r \<in> Reals. hnorm x < r}"
 | 
| 27468 | 23 | |
| 24 | definition | |
| 25 |   HInfinite :: "('a::real_normed_vector) star set" where
 | |
| 37765 | 26 |   "HInfinite = {x. \<forall>r \<in> Reals. r < hnorm x}"
 | 
| 27468 | 27 | |
| 28 | definition | |
| 29 | approx :: "['a::real_normed_vector star, 'a star] => bool" (infixl "@=" 50) where | |
| 30 |     --{*the `infinitely close' relation*}
 | |
| 31 | "(x @= y) = ((x - y) \<in> Infinitesimal)" | |
| 32 | ||
| 33 | definition | |
| 34 | st :: "hypreal => hypreal" where | |
| 35 |     --{*the standard part of a hyperreal*}
 | |
| 61070 | 36 | "st = (%x. @r. x \<in> HFinite & r \<in> \<real> & r @= x)" | 
| 27468 | 37 | |
| 38 | definition | |
| 39 | monad :: "'a::real_normed_vector star => 'a star set" where | |
| 40 |   "monad x = {y. x @= y}"
 | |
| 41 | ||
| 42 | definition | |
| 43 | galaxy :: "'a::real_normed_vector star => 'a star set" where | |
| 44 |   "galaxy x = {y. (x + -y) \<in> HFinite}"
 | |
| 45 | ||
| 46 | notation (xsymbols) | |
| 47 | approx (infixl "\<approx>" 50) | |
| 48 | ||
| 61070 | 49 | lemma SReal_def: "\<real> == {x. \<exists>r. x = hypreal_of_real r}"
 | 
| 27468 | 50 | by (simp add: Reals_def image_def) | 
| 51 | ||
| 52 | subsection {* Nonstandard Extension of the Norm Function *}
 | |
| 53 | ||
| 54 | definition | |
| 55 | scaleHR :: "real star \<Rightarrow> 'a star \<Rightarrow> 'a::real_normed_vector star" where | |
| 37765 | 56 | [transfer_unfold]: "scaleHR = starfun2 scaleR" | 
| 27468 | 57 | |
| 58 | lemma Standard_hnorm [simp]: "x \<in> Standard \<Longrightarrow> hnorm x \<in> Standard" | |
| 59 | by (simp add: hnorm_def) | |
| 60 | ||
| 61 | lemma star_of_norm [simp]: "star_of (norm x) = hnorm (star_of x)" | |
| 62 | by transfer (rule refl) | |
| 63 | ||
| 64 | lemma hnorm_ge_zero [simp]: | |
| 65 | "\<And>x::'a::real_normed_vector star. 0 \<le> hnorm x" | |
| 66 | by transfer (rule norm_ge_zero) | |
| 67 | ||
| 68 | lemma hnorm_eq_zero [simp]: | |
| 69 | "\<And>x::'a::real_normed_vector star. (hnorm x = 0) = (x = 0)" | |
| 70 | by transfer (rule norm_eq_zero) | |
| 71 | ||
| 72 | lemma hnorm_triangle_ineq: | |
| 73 | "\<And>x y::'a::real_normed_vector star. hnorm (x + y) \<le> hnorm x + hnorm y" | |
| 74 | by transfer (rule norm_triangle_ineq) | |
| 75 | ||
| 76 | lemma hnorm_triangle_ineq3: | |
| 77 | "\<And>x y::'a::real_normed_vector star. \<bar>hnorm x - hnorm y\<bar> \<le> hnorm (x - y)" | |
| 78 | by transfer (rule norm_triangle_ineq3) | |
| 79 | ||
| 80 | lemma hnorm_scaleR: | |
| 81 | "\<And>x::'a::real_normed_vector star. | |
| 82 | hnorm (a *\<^sub>R x) = \<bar>star_of a\<bar> * hnorm x" | |
| 83 | by transfer (rule norm_scaleR) | |
| 84 | ||
| 85 | lemma hnorm_scaleHR: | |
| 86 | "\<And>a (x::'a::real_normed_vector star). | |
| 87 | hnorm (scaleHR a x) = \<bar>a\<bar> * hnorm x" | |
| 88 | by transfer (rule norm_scaleR) | |
| 89 | ||
| 90 | lemma hnorm_mult_ineq: | |
| 91 | "\<And>x y::'a::real_normed_algebra star. hnorm (x * y) \<le> hnorm x * hnorm y" | |
| 92 | by transfer (rule norm_mult_ineq) | |
| 93 | ||
| 94 | lemma hnorm_mult: | |
| 95 | "\<And>x y::'a::real_normed_div_algebra star. hnorm (x * y) = hnorm x * hnorm y" | |
| 96 | by transfer (rule norm_mult) | |
| 97 | ||
| 98 | lemma hnorm_hyperpow: | |
| 31017 | 99 |   "\<And>(x::'a::{real_normed_div_algebra} star) n.
 | 
| 27468 | 100 | hnorm (x pow n) = hnorm x pow n" | 
| 101 | by transfer (rule norm_power) | |
| 102 | ||
| 103 | lemma hnorm_one [simp]: | |
| 61076 | 104 | "hnorm (1::'a::real_normed_div_algebra star) = 1" | 
| 27468 | 105 | by transfer (rule norm_one) | 
| 106 | ||
| 107 | lemma hnorm_zero [simp]: | |
| 61076 | 108 | "hnorm (0::'a::real_normed_vector star) = 0" | 
| 27468 | 109 | by transfer (rule norm_zero) | 
| 110 | ||
| 111 | lemma zero_less_hnorm_iff [simp]: | |
| 112 | "\<And>x::'a::real_normed_vector star. (0 < hnorm x) = (x \<noteq> 0)" | |
| 113 | by transfer (rule zero_less_norm_iff) | |
| 114 | ||
| 115 | lemma hnorm_minus_cancel [simp]: | |
| 116 | "\<And>x::'a::real_normed_vector star. hnorm (- x) = hnorm x" | |
| 117 | by transfer (rule norm_minus_cancel) | |
| 118 | ||
| 119 | lemma hnorm_minus_commute: | |
| 120 | "\<And>a b::'a::real_normed_vector star. hnorm (a - b) = hnorm (b - a)" | |
| 121 | by transfer (rule norm_minus_commute) | |
| 122 | ||
| 123 | lemma hnorm_triangle_ineq2: | |
| 124 | "\<And>a b::'a::real_normed_vector star. hnorm a - hnorm b \<le> hnorm (a - b)" | |
| 125 | by transfer (rule norm_triangle_ineq2) | |
| 126 | ||
| 127 | lemma hnorm_triangle_ineq4: | |
| 128 | "\<And>a b::'a::real_normed_vector star. hnorm (a - b) \<le> hnorm a + hnorm b" | |
| 129 | by transfer (rule norm_triangle_ineq4) | |
| 130 | ||
| 131 | lemma abs_hnorm_cancel [simp]: | |
| 132 | "\<And>a::'a::real_normed_vector star. \<bar>hnorm a\<bar> = hnorm a" | |
| 133 | by transfer (rule abs_norm_cancel) | |
| 134 | ||
| 135 | lemma hnorm_of_hypreal [simp]: | |
| 136 | "\<And>r. hnorm (of_hypreal r::'a::real_normed_algebra_1 star) = \<bar>r\<bar>" | |
| 137 | by transfer (rule norm_of_real) | |
| 138 | ||
| 139 | lemma nonzero_hnorm_inverse: | |
| 140 | "\<And>a::'a::real_normed_div_algebra star. | |
| 141 | a \<noteq> 0 \<Longrightarrow> hnorm (inverse a) = inverse (hnorm a)" | |
| 142 | by transfer (rule nonzero_norm_inverse) | |
| 143 | ||
| 144 | lemma hnorm_inverse: | |
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59582diff
changeset | 145 |   "\<And>a::'a::{real_normed_div_algebra, division_ring} star.
 | 
| 27468 | 146 | hnorm (inverse a) = inverse (hnorm a)" | 
| 147 | by transfer (rule norm_inverse) | |
| 148 | ||
| 149 | lemma hnorm_divide: | |
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59582diff
changeset | 150 |   "\<And>a b::'a::{real_normed_field, field} star.
 | 
| 27468 | 151 | hnorm (a / b) = hnorm a / hnorm b" | 
| 152 | by transfer (rule norm_divide) | |
| 153 | ||
| 154 | lemma hypreal_hnorm_def [simp]: | |
| 30080 | 155 | "\<And>r::hypreal. hnorm r = \<bar>r\<bar>" | 
| 27468 | 156 | by transfer (rule real_norm_def) | 
| 157 | ||
| 158 | lemma hnorm_add_less: | |
| 159 | "\<And>(x::'a::real_normed_vector star) y r s. | |
| 160 | \<lbrakk>hnorm x < r; hnorm y < s\<rbrakk> \<Longrightarrow> hnorm (x + y) < r + s" | |
| 161 | by transfer (rule norm_add_less) | |
| 162 | ||
| 163 | lemma hnorm_mult_less: | |
| 164 | "\<And>(x::'a::real_normed_algebra star) y r s. | |
| 165 | \<lbrakk>hnorm x < r; hnorm y < s\<rbrakk> \<Longrightarrow> hnorm (x * y) < r * s" | |
| 166 | by transfer (rule norm_mult_less) | |
| 167 | ||
| 168 | lemma hnorm_scaleHR_less: | |
| 169 | "\<lbrakk>\<bar>x\<bar> < r; hnorm y < s\<rbrakk> \<Longrightarrow> hnorm (scaleHR x y) < r * s" | |
| 170 | apply (simp only: hnorm_scaleHR) | |
| 171 | apply (simp add: mult_strict_mono') | |
| 172 | done | |
| 173 | ||
| 174 | subsection{*Closure Laws for the Standard Reals*}
 | |
| 175 | ||
| 61070 | 176 | lemma Reals_minus_iff [simp]: "(-x \<in> \<real>) = (x \<in> \<real>)" | 
| 27468 | 177 | apply auto | 
| 178 | apply (drule Reals_minus, auto) | |
| 179 | done | |
| 180 | ||
| 61070 | 181 | lemma Reals_add_cancel: "\<lbrakk>x + y \<in> \<real>; y \<in> \<real>\<rbrakk> \<Longrightarrow> x \<in> \<real>" | 
| 27468 | 182 | by (drule (1) Reals_diff, simp) | 
| 183 | ||
| 61070 | 184 | lemma SReal_hrabs: "(x::hypreal) \<in> \<real> ==> abs x \<in> \<real>" | 
| 27468 | 185 | by (simp add: Reals_eq_Standard) | 
| 186 | ||
| 61070 | 187 | lemma SReal_hypreal_of_real [simp]: "hypreal_of_real x \<in> \<real>" | 
| 27468 | 188 | by (simp add: Reals_eq_Standard) | 
| 189 | ||
| 61070 | 190 | lemma SReal_divide_numeral: "r \<in> \<real> ==> r/(numeral w::hypreal) \<in> \<real>" | 
| 27468 | 191 | by simp | 
| 192 | ||
| 193 | text{*epsilon is not in Reals because it is an infinitesimal*}
 | |
| 61070 | 194 | lemma SReal_epsilon_not_mem: "epsilon \<notin> \<real>" | 
| 27468 | 195 | apply (simp add: SReal_def) | 
| 196 | apply (auto simp add: hypreal_of_real_not_eq_epsilon [THEN not_sym]) | |
| 197 | done | |
| 198 | ||
| 61070 | 199 | lemma SReal_omega_not_mem: "omega \<notin> \<real>" | 
| 27468 | 200 | apply (simp add: SReal_def) | 
| 201 | apply (auto simp add: hypreal_of_real_not_eq_omega [THEN not_sym]) | |
| 202 | done | |
| 203 | ||
| 61070 | 204 | lemma SReal_UNIV_real: "{x. hypreal_of_real x \<in> \<real>} = (UNIV::real set)"
 | 
| 27468 | 205 | by simp | 
| 206 | ||
| 61070 | 207 | lemma SReal_iff: "(x \<in> \<real>) = (\<exists>y. x = hypreal_of_real y)" | 
| 27468 | 208 | by (simp add: SReal_def) | 
| 209 | ||
| 61070 | 210 | lemma hypreal_of_real_image: "hypreal_of_real `(UNIV::real set) = \<real>" | 
| 27468 | 211 | by (simp add: Reals_eq_Standard Standard_def) | 
| 212 | ||
| 61070 | 213 | lemma inv_hypreal_of_real_image: "inv hypreal_of_real ` \<real> = UNIV" | 
| 27468 | 214 | apply (auto simp add: SReal_def) | 
| 215 | apply (rule inj_star_of [THEN inv_f_f, THEN subst], blast) | |
| 216 | done | |
| 217 | ||
| 218 | lemma SReal_hypreal_of_real_image: | |
| 61070 | 219 | "[| \<exists>x. x: P; P \<subseteq> \<real> |] ==> \<exists>Q. P = hypreal_of_real ` Q" | 
| 27468 | 220 | by (simp add: SReal_def image_def, blast) | 
| 221 | ||
| 222 | lemma SReal_dense: | |
| 61070 | 223 | "[| (x::hypreal) \<in> \<real>; y \<in> \<real>; x<y |] ==> \<exists>r \<in> Reals. x<r & r<y" | 
| 27468 | 224 | apply (auto simp add: SReal_def) | 
| 225 | apply (drule dense, auto) | |
| 226 | done | |
| 227 | ||
| 228 | text{*Completeness of Reals, but both lemmas are unused.*}
 | |
| 229 | ||
| 230 | lemma SReal_sup_lemma: | |
| 61070 | 231 | "P \<subseteq> \<real> ==> ((\<exists>x \<in> P. y < x) = | 
| 27468 | 232 | (\<exists>X. hypreal_of_real X \<in> P & y < hypreal_of_real X))" | 
| 233 | by (blast dest!: SReal_iff [THEN iffD1]) | |
| 234 | ||
| 235 | lemma SReal_sup_lemma2: | |
| 61070 | 236 | "[| P \<subseteq> \<real>; \<exists>x. x \<in> P; \<exists>y \<in> Reals. \<forall>x \<in> P. x < y |] | 
| 27468 | 237 |       ==> (\<exists>X. X \<in> {w. hypreal_of_real w \<in> P}) &
 | 
| 238 |           (\<exists>Y. \<forall>X \<in> {w. hypreal_of_real w \<in> P}. X < Y)"
 | |
| 239 | apply (rule conjI) | |
| 240 | apply (fast dest!: SReal_iff [THEN iffD1]) | |
| 241 | apply (auto, frule subsetD, assumption) | |
| 242 | apply (drule SReal_iff [THEN iffD1]) | |
| 243 | apply (auto, rule_tac x = ya in exI, auto) | |
| 244 | done | |
| 245 | ||
| 246 | ||
| 247 | subsection{* Set of Finite Elements is a Subring of the Extended Reals*}
 | |
| 248 | ||
| 249 | lemma HFinite_add: "[|x \<in> HFinite; y \<in> HFinite|] ==> (x+y) \<in> HFinite" | |
| 250 | apply (simp add: HFinite_def) | |
| 251 | apply (blast intro!: Reals_add hnorm_add_less) | |
| 252 | done | |
| 253 | ||
| 254 | lemma HFinite_mult: | |
| 255 | fixes x y :: "'a::real_normed_algebra star" | |
| 256 | shows "[|x \<in> HFinite; y \<in> HFinite|] ==> x*y \<in> HFinite" | |
| 257 | apply (simp add: HFinite_def) | |
| 258 | apply (blast intro!: Reals_mult hnorm_mult_less) | |
| 259 | done | |
| 260 | ||
| 261 | lemma HFinite_scaleHR: | |
| 262 | "[|x \<in> HFinite; y \<in> HFinite|] ==> scaleHR x y \<in> HFinite" | |
| 263 | apply (simp add: HFinite_def) | |
| 264 | apply (blast intro!: Reals_mult hnorm_scaleHR_less) | |
| 265 | done | |
| 266 | ||
| 267 | lemma HFinite_minus_iff: "(-x \<in> HFinite) = (x \<in> HFinite)" | |
| 268 | by (simp add: HFinite_def) | |
| 269 | ||
| 270 | lemma HFinite_star_of [simp]: "star_of x \<in> HFinite" | |
| 271 | apply (simp add: HFinite_def) | |
| 272 | apply (rule_tac x="star_of (norm x) + 1" in bexI) | |
| 273 | apply (transfer, simp) | |
| 274 | apply (blast intro: Reals_add SReal_hypreal_of_real Reals_1) | |
| 275 | done | |
| 276 | ||
| 61070 | 277 | lemma SReal_subset_HFinite: "(\<real>::hypreal set) \<subseteq> HFinite" | 
| 27468 | 278 | by (auto simp add: SReal_def) | 
| 279 | ||
| 280 | lemma HFiniteD: "x \<in> HFinite ==> \<exists>t \<in> Reals. hnorm x < t" | |
| 281 | by (simp add: HFinite_def) | |
| 282 | ||
| 283 | lemma HFinite_hrabs_iff [iff]: "(abs (x::hypreal) \<in> HFinite) = (x \<in> HFinite)" | |
| 284 | by (simp add: HFinite_def) | |
| 285 | ||
| 286 | lemma HFinite_hnorm_iff [iff]: | |
| 287 | "(hnorm (x::hypreal) \<in> HFinite) = (x \<in> HFinite)" | |
| 288 | by (simp add: HFinite_def) | |
| 289 | ||
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 290 | lemma HFinite_numeral [simp]: "numeral w \<in> HFinite" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 291 | unfolding star_numeral_def by (rule HFinite_star_of) | 
| 27468 | 292 | |
| 293 | (** As always with numerals, 0 and 1 are special cases **) | |
| 294 | ||
| 295 | lemma HFinite_0 [simp]: "0 \<in> HFinite" | |
| 296 | unfolding star_zero_def by (rule HFinite_star_of) | |
| 297 | ||
| 298 | lemma HFinite_1 [simp]: "1 \<in> HFinite" | |
| 299 | unfolding star_one_def by (rule HFinite_star_of) | |
| 300 | ||
| 301 | lemma hrealpow_HFinite: | |
| 31017 | 302 |   fixes x :: "'a::{real_normed_algebra,monoid_mult} star"
 | 
| 27468 | 303 | shows "x \<in> HFinite ==> x ^ n \<in> HFinite" | 
| 31017 | 304 | apply (induct n) | 
| 27468 | 305 | apply (auto simp add: power_Suc intro: HFinite_mult) | 
| 306 | done | |
| 307 | ||
| 308 | lemma HFinite_bounded: | |
| 309 | "[|(x::hypreal) \<in> HFinite; y \<le> x; 0 \<le> y |] ==> y \<in> HFinite" | |
| 31017 | 310 | apply (cases "x \<le> 0") | 
| 27468 | 311 | apply (drule_tac y = x in order_trans) | 
| 312 | apply (drule_tac [2] order_antisym) | |
| 313 | apply (auto simp add: linorder_not_le) | |
| 314 | apply (auto intro: order_le_less_trans simp add: abs_if HFinite_def) | |
| 315 | done | |
| 316 | ||
| 317 | ||
| 318 | subsection{* Set of Infinitesimals is a Subring of the Hyperreals*}
 | |
| 319 | ||
| 320 | lemma InfinitesimalI: | |
| 321 | "(\<And>r. \<lbrakk>r \<in> \<real>; 0 < r\<rbrakk> \<Longrightarrow> hnorm x < r) \<Longrightarrow> x \<in> Infinitesimal" | |
| 322 | by (simp add: Infinitesimal_def) | |
| 323 | ||
| 324 | lemma InfinitesimalD: | |
| 325 | "x \<in> Infinitesimal ==> \<forall>r \<in> Reals. 0 < r --> hnorm x < r" | |
| 326 | by (simp add: Infinitesimal_def) | |
| 327 | ||
| 328 | lemma InfinitesimalI2: | |
| 329 | "(\<And>r. 0 < r \<Longrightarrow> hnorm x < star_of r) \<Longrightarrow> x \<in> Infinitesimal" | |
| 330 | by (auto simp add: Infinitesimal_def SReal_def) | |
| 331 | ||
| 332 | lemma InfinitesimalD2: | |
| 333 | "\<lbrakk>x \<in> Infinitesimal; 0 < r\<rbrakk> \<Longrightarrow> hnorm x < star_of r" | |
| 334 | by (auto simp add: Infinitesimal_def SReal_def) | |
| 335 | ||
| 336 | lemma Infinitesimal_zero [iff]: "0 \<in> Infinitesimal" | |
| 337 | by (simp add: Infinitesimal_def) | |
| 338 | ||
| 339 | lemma hypreal_sum_of_halves: "x/(2::hypreal) + x/(2::hypreal) = x" | |
| 340 | by auto | |
| 341 | ||
| 342 | lemma Infinitesimal_add: | |
| 343 | "[| x \<in> Infinitesimal; y \<in> Infinitesimal |] ==> (x+y) \<in> Infinitesimal" | |
| 344 | apply (rule InfinitesimalI) | |
| 345 | apply (rule hypreal_sum_of_halves [THEN subst]) | |
| 346 | apply (drule half_gt_zero) | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 347 | apply (blast intro: hnorm_add_less SReal_divide_numeral dest: InfinitesimalD) | 
| 27468 | 348 | done | 
| 349 | ||
| 350 | lemma Infinitesimal_minus_iff [simp]: "(-x:Infinitesimal) = (x:Infinitesimal)" | |
| 351 | by (simp add: Infinitesimal_def) | |
| 352 | ||
| 353 | lemma Infinitesimal_hnorm_iff: | |
| 354 | "(hnorm x \<in> Infinitesimal) = (x \<in> Infinitesimal)" | |
| 355 | by (simp add: Infinitesimal_def) | |
| 356 | ||
| 357 | lemma Infinitesimal_hrabs_iff [iff]: | |
| 358 | "(abs (x::hypreal) \<in> Infinitesimal) = (x \<in> Infinitesimal)" | |
| 359 | by (simp add: abs_if) | |
| 360 | ||
| 361 | lemma Infinitesimal_of_hypreal_iff [simp]: | |
| 362 | "((of_hypreal x::'a::real_normed_algebra_1 star) \<in> Infinitesimal) = | |
| 363 | (x \<in> Infinitesimal)" | |
| 364 | by (subst Infinitesimal_hnorm_iff [symmetric], simp) | |
| 365 | ||
| 366 | lemma Infinitesimal_diff: | |
| 367 | "[| x \<in> Infinitesimal; y \<in> Infinitesimal |] ==> x-y \<in> Infinitesimal" | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
51521diff
changeset | 368 | using Infinitesimal_add [of x "- y"] by simp | 
| 27468 | 369 | |
| 370 | lemma Infinitesimal_mult: | |
| 371 | fixes x y :: "'a::real_normed_algebra star" | |
| 372 | shows "[|x \<in> Infinitesimal; y \<in> Infinitesimal|] ==> (x * y) \<in> Infinitesimal" | |
| 373 | apply (rule InfinitesimalI) | |
| 374 | apply (subgoal_tac "hnorm (x * y) < 1 * r", simp only: mult_1) | |
| 375 | apply (rule hnorm_mult_less) | |
| 376 | apply (simp_all add: InfinitesimalD) | |
| 377 | done | |
| 378 | ||
| 379 | lemma Infinitesimal_HFinite_mult: | |
| 380 | fixes x y :: "'a::real_normed_algebra star" | |
| 381 | shows "[| x \<in> Infinitesimal; y \<in> HFinite |] ==> (x * y) \<in> Infinitesimal" | |
| 382 | apply (rule InfinitesimalI) | |
| 383 | apply (drule HFiniteD, clarify) | |
| 384 | apply (subgoal_tac "0 < t") | |
| 385 | apply (subgoal_tac "hnorm (x * y) < (r / t) * t", simp) | |
| 386 | apply (subgoal_tac "0 < r / t") | |
| 387 | apply (rule hnorm_mult_less) | |
| 56541 | 388 | apply (simp add: InfinitesimalD) | 
| 27468 | 389 | apply assumption | 
| 56541 | 390 | apply simp | 
| 27468 | 391 | apply (erule order_le_less_trans [OF hnorm_ge_zero]) | 
| 392 | done | |
| 393 | ||
| 394 | lemma Infinitesimal_HFinite_scaleHR: | |
| 395 | "[| x \<in> Infinitesimal; y \<in> HFinite |] ==> scaleHR x y \<in> Infinitesimal" | |
| 396 | apply (rule InfinitesimalI) | |
| 397 | apply (drule HFiniteD, clarify) | |
| 398 | apply (drule InfinitesimalD) | |
| 399 | apply (simp add: hnorm_scaleHR) | |
| 400 | apply (subgoal_tac "0 < t") | |
| 401 | apply (subgoal_tac "\<bar>x\<bar> * hnorm y < (r / t) * t", simp) | |
| 402 | apply (subgoal_tac "0 < r / t") | |
| 403 | apply (rule mult_strict_mono', simp_all) | |
| 404 | apply (erule order_le_less_trans [OF hnorm_ge_zero]) | |
| 405 | done | |
| 406 | ||
| 407 | lemma Infinitesimal_HFinite_mult2: | |
| 408 | fixes x y :: "'a::real_normed_algebra star" | |
| 409 | shows "[| x \<in> Infinitesimal; y \<in> HFinite |] ==> (y * x) \<in> Infinitesimal" | |
| 410 | apply (rule InfinitesimalI) | |
| 411 | apply (drule HFiniteD, clarify) | |
| 412 | apply (subgoal_tac "0 < t") | |
| 413 | apply (subgoal_tac "hnorm (y * x) < t * (r / t)", simp) | |
| 414 | apply (subgoal_tac "0 < r / t") | |
| 415 | apply (rule hnorm_mult_less) | |
| 416 | apply assumption | |
| 56541 | 417 | apply (simp add: InfinitesimalD) | 
| 418 | apply simp | |
| 27468 | 419 | apply (erule order_le_less_trans [OF hnorm_ge_zero]) | 
| 420 | done | |
| 421 | ||
| 422 | lemma Infinitesimal_scaleR2: | |
| 423 | "x \<in> Infinitesimal ==> a *\<^sub>R x \<in> Infinitesimal" | |
| 424 | apply (case_tac "a = 0", simp) | |
| 425 | apply (rule InfinitesimalI) | |
| 426 | apply (drule InfinitesimalD) | |
| 427 | apply (drule_tac x="r / \<bar>star_of a\<bar>" in bspec) | |
| 428 | apply (simp add: Reals_eq_Standard) | |
| 56541 | 429 | apply simp | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 430 | apply (simp add: hnorm_scaleR pos_less_divide_eq mult.commute) | 
| 27468 | 431 | done | 
| 432 | ||
| 433 | lemma Compl_HFinite: "- HFinite = HInfinite" | |
| 434 | apply (auto simp add: HInfinite_def HFinite_def linorder_not_less) | |
| 435 | apply (rule_tac y="r + 1" in order_less_le_trans, simp) | |
| 436 | apply simp | |
| 437 | done | |
| 438 | ||
| 439 | lemma HInfinite_inverse_Infinitesimal: | |
| 440 | fixes x :: "'a::real_normed_div_algebra star" | |
| 441 | shows "x \<in> HInfinite ==> inverse x \<in> Infinitesimal" | |
| 442 | apply (rule InfinitesimalI) | |
| 443 | apply (subgoal_tac "x \<noteq> 0") | |
| 444 | apply (rule inverse_less_imp_less) | |
| 445 | apply (simp add: nonzero_hnorm_inverse) | |
| 446 | apply (simp add: HInfinite_def Reals_inverse) | |
| 447 | apply assumption | |
| 448 | apply (clarify, simp add: Compl_HFinite [symmetric]) | |
| 449 | done | |
| 450 | ||
| 451 | lemma HInfiniteI: "(\<And>r. r \<in> \<real> \<Longrightarrow> r < hnorm x) \<Longrightarrow> x \<in> HInfinite" | |
| 452 | by (simp add: HInfinite_def) | |
| 453 | ||
| 454 | lemma HInfiniteD: "\<lbrakk>x \<in> HInfinite; r \<in> \<real>\<rbrakk> \<Longrightarrow> r < hnorm x" | |
| 455 | by (simp add: HInfinite_def) | |
| 456 | ||
| 457 | lemma HInfinite_mult: | |
| 458 | fixes x y :: "'a::real_normed_div_algebra star" | |
| 459 | shows "[|x \<in> HInfinite; y \<in> HInfinite|] ==> (x*y) \<in> HInfinite" | |
| 460 | apply (rule HInfiniteI, simp only: hnorm_mult) | |
| 461 | apply (subgoal_tac "r * 1 < hnorm x * hnorm y", simp only: mult_1) | |
| 462 | apply (case_tac "x = 0", simp add: HInfinite_def) | |
| 463 | apply (rule mult_strict_mono) | |
| 464 | apply (simp_all add: HInfiniteD) | |
| 465 | done | |
| 466 | ||
| 467 | lemma hypreal_add_zero_less_le_mono: "[|r < x; (0::hypreal) \<le> y|] ==> r < x+y" | |
| 468 | by (auto dest: add_less_le_mono) | |
| 469 | ||
| 470 | lemma HInfinite_add_ge_zero: | |
| 471 | "[|(x::hypreal) \<in> HInfinite; 0 \<le> y; 0 \<le> x|] ==> (x + y): HInfinite" | |
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 472 | by (auto intro!: hypreal_add_zero_less_le_mono | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 473 | simp add: abs_if add.commute add_nonneg_nonneg HInfinite_def) | 
| 27468 | 474 | |
| 475 | lemma HInfinite_add_ge_zero2: | |
| 476 | "[|(x::hypreal) \<in> HInfinite; 0 \<le> y; 0 \<le> x|] ==> (y + x): HInfinite" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 477 | by (auto intro!: HInfinite_add_ge_zero simp add: add.commute) | 
| 27468 | 478 | |
| 479 | lemma HInfinite_add_gt_zero: | |
| 480 | "[|(x::hypreal) \<in> HInfinite; 0 < y; 0 < x|] ==> (x + y): HInfinite" | |
| 481 | by (blast intro: HInfinite_add_ge_zero order_less_imp_le) | |
| 482 | ||
| 483 | lemma HInfinite_minus_iff: "(-x \<in> HInfinite) = (x \<in> HInfinite)" | |
| 484 | by (simp add: HInfinite_def) | |
| 485 | ||
| 486 | lemma HInfinite_add_le_zero: | |
| 487 | "[|(x::hypreal) \<in> HInfinite; y \<le> 0; x \<le> 0|] ==> (x + y): HInfinite" | |
| 488 | apply (drule HInfinite_minus_iff [THEN iffD2]) | |
| 489 | apply (rule HInfinite_minus_iff [THEN iffD1]) | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
51521diff
changeset | 490 | apply (simp only: minus_add add.commute) | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
51521diff
changeset | 491 | apply (rule HInfinite_add_ge_zero) | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
51521diff
changeset | 492 | apply simp_all | 
| 27468 | 493 | done | 
| 494 | ||
| 495 | lemma HInfinite_add_lt_zero: | |
| 496 | "[|(x::hypreal) \<in> HInfinite; y < 0; x < 0|] ==> (x + y): HInfinite" | |
| 497 | by (blast intro: HInfinite_add_le_zero order_less_imp_le) | |
| 498 | ||
| 499 | lemma HFinite_sum_squares: | |
| 500 | fixes a b c :: "'a::real_normed_algebra star" | |
| 501 | shows "[|a: HFinite; b: HFinite; c: HFinite|] | |
| 502 | ==> a*a + b*b + c*c \<in> HFinite" | |
| 503 | by (auto intro: HFinite_mult HFinite_add) | |
| 504 | ||
| 505 | lemma not_Infinitesimal_not_zero: "x \<notin> Infinitesimal ==> x \<noteq> 0" | |
| 506 | by auto | |
| 507 | ||
| 508 | lemma not_Infinitesimal_not_zero2: "x \<in> HFinite - Infinitesimal ==> x \<noteq> 0" | |
| 509 | by auto | |
| 510 | ||
| 511 | lemma HFinite_diff_Infinitesimal_hrabs: | |
| 512 | "(x::hypreal) \<in> HFinite - Infinitesimal ==> abs x \<in> HFinite - Infinitesimal" | |
| 513 | by blast | |
| 514 | ||
| 515 | lemma hnorm_le_Infinitesimal: | |
| 516 | "\<lbrakk>e \<in> Infinitesimal; hnorm x \<le> e\<rbrakk> \<Longrightarrow> x \<in> Infinitesimal" | |
| 517 | by (auto simp add: Infinitesimal_def abs_less_iff) | |
| 518 | ||
| 519 | lemma hnorm_less_Infinitesimal: | |
| 520 | "\<lbrakk>e \<in> Infinitesimal; hnorm x < e\<rbrakk> \<Longrightarrow> x \<in> Infinitesimal" | |
| 521 | by (erule hnorm_le_Infinitesimal, erule order_less_imp_le) | |
| 522 | ||
| 523 | lemma hrabs_le_Infinitesimal: | |
| 524 | "[| e \<in> Infinitesimal; abs (x::hypreal) \<le> e |] ==> x \<in> Infinitesimal" | |
| 525 | by (erule hnorm_le_Infinitesimal, simp) | |
| 526 | ||
| 527 | lemma hrabs_less_Infinitesimal: | |
| 528 | "[| e \<in> Infinitesimal; abs (x::hypreal) < e |] ==> x \<in> Infinitesimal" | |
| 529 | by (erule hnorm_less_Infinitesimal, simp) | |
| 530 | ||
| 531 | lemma Infinitesimal_interval: | |
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 532 | "[| e \<in> Infinitesimal; e' \<in> Infinitesimal; e' < x ; x < e |] | 
| 27468 | 533 | ==> (x::hypreal) \<in> Infinitesimal" | 
| 534 | by (auto simp add: Infinitesimal_def abs_less_iff) | |
| 535 | ||
| 536 | lemma Infinitesimal_interval2: | |
| 537 | "[| e \<in> Infinitesimal; e' \<in> Infinitesimal; | |
| 538 | e' \<le> x ; x \<le> e |] ==> (x::hypreal) \<in> Infinitesimal" | |
| 539 | by (auto intro: Infinitesimal_interval simp add: order_le_less) | |
| 540 | ||
| 541 | ||
| 542 | lemma lemma_Infinitesimal_hyperpow: | |
| 543 | "[| (x::hypreal) \<in> Infinitesimal; 0 < N |] ==> abs (x pow N) \<le> abs x" | |
| 544 | apply (unfold Infinitesimal_def) | |
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 545 | apply (auto intro!: hyperpow_Suc_le_self2 | 
| 27468 | 546 | simp add: hyperpow_hrabs [symmetric] hypnat_gt_zero_iff2 abs_ge_zero) | 
| 547 | done | |
| 548 | ||
| 549 | lemma Infinitesimal_hyperpow: | |
| 550 | "[| (x::hypreal) \<in> Infinitesimal; 0 < N |] ==> x pow N \<in> Infinitesimal" | |
| 551 | apply (rule hrabs_le_Infinitesimal) | |
| 552 | apply (rule_tac [2] lemma_Infinitesimal_hyperpow, auto) | |
| 553 | done | |
| 554 | ||
| 555 | lemma hrealpow_hyperpow_Infinitesimal_iff: | |
| 556 | "(x ^ n \<in> Infinitesimal) = (x pow (hypnat_of_nat n) \<in> Infinitesimal)" | |
| 557 | by (simp only: hyperpow_hypnat_of_nat) | |
| 558 | ||
| 559 | lemma Infinitesimal_hrealpow: | |
| 560 | "[| (x::hypreal) \<in> Infinitesimal; 0 < n |] ==> x ^ n \<in> Infinitesimal" | |
| 561 | by (simp add: hrealpow_hyperpow_Infinitesimal_iff Infinitesimal_hyperpow) | |
| 562 | ||
| 563 | lemma not_Infinitesimal_mult: | |
| 564 | fixes x y :: "'a::real_normed_div_algebra star" | |
| 565 | shows "[| x \<notin> Infinitesimal; y \<notin> Infinitesimal|] ==> (x*y) \<notin>Infinitesimal" | |
| 566 | apply (unfold Infinitesimal_def, clarify, rename_tac r s) | |
| 567 | apply (simp only: linorder_not_less hnorm_mult) | |
| 568 | apply (drule_tac x = "r * s" in bspec) | |
| 569 | apply (fast intro: Reals_mult) | |
| 56544 | 570 | apply (simp) | 
| 27468 | 571 | apply (drule_tac c = s and d = "hnorm y" and a = r and b = "hnorm x" in mult_mono) | 
| 572 | apply (simp_all (no_asm_simp)) | |
| 573 | done | |
| 574 | ||
| 575 | lemma Infinitesimal_mult_disj: | |
| 576 | fixes x y :: "'a::real_normed_div_algebra star" | |
| 577 | shows "x*y \<in> Infinitesimal ==> x \<in> Infinitesimal | y \<in> Infinitesimal" | |
| 578 | apply (rule ccontr) | |
| 579 | apply (drule de_Morgan_disj [THEN iffD1]) | |
| 580 | apply (fast dest: not_Infinitesimal_mult) | |
| 581 | done | |
| 582 | ||
| 583 | lemma HFinite_Infinitesimal_not_zero: "x \<in> HFinite-Infinitesimal ==> x \<noteq> 0" | |
| 584 | by blast | |
| 585 | ||
| 586 | lemma HFinite_Infinitesimal_diff_mult: | |
| 587 | fixes x y :: "'a::real_normed_div_algebra star" | |
| 588 | shows "[| x \<in> HFinite - Infinitesimal; | |
| 589 | y \<in> HFinite - Infinitesimal | |
| 590 | |] ==> (x*y) \<in> HFinite - Infinitesimal" | |
| 591 | apply clarify | |
| 592 | apply (blast dest: HFinite_mult not_Infinitesimal_mult) | |
| 593 | done | |
| 594 | ||
| 595 | lemma Infinitesimal_subset_HFinite: | |
| 596 | "Infinitesimal \<subseteq> HFinite" | |
| 597 | apply (simp add: Infinitesimal_def HFinite_def, auto) | |
| 598 | apply (rule_tac x = 1 in bexI, auto) | |
| 599 | done | |
| 600 | ||
| 601 | lemma Infinitesimal_star_of_mult: | |
| 602 | fixes x :: "'a::real_normed_algebra star" | |
| 603 | shows "x \<in> Infinitesimal ==> x * star_of r \<in> Infinitesimal" | |
| 604 | by (erule HFinite_star_of [THEN [2] Infinitesimal_HFinite_mult]) | |
| 605 | ||
| 606 | lemma Infinitesimal_star_of_mult2: | |
| 607 | fixes x :: "'a::real_normed_algebra star" | |
| 608 | shows "x \<in> Infinitesimal ==> star_of r * x \<in> Infinitesimal" | |
| 609 | by (erule HFinite_star_of [THEN [2] Infinitesimal_HFinite_mult2]) | |
| 610 | ||
| 611 | ||
| 612 | subsection{*The Infinitely Close Relation*}
 | |
| 613 | ||
| 614 | lemma mem_infmal_iff: "(x \<in> Infinitesimal) = (x @= 0)" | |
| 615 | by (simp add: Infinitesimal_def approx_def) | |
| 616 | ||
| 617 | lemma approx_minus_iff: " (x @= y) = (x - y @= 0)" | |
| 618 | by (simp add: approx_def) | |
| 619 | ||
| 620 | lemma approx_minus_iff2: " (x @= y) = (-y + x @= 0)" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 621 | by (simp add: approx_def add.commute) | 
| 27468 | 622 | |
| 623 | lemma approx_refl [iff]: "x @= x" | |
| 624 | by (simp add: approx_def Infinitesimal_def) | |
| 625 | ||
| 626 | lemma hypreal_minus_distrib1: "-(y + -(x::'a::ab_group_add)) = x + -y" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 627 | by (simp add: add.commute) | 
| 27468 | 628 | |
| 629 | lemma approx_sym: "x @= y ==> y @= x" | |
| 630 | apply (simp add: approx_def) | |
| 631 | apply (drule Infinitesimal_minus_iff [THEN iffD2]) | |
| 632 | apply simp | |
| 633 | done | |
| 634 | ||
| 635 | lemma approx_trans: "[| x @= y; y @= z |] ==> x @= z" | |
| 636 | apply (simp add: approx_def) | |
| 637 | apply (drule (1) Infinitesimal_add) | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
51521diff
changeset | 638 | apply simp | 
| 27468 | 639 | done | 
| 640 | ||
| 641 | lemma approx_trans2: "[| r @= x; s @= x |] ==> r @= s" | |
| 642 | by (blast intro: approx_sym approx_trans) | |
| 643 | ||
| 644 | lemma approx_trans3: "[| x @= r; x @= s|] ==> r @= s" | |
| 645 | by (blast intro: approx_sym approx_trans) | |
| 646 | ||
| 45541 
934866fc776c
simplify implementation of approx_reorient_simproc
 huffman parents: 
45540diff
changeset | 647 | lemma approx_reorient: "(x @= y) = (y @= x)" | 
| 27468 | 648 | by (blast intro: approx_sym) | 
| 649 | ||
| 650 | (*reorientation simplification procedure: reorients (polymorphic) | |
| 651 | 0 = x, 1 = x, nnn = x provided x isn't 0, 1 or a numeral.*) | |
| 45541 
934866fc776c
simplify implementation of approx_reorient_simproc
 huffman parents: 
45540diff
changeset | 652 | simproc_setup approx_reorient_simproc | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 653 |   ("0 @= x" | "1 @= y" | "numeral w @= z" | "- 1 @= y" | "- numeral w @= r") =
 | 
| 45541 
934866fc776c
simplify implementation of approx_reorient_simproc
 huffman parents: 
45540diff
changeset | 654 | {*
 | 
| 
934866fc776c
simplify implementation of approx_reorient_simproc
 huffman parents: 
45540diff
changeset | 655 |   let val rule = @{thm approx_reorient} RS eq_reflection
 | 
| 59582 | 656 | fun proc phi ss ct = | 
| 657 | case Thm.term_of ct of | |
| 45541 
934866fc776c
simplify implementation of approx_reorient_simproc
 huffman parents: 
45540diff
changeset | 658 | _ $ t $ u => if can HOLogic.dest_number u then NONE | 
| 
934866fc776c
simplify implementation of approx_reorient_simproc
 huffman parents: 
45540diff
changeset | 659 | else if can HOLogic.dest_number t then SOME rule else NONE | 
| 
934866fc776c
simplify implementation of approx_reorient_simproc
 huffman parents: 
45540diff
changeset | 660 | | _ => NONE | 
| 
934866fc776c
simplify implementation of approx_reorient_simproc
 huffman parents: 
45540diff
changeset | 661 | in proc end | 
| 27468 | 662 | *} | 
| 663 | ||
| 664 | lemma Infinitesimal_approx_minus: "(x-y \<in> Infinitesimal) = (x @= y)" | |
| 665 | by (simp add: approx_minus_iff [symmetric] mem_infmal_iff) | |
| 666 | ||
| 667 | lemma approx_monad_iff: "(x @= y) = (monad(x)=monad(y))" | |
| 668 | apply (simp add: monad_def) | |
| 669 | apply (auto dest: approx_sym elim!: approx_trans equalityCE) | |
| 670 | done | |
| 671 | ||
| 672 | lemma Infinitesimal_approx: | |
| 673 | "[| x \<in> Infinitesimal; y \<in> Infinitesimal |] ==> x @= y" | |
| 674 | apply (simp add: mem_infmal_iff) | |
| 675 | apply (blast intro: approx_trans approx_sym) | |
| 676 | done | |
| 677 | ||
| 678 | lemma approx_add: "[| a @= b; c @= d |] ==> a+c @= b+d" | |
| 679 | proof (unfold approx_def) | |
| 680 | assume inf: "a - b \<in> Infinitesimal" "c - d \<in> Infinitesimal" | |
| 681 | have "a + c - (b + d) = (a - b) + (c - d)" by simp | |
| 682 | also have "... \<in> Infinitesimal" using inf by (rule Infinitesimal_add) | |
| 683 | finally show "a + c - (b + d) \<in> Infinitesimal" . | |
| 684 | qed | |
| 685 | ||
| 686 | lemma approx_minus: "a @= b ==> -a @= -b" | |
| 687 | apply (rule approx_minus_iff [THEN iffD2, THEN approx_sym]) | |
| 688 | apply (drule approx_minus_iff [THEN iffD1]) | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 689 | apply (simp add: add.commute) | 
| 27468 | 690 | done | 
| 691 | ||
| 692 | lemma approx_minus2: "-a @= -b ==> a @= b" | |
| 693 | by (auto dest: approx_minus) | |
| 694 | ||
| 695 | lemma approx_minus_cancel [simp]: "(-a @= -b) = (a @= b)" | |
| 696 | by (blast intro: approx_minus approx_minus2) | |
| 697 | ||
| 698 | lemma approx_add_minus: "[| a @= b; c @= d |] ==> a + -c @= b + -d" | |
| 699 | by (blast intro!: approx_add approx_minus) | |
| 700 | ||
| 701 | lemma approx_diff: "[| a @= b; c @= d |] ==> a - c @= b - d" | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
51521diff
changeset | 702 | using approx_add [of a b "- c" "- d"] by simp | 
| 27468 | 703 | |
| 704 | lemma approx_mult1: | |
| 705 | fixes a b c :: "'a::real_normed_algebra star" | |
| 706 | shows "[| a @= b; c: HFinite|] ==> a*c @= b*c" | |
| 707 | by (simp add: approx_def Infinitesimal_HFinite_mult | |
| 708 | left_diff_distrib [symmetric]) | |
| 709 | ||
| 710 | lemma approx_mult2: | |
| 711 | fixes a b c :: "'a::real_normed_algebra star" | |
| 712 | shows "[|a @= b; c: HFinite|] ==> c*a @= c*b" | |
| 713 | by (simp add: approx_def Infinitesimal_HFinite_mult2 | |
| 714 | right_diff_distrib [symmetric]) | |
| 715 | ||
| 716 | lemma approx_mult_subst: | |
| 717 | fixes u v x y :: "'a::real_normed_algebra star" | |
| 718 | shows "[|u @= v*x; x @= y; v \<in> HFinite|] ==> u @= v*y" | |
| 719 | by (blast intro: approx_mult2 approx_trans) | |
| 720 | ||
| 721 | lemma approx_mult_subst2: | |
| 722 | fixes u v x y :: "'a::real_normed_algebra star" | |
| 723 | shows "[| u @= x*v; x @= y; v \<in> HFinite |] ==> u @= y*v" | |
| 724 | by (blast intro: approx_mult1 approx_trans) | |
| 725 | ||
| 726 | lemma approx_mult_subst_star_of: | |
| 727 | fixes u x y :: "'a::real_normed_algebra star" | |
| 728 | shows "[| u @= x*star_of v; x @= y |] ==> u @= y*star_of v" | |
| 729 | by (auto intro: approx_mult_subst2) | |
| 730 | ||
| 731 | lemma approx_eq_imp: "a = b ==> a @= b" | |
| 732 | by (simp add: approx_def) | |
| 733 | ||
| 734 | lemma Infinitesimal_minus_approx: "x \<in> Infinitesimal ==> -x @= x" | |
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 735 | by (blast intro: Infinitesimal_minus_iff [THEN iffD2] | 
| 27468 | 736 | mem_infmal_iff [THEN iffD1] approx_trans2) | 
| 737 | ||
| 738 | lemma bex_Infinitesimal_iff: "(\<exists>y \<in> Infinitesimal. x - z = y) = (x @= z)" | |
| 739 | by (simp add: approx_def) | |
| 740 | ||
| 741 | lemma bex_Infinitesimal_iff2: "(\<exists>y \<in> Infinitesimal. x = z + y) = (x @= z)" | |
| 742 | by (force simp add: bex_Infinitesimal_iff [symmetric]) | |
| 743 | ||
| 744 | lemma Infinitesimal_add_approx: "[| y \<in> Infinitesimal; x + y = z |] ==> x @= z" | |
| 745 | apply (rule bex_Infinitesimal_iff [THEN iffD1]) | |
| 746 | apply (drule Infinitesimal_minus_iff [THEN iffD2]) | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 747 | apply (auto simp add: add.assoc [symmetric]) | 
| 27468 | 748 | done | 
| 749 | ||
| 750 | lemma Infinitesimal_add_approx_self: "y \<in> Infinitesimal ==> x @= x + y" | |
| 751 | apply (rule bex_Infinitesimal_iff [THEN iffD1]) | |
| 752 | apply (drule Infinitesimal_minus_iff [THEN iffD2]) | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 753 | apply (auto simp add: add.assoc [symmetric]) | 
| 27468 | 754 | done | 
| 755 | ||
| 756 | lemma Infinitesimal_add_approx_self2: "y \<in> Infinitesimal ==> x @= y + x" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 757 | by (auto dest: Infinitesimal_add_approx_self simp add: add.commute) | 
| 27468 | 758 | |
| 759 | lemma Infinitesimal_add_minus_approx_self: "y \<in> Infinitesimal ==> x @= x + -y" | |
| 760 | by (blast intro!: Infinitesimal_add_approx_self Infinitesimal_minus_iff [THEN iffD2]) | |
| 761 | ||
| 762 | lemma Infinitesimal_add_cancel: "[| y \<in> Infinitesimal; x+y @= z|] ==> x @= z" | |
| 763 | apply (drule_tac x = x in Infinitesimal_add_approx_self [THEN approx_sym]) | |
| 764 | apply (erule approx_trans3 [THEN approx_sym], assumption) | |
| 765 | done | |
| 766 | ||
| 767 | lemma Infinitesimal_add_right_cancel: | |
| 768 | "[| y \<in> Infinitesimal; x @= z + y|] ==> x @= z" | |
| 769 | apply (drule_tac x = z in Infinitesimal_add_approx_self2 [THEN approx_sym]) | |
| 770 | apply (erule approx_trans3 [THEN approx_sym]) | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 771 | apply (simp add: add.commute) | 
| 27468 | 772 | apply (erule approx_sym) | 
| 773 | done | |
| 774 | ||
| 775 | lemma approx_add_left_cancel: "d + b @= d + c ==> b @= c" | |
| 776 | apply (drule approx_minus_iff [THEN iffD1]) | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 777 | apply (simp add: approx_minus_iff [symmetric] ac_simps) | 
| 27468 | 778 | done | 
| 779 | ||
| 780 | lemma approx_add_right_cancel: "b + d @= c + d ==> b @= c" | |
| 781 | apply (rule approx_add_left_cancel) | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 782 | apply (simp add: add.commute) | 
| 27468 | 783 | done | 
| 784 | ||
| 785 | lemma approx_add_mono1: "b @= c ==> d + b @= d + c" | |
| 786 | apply (rule approx_minus_iff [THEN iffD2]) | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 787 | apply (simp add: approx_minus_iff [symmetric] ac_simps) | 
| 27468 | 788 | done | 
| 789 | ||
| 790 | lemma approx_add_mono2: "b @= c ==> b + a @= c + a" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 791 | by (simp add: add.commute approx_add_mono1) | 
| 27468 | 792 | |
| 793 | lemma approx_add_left_iff [simp]: "(a + b @= a + c) = (b @= c)" | |
| 794 | by (fast elim: approx_add_left_cancel approx_add_mono1) | |
| 795 | ||
| 796 | lemma approx_add_right_iff [simp]: "(b + a @= c + a) = (b @= c)" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 797 | by (simp add: add.commute) | 
| 27468 | 798 | |
| 799 | lemma approx_HFinite: "[| x \<in> HFinite; x @= y |] ==> y \<in> HFinite" | |
| 800 | apply (drule bex_Infinitesimal_iff2 [THEN iffD2], safe) | |
| 801 | apply (drule Infinitesimal_subset_HFinite [THEN subsetD, THEN HFinite_minus_iff [THEN iffD2]]) | |
| 802 | apply (drule HFinite_add) | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 803 | apply (auto simp add: add.assoc) | 
| 27468 | 804 | done | 
| 805 | ||
| 806 | lemma approx_star_of_HFinite: "x @= star_of D ==> x \<in> HFinite" | |
| 807 | by (rule approx_sym [THEN [2] approx_HFinite], auto) | |
| 808 | ||
| 809 | lemma approx_mult_HFinite: | |
| 810 | fixes a b c d :: "'a::real_normed_algebra star" | |
| 811 | shows "[|a @= b; c @= d; b: HFinite; d: HFinite|] ==> a*c @= b*d" | |
| 812 | apply (rule approx_trans) | |
| 813 | apply (rule_tac [2] approx_mult2) | |
| 814 | apply (rule approx_mult1) | |
| 815 | prefer 2 apply (blast intro: approx_HFinite approx_sym, auto) | |
| 816 | done | |
| 817 | ||
| 818 | lemma scaleHR_left_diff_distrib: | |
| 819 | "\<And>a b x. scaleHR (a - b) x = scaleHR a x - scaleHR b x" | |
| 820 | by transfer (rule scaleR_left_diff_distrib) | |
| 821 | ||
| 822 | lemma approx_scaleR1: | |
| 823 | "[| a @= star_of b; c: HFinite|] ==> scaleHR a c @= b *\<^sub>R c" | |
| 824 | apply (unfold approx_def) | |
| 825 | apply (drule (1) Infinitesimal_HFinite_scaleHR) | |
| 826 | apply (simp only: scaleHR_left_diff_distrib) | |
| 827 | apply (simp add: scaleHR_def star_scaleR_def [symmetric]) | |
| 828 | done | |
| 829 | ||
| 830 | lemma approx_scaleR2: | |
| 831 | "a @= b ==> c *\<^sub>R a @= c *\<^sub>R b" | |
| 832 | by (simp add: approx_def Infinitesimal_scaleR2 | |
| 833 | scaleR_right_diff_distrib [symmetric]) | |
| 834 | ||
| 835 | lemma approx_scaleR_HFinite: | |
| 836 | "[|a @= star_of b; c @= d; d: HFinite|] ==> scaleHR a c @= b *\<^sub>R d" | |
| 837 | apply (rule approx_trans) | |
| 838 | apply (rule_tac [2] approx_scaleR2) | |
| 839 | apply (rule approx_scaleR1) | |
| 840 | prefer 2 apply (blast intro: approx_HFinite approx_sym, auto) | |
| 841 | done | |
| 842 | ||
| 843 | lemma approx_mult_star_of: | |
| 844 | fixes a c :: "'a::real_normed_algebra star" | |
| 845 | shows "[|a @= star_of b; c @= star_of d |] | |
| 846 | ==> a*c @= star_of b*star_of d" | |
| 847 | by (blast intro!: approx_mult_HFinite approx_star_of_HFinite HFinite_star_of) | |
| 848 | ||
| 849 | lemma approx_SReal_mult_cancel_zero: | |
| 61070 | 850 | "[| (a::hypreal) \<in> \<real>; a \<noteq> 0; a*x @= 0 |] ==> x @= 0" | 
| 27468 | 851 | apply (drule Reals_inverse [THEN SReal_subset_HFinite [THEN subsetD]]) | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 852 | apply (auto dest: approx_mult2 simp add: mult.assoc [symmetric]) | 
| 27468 | 853 | done | 
| 854 | ||
| 61070 | 855 | lemma approx_mult_SReal1: "[| (a::hypreal) \<in> \<real>; x @= 0 |] ==> x*a @= 0" | 
| 27468 | 856 | by (auto dest: SReal_subset_HFinite [THEN subsetD] approx_mult1) | 
| 857 | ||
| 61070 | 858 | lemma approx_mult_SReal2: "[| (a::hypreal) \<in> \<real>; x @= 0 |] ==> a*x @= 0" | 
| 27468 | 859 | by (auto dest: SReal_subset_HFinite [THEN subsetD] approx_mult2) | 
| 860 | ||
| 861 | lemma approx_mult_SReal_zero_cancel_iff [simp]: | |
| 61070 | 862 | "[|(a::hypreal) \<in> \<real>; a \<noteq> 0 |] ==> (a*x @= 0) = (x @= 0)" | 
| 27468 | 863 | by (blast intro: approx_SReal_mult_cancel_zero approx_mult_SReal2) | 
| 864 | ||
| 865 | lemma approx_SReal_mult_cancel: | |
| 61070 | 866 | "[| (a::hypreal) \<in> \<real>; a \<noteq> 0; a* w @= a*z |] ==> w @= z" | 
| 27468 | 867 | apply (drule Reals_inverse [THEN SReal_subset_HFinite [THEN subsetD]]) | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 868 | apply (auto dest: approx_mult2 simp add: mult.assoc [symmetric]) | 
| 27468 | 869 | done | 
| 870 | ||
| 871 | lemma approx_SReal_mult_cancel_iff1 [simp]: | |
| 61070 | 872 | "[| (a::hypreal) \<in> \<real>; a \<noteq> 0|] ==> (a* w @= a*z) = (w @= z)" | 
| 27468 | 873 | by (auto intro!: approx_mult2 SReal_subset_HFinite [THEN subsetD] | 
| 874 | intro: approx_SReal_mult_cancel) | |
| 875 | ||
| 876 | lemma approx_le_bound: "[| (z::hypreal) \<le> f; f @= g; g \<le> z |] ==> f @= z" | |
| 877 | apply (simp add: bex_Infinitesimal_iff2 [symmetric], auto) | |
| 878 | apply (rule_tac x = "g+y-z" in bexI) | |
| 879 | apply (simp (no_asm)) | |
| 880 | apply (rule Infinitesimal_interval2) | |
| 881 | apply (rule_tac [2] Infinitesimal_zero, auto) | |
| 882 | done | |
| 883 | ||
| 884 | lemma approx_hnorm: | |
| 885 | fixes x y :: "'a::real_normed_vector star" | |
| 886 | shows "x \<approx> y \<Longrightarrow> hnorm x \<approx> hnorm y" | |
| 887 | proof (unfold approx_def) | |
| 888 | assume "x - y \<in> Infinitesimal" | |
| 889 | hence 1: "hnorm (x - y) \<in> Infinitesimal" | |
| 890 | by (simp only: Infinitesimal_hnorm_iff) | |
| 891 | moreover have 2: "(0::real star) \<in> Infinitesimal" | |
| 892 | by (rule Infinitesimal_zero) | |
| 893 | moreover have 3: "0 \<le> \<bar>hnorm x - hnorm y\<bar>" | |
| 894 | by (rule abs_ge_zero) | |
| 895 | moreover have 4: "\<bar>hnorm x - hnorm y\<bar> \<le> hnorm (x - y)" | |
| 896 | by (rule hnorm_triangle_ineq3) | |
| 897 | ultimately have "\<bar>hnorm x - hnorm y\<bar> \<in> Infinitesimal" | |
| 898 | by (rule Infinitesimal_interval2) | |
| 899 | thus "hnorm x - hnorm y \<in> Infinitesimal" | |
| 900 | by (simp only: Infinitesimal_hrabs_iff) | |
| 901 | qed | |
| 902 | ||
| 903 | ||
| 904 | subsection{* Zero is the Only Infinitesimal that is also a Real*}
 | |
| 905 | ||
| 906 | lemma Infinitesimal_less_SReal: | |
| 61070 | 907 | "[| (x::hypreal) \<in> \<real>; y \<in> Infinitesimal; 0 < x |] ==> y < x" | 
| 27468 | 908 | apply (simp add: Infinitesimal_def) | 
| 909 | apply (rule abs_ge_self [THEN order_le_less_trans], auto) | |
| 910 | done | |
| 911 | ||
| 912 | lemma Infinitesimal_less_SReal2: | |
| 913 | "(y::hypreal) \<in> Infinitesimal ==> \<forall>r \<in> Reals. 0 < r --> y < r" | |
| 914 | by (blast intro: Infinitesimal_less_SReal) | |
| 915 | ||
| 916 | lemma SReal_not_Infinitesimal: | |
| 61070 | 917 | "[| 0 < y; (y::hypreal) \<in> \<real>|] ==> y \<notin> Infinitesimal" | 
| 27468 | 918 | apply (simp add: Infinitesimal_def) | 
| 919 | apply (auto simp add: abs_if) | |
| 920 | done | |
| 921 | ||
| 922 | lemma SReal_minus_not_Infinitesimal: | |
| 61070 | 923 | "[| y < 0; (y::hypreal) \<in> \<real> |] ==> y \<notin> Infinitesimal" | 
| 27468 | 924 | apply (subst Infinitesimal_minus_iff [symmetric]) | 
| 925 | apply (rule SReal_not_Infinitesimal, auto) | |
| 926 | done | |
| 927 | ||
| 61070 | 928 | lemma SReal_Int_Infinitesimal_zero: "\<real> Int Infinitesimal = {0::hypreal}"
 | 
| 27468 | 929 | apply auto | 
| 930 | apply (cut_tac x = x and y = 0 in linorder_less_linear) | |
| 931 | apply (blast dest: SReal_not_Infinitesimal SReal_minus_not_Infinitesimal) | |
| 932 | done | |
| 933 | ||
| 934 | lemma SReal_Infinitesimal_zero: | |
| 61070 | 935 | "[| (x::hypreal) \<in> \<real>; x \<in> Infinitesimal|] ==> x = 0" | 
| 27468 | 936 | by (cut_tac SReal_Int_Infinitesimal_zero, blast) | 
| 937 | ||
| 938 | lemma SReal_HFinite_diff_Infinitesimal: | |
| 61070 | 939 | "[| (x::hypreal) \<in> \<real>; x \<noteq> 0 |] ==> x \<in> HFinite - Infinitesimal" | 
| 27468 | 940 | by (auto dest: SReal_Infinitesimal_zero SReal_subset_HFinite [THEN subsetD]) | 
| 941 | ||
| 942 | lemma hypreal_of_real_HFinite_diff_Infinitesimal: | |
| 943 | "hypreal_of_real x \<noteq> 0 ==> hypreal_of_real x \<in> HFinite - Infinitesimal" | |
| 944 | by (rule SReal_HFinite_diff_Infinitesimal, auto) | |
| 945 | ||
| 946 | lemma star_of_Infinitesimal_iff_0 [iff]: | |
| 947 | "(star_of x \<in> Infinitesimal) = (x = 0)" | |
| 948 | apply (auto simp add: Infinitesimal_def) | |
| 949 | apply (drule_tac x="hnorm (star_of x)" in bspec) | |
| 950 | apply (simp add: SReal_def) | |
| 951 | apply (rule_tac x="norm x" in exI, simp) | |
| 952 | apply simp | |
| 953 | done | |
| 954 | ||
| 955 | lemma star_of_HFinite_diff_Infinitesimal: | |
| 956 | "x \<noteq> 0 ==> star_of x \<in> HFinite - Infinitesimal" | |
| 957 | by simp | |
| 958 | ||
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 959 | lemma numeral_not_Infinitesimal [simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 960 | "numeral w \<noteq> (0::hypreal) ==> (numeral w :: hypreal) \<notin> Infinitesimal" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 961 | by (fast dest: Reals_numeral [THEN SReal_Infinitesimal_zero]) | 
| 27468 | 962 | |
| 963 | (*again: 1 is a special case, but not 0 this time*) | |
| 964 | lemma one_not_Infinitesimal [simp]: | |
| 965 |   "(1::'a::{real_normed_vector,zero_neq_one} star) \<notin> Infinitesimal"
 | |
| 966 | apply (simp only: star_one_def star_of_Infinitesimal_iff_0) | |
| 967 | apply simp | |
| 968 | done | |
| 969 | ||
| 970 | lemma approx_SReal_not_zero: | |
| 61070 | 971 | "[| (y::hypreal) \<in> \<real>; x @= y; y\<noteq> 0 |] ==> x \<noteq> 0" | 
| 27468 | 972 | apply (cut_tac x = 0 and y = y in linorder_less_linear, simp) | 
| 973 | apply (blast dest: approx_sym [THEN mem_infmal_iff [THEN iffD2]] SReal_not_Infinitesimal SReal_minus_not_Infinitesimal) | |
| 974 | done | |
| 975 | ||
| 976 | lemma HFinite_diff_Infinitesimal_approx: | |
| 977 | "[| x @= y; y \<in> HFinite - Infinitesimal |] | |
| 978 | ==> x \<in> HFinite - Infinitesimal" | |
| 979 | apply (auto intro: approx_sym [THEN [2] approx_HFinite] | |
| 980 | simp add: mem_infmal_iff) | |
| 981 | apply (drule approx_trans3, assumption) | |
| 982 | apply (blast dest: approx_sym) | |
| 983 | done | |
| 984 | ||
| 985 | (*The premise y\<noteq>0 is essential; otherwise x/y =0 and we lose the | |
| 986 | HFinite premise.*) | |
| 987 | lemma Infinitesimal_ratio: | |
| 988 |   fixes x y :: "'a::{real_normed_div_algebra,field} star"
 | |
| 989 | shows "[| y \<noteq> 0; y \<in> Infinitesimal; x/y \<in> HFinite |] | |
| 990 | ==> x \<in> Infinitesimal" | |
| 991 | apply (drule Infinitesimal_HFinite_mult2, assumption) | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 992 | apply (simp add: divide_inverse mult.assoc) | 
| 27468 | 993 | done | 
| 994 | ||
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 995 | lemma Infinitesimal_SReal_divide: | 
| 61070 | 996 | "[| (x::hypreal) \<in> Infinitesimal; y \<in> \<real> |] ==> x/y \<in> Infinitesimal" | 
| 27468 | 997 | apply (simp add: divide_inverse) | 
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 998 | apply (auto intro!: Infinitesimal_HFinite_mult | 
| 27468 | 999 | dest!: Reals_inverse [THEN SReal_subset_HFinite [THEN subsetD]]) | 
| 1000 | done | |
| 1001 | ||
| 1002 | (*------------------------------------------------------------------ | |
| 1003 | Standard Part Theorem: Every finite x: R* is infinitely | |
| 1004 | close to a unique real number (i.e a member of Reals) | |
| 1005 | ------------------------------------------------------------------*) | |
| 1006 | ||
| 1007 | subsection{* Uniqueness: Two Infinitely Close Reals are Equal*}
 | |
| 1008 | ||
| 1009 | lemma star_of_approx_iff [simp]: "(star_of x @= star_of y) = (x = y)" | |
| 1010 | apply safe | |
| 1011 | apply (simp add: approx_def) | |
| 1012 | apply (simp only: star_of_diff [symmetric]) | |
| 1013 | apply (simp only: star_of_Infinitesimal_iff_0) | |
| 1014 | apply simp | |
| 1015 | done | |
| 1016 | ||
| 1017 | lemma SReal_approx_iff: | |
| 61070 | 1018 | "[|(x::hypreal) \<in> \<real>; y \<in> \<real>|] ==> (x @= y) = (x = y)" | 
| 27468 | 1019 | apply auto | 
| 1020 | apply (simp add: approx_def) | |
| 1021 | apply (drule (1) Reals_diff) | |
| 1022 | apply (drule (1) SReal_Infinitesimal_zero) | |
| 1023 | apply simp | |
| 1024 | done | |
| 1025 | ||
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 1026 | lemma numeral_approx_iff [simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 1027 |      "(numeral v @= (numeral w :: 'a::{numeral,real_normed_vector} star)) =
 | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 1028 | (numeral v = (numeral w :: 'a))" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 1029 | apply (unfold star_numeral_def) | 
| 27468 | 1030 | apply (rule star_of_approx_iff) | 
| 1031 | done | |
| 1032 | ||
| 1033 | (*And also for 0 @= #nn and 1 @= #nn, #nn @= 0 and #nn @= 1.*) | |
| 1034 | lemma [simp]: | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 1035 |   "(numeral w @= (0::'a::{numeral,real_normed_vector} star)) =
 | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 1036 | (numeral w = (0::'a))" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 1037 |   "((0::'a::{numeral,real_normed_vector} star) @= numeral w) =
 | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 1038 | (numeral w = (0::'a))" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 1039 |   "(numeral w @= (1::'b::{numeral,one,real_normed_vector} star)) =
 | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 1040 | (numeral w = (1::'b))" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 1041 |   "((1::'b::{numeral,one,real_normed_vector} star) @= numeral w) =
 | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 1042 | (numeral w = (1::'b))" | 
| 27468 | 1043 |   "~ (0 @= (1::'c::{zero_neq_one,real_normed_vector} star))"
 | 
| 1044 |   "~ (1 @= (0::'c::{zero_neq_one,real_normed_vector} star))"
 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 1045 | apply (unfold star_numeral_def star_zero_def star_one_def) | 
| 27468 | 1046 | apply (unfold star_of_approx_iff) | 
| 1047 | by (auto intro: sym) | |
| 1048 | ||
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 1049 | lemma star_of_approx_numeral_iff [simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 1050 | "(star_of k @= numeral w) = (k = numeral w)" | 
| 27468 | 1051 | by (subst star_of_approx_iff [symmetric], auto) | 
| 1052 | ||
| 1053 | lemma star_of_approx_zero_iff [simp]: "(star_of k @= 0) = (k = 0)" | |
| 1054 | by (simp_all add: star_of_approx_iff [symmetric]) | |
| 1055 | ||
| 1056 | lemma star_of_approx_one_iff [simp]: "(star_of k @= 1) = (k = 1)" | |
| 1057 | by (simp_all add: star_of_approx_iff [symmetric]) | |
| 1058 | ||
| 1059 | lemma approx_unique_real: | |
| 61070 | 1060 | "[| (r::hypreal) \<in> \<real>; s \<in> \<real>; r @= x; s @= x|] ==> r = s" | 
| 27468 | 1061 | by (blast intro: SReal_approx_iff [THEN iffD1] approx_trans2) | 
| 1062 | ||
| 1063 | ||
| 1064 | subsection{* Existence of Unique Real Infinitely Close*}
 | |
| 1065 | ||
| 1066 | subsubsection{*Lifting of the Ub and Lub Properties*}
 | |
| 1067 | ||
| 1068 | lemma hypreal_of_real_isUb_iff: | |
| 61070 | 1069 | "(isUb \<real> (hypreal_of_real ` Q) (hypreal_of_real Y)) = | 
| 27468 | 1070 | (isUb (UNIV :: real set) Q Y)" | 
| 1071 | by (simp add: isUb_def setle_def) | |
| 1072 | ||
| 1073 | lemma hypreal_of_real_isLub1: | |
| 61070 | 1074 | "isLub \<real> (hypreal_of_real ` Q) (hypreal_of_real Y) | 
| 27468 | 1075 | ==> isLub (UNIV :: real set) Q Y" | 
| 1076 | apply (simp add: isLub_def leastP_def) | |
| 1077 | apply (auto intro: hypreal_of_real_isUb_iff [THEN iffD2] | |
| 1078 | simp add: hypreal_of_real_isUb_iff setge_def) | |
| 1079 | done | |
| 1080 | ||
| 1081 | lemma hypreal_of_real_isLub2: | |
| 1082 | "isLub (UNIV :: real set) Q Y | |
| 61070 | 1083 | ==> isLub \<real> (hypreal_of_real ` Q) (hypreal_of_real Y)" | 
| 56225 | 1084 | apply (auto simp add: isLub_def leastP_def hypreal_of_real_isUb_iff setge_def) | 
| 1085 | by (metis SReal_iff hypreal_of_real_isUb_iff isUbD2a star_of_le) | |
| 27468 | 1086 | |
| 1087 | lemma hypreal_of_real_isLub_iff: | |
| 61070 | 1088 | "(isLub \<real> (hypreal_of_real ` Q) (hypreal_of_real Y)) = | 
| 27468 | 1089 | (isLub (UNIV :: real set) Q Y)" | 
| 1090 | by (blast intro: hypreal_of_real_isLub1 hypreal_of_real_isLub2) | |
| 1091 | ||
| 1092 | lemma lemma_isUb_hypreal_of_real: | |
| 61070 | 1093 | "isUb \<real> P Y ==> \<exists>Yo. isUb \<real> P (hypreal_of_real Yo)" | 
| 27468 | 1094 | by (auto simp add: SReal_iff isUb_def) | 
| 1095 | ||
| 1096 | lemma lemma_isLub_hypreal_of_real: | |
| 61070 | 1097 | "isLub \<real> P Y ==> \<exists>Yo. isLub \<real> P (hypreal_of_real Yo)" | 
| 27468 | 1098 | by (auto simp add: isLub_def leastP_def isUb_def SReal_iff) | 
| 1099 | ||
| 1100 | lemma lemma_isLub_hypreal_of_real2: | |
| 61070 | 1101 | "\<exists>Yo. isLub \<real> P (hypreal_of_real Yo) ==> \<exists>Y. isLub \<real> P Y" | 
| 27468 | 1102 | by (auto simp add: isLub_def leastP_def isUb_def) | 
| 1103 | ||
| 1104 | lemma SReal_complete: | |
| 61070 | 1105 | "[| P \<subseteq> \<real>; \<exists>x. x \<in> P; \<exists>Y. isUb \<real> P Y |] | 
| 1106 | ==> \<exists>t::hypreal. isLub \<real> P t" | |
| 27468 | 1107 | apply (frule SReal_hypreal_of_real_image) | 
| 1108 | apply (auto, drule lemma_isUb_hypreal_of_real) | |
| 1109 | apply (auto intro!: reals_complete lemma_isLub_hypreal_of_real2 | |
| 1110 | simp add: hypreal_of_real_isLub_iff hypreal_of_real_isUb_iff) | |
| 1111 | done | |
| 1112 | ||
| 1113 | (* lemma about lubs *) | |
| 1114 | ||
| 1115 | lemma lemma_st_part_ub: | |
| 61070 | 1116 |      "(x::hypreal) \<in> HFinite ==> \<exists>u. isUb \<real> {s. s \<in> \<real> & s < x} u"
 | 
| 27468 | 1117 | apply (drule HFiniteD, safe) | 
| 1118 | apply (rule exI, rule isUbI) | |
| 1119 | apply (auto intro: setleI isUbI simp add: abs_less_iff) | |
| 1120 | done | |
| 1121 | ||
| 1122 | lemma lemma_st_part_nonempty: | |
| 61070 | 1123 |   "(x::hypreal) \<in> HFinite ==> \<exists>y. y \<in> {s. s \<in> \<real> & s < x}"
 | 
| 27468 | 1124 | apply (drule HFiniteD, safe) | 
| 1125 | apply (drule Reals_minus) | |
| 1126 | apply (rule_tac x = "-t" in exI) | |
| 1127 | apply (auto simp add: abs_less_iff) | |
| 1128 | done | |
| 1129 | ||
| 1130 | lemma lemma_st_part_lub: | |
| 61070 | 1131 |      "(x::hypreal) \<in> HFinite ==> \<exists>t. isLub \<real> {s. s \<in> \<real> & s < x} t"
 | 
| 56225 | 1132 | by (blast intro!: SReal_complete lemma_st_part_ub lemma_st_part_nonempty Collect_restrict) | 
| 27468 | 1133 | |
| 1134 | lemma lemma_st_part_le1: | |
| 61070 | 1135 |      "[| (x::hypreal) \<in> HFinite;  isLub \<real> {s. s \<in> \<real> & s < x} t;
 | 
| 1136 | r \<in> \<real>; 0 < r |] ==> x \<le> t + r" | |
| 27468 | 1137 | apply (frule isLubD1a) | 
| 1138 | apply (rule ccontr, drule linorder_not_le [THEN iffD2]) | |
| 1139 | apply (drule (1) Reals_add) | |
| 1140 | apply (drule_tac y = "r + t" in isLubD1 [THEN setleD], auto) | |
| 1141 | done | |
| 1142 | ||
| 1143 | lemma hypreal_setle_less_trans: | |
| 1144 | "[| S *<= (x::hypreal); x < y |] ==> S *<= y" | |
| 1145 | apply (simp add: setle_def) | |
| 1146 | apply (auto dest!: bspec order_le_less_trans intro: order_less_imp_le) | |
| 1147 | done | |
| 1148 | ||
| 1149 | lemma hypreal_gt_isUb: | |
| 1150 | "[| isUb R S (x::hypreal); x < y; y \<in> R |] ==> isUb R S y" | |
| 1151 | apply (simp add: isUb_def) | |
| 1152 | apply (blast intro: hypreal_setle_less_trans) | |
| 1153 | done | |
| 1154 | ||
| 1155 | lemma lemma_st_part_gt_ub: | |
| 61070 | 1156 | "[| (x::hypreal) \<in> HFinite; x < y; y \<in> \<real> |] | 
| 1157 |       ==> isUb \<real> {s. s \<in> \<real> & s < x} y"
 | |
| 27468 | 1158 | by (auto dest: order_less_trans intro: order_less_imp_le intro!: isUbI setleI) | 
| 1159 | ||
| 1160 | lemma lemma_minus_le_zero: "t \<le> t + -r ==> r \<le> (0::hypreal)" | |
| 1161 | apply (drule_tac c = "-t" in add_left_mono) | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 1162 | apply (auto simp add: add.assoc [symmetric]) | 
| 27468 | 1163 | done | 
| 1164 | ||
| 1165 | lemma lemma_st_part_le2: | |
| 1166 | "[| (x::hypreal) \<in> HFinite; | |
| 61070 | 1167 |          isLub \<real> {s. s \<in> \<real> & s < x} t;
 | 
| 1168 | r \<in> \<real>; 0 < r |] | |
| 27468 | 1169 | ==> t + -r \<le> x" | 
| 1170 | apply (frule isLubD1a) | |
| 1171 | apply (rule ccontr, drule linorder_not_le [THEN iffD1]) | |
| 1172 | apply (drule Reals_minus, drule_tac a = t in Reals_add, assumption) | |
| 1173 | apply (drule lemma_st_part_gt_ub, assumption+) | |
| 1174 | apply (drule isLub_le_isUb, assumption) | |
| 1175 | apply (drule lemma_minus_le_zero) | |
| 1176 | apply (auto dest: order_less_le_trans) | |
| 1177 | done | |
| 1178 | ||
| 1179 | lemma lemma_st_part1a: | |
| 1180 | "[| (x::hypreal) \<in> HFinite; | |
| 61070 | 1181 |          isLub \<real> {s. s \<in> \<real> & s < x} t;
 | 
| 1182 | r \<in> \<real>; 0 < r |] | |
| 27468 | 1183 | ==> x + -t \<le> r" | 
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1184 | apply (subgoal_tac "x \<le> t+r") | 
| 27468 | 1185 | apply (auto intro: lemma_st_part_le1) | 
| 1186 | done | |
| 1187 | ||
| 1188 | lemma lemma_st_part2a: | |
| 1189 | "[| (x::hypreal) \<in> HFinite; | |
| 61070 | 1190 |          isLub \<real> {s. s \<in> \<real> & s < x} t;
 | 
| 1191 | r \<in> \<real>; 0 < r |] | |
| 27468 | 1192 | ==> -(x + -t) \<le> r" | 
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1193 | apply (subgoal_tac "(t + -r \<le> x)") | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
51521diff
changeset | 1194 | apply simp | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
51521diff
changeset | 1195 | apply (rule lemma_st_part_le2) | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
51521diff
changeset | 1196 | apply auto | 
| 27468 | 1197 | done | 
| 1198 | ||
| 1199 | lemma lemma_SReal_ub: | |
| 61070 | 1200 |      "(x::hypreal) \<in> \<real> ==> isUb \<real> {s. s \<in> \<real> & s < x} x"
 | 
| 27468 | 1201 | by (auto intro: isUbI setleI order_less_imp_le) | 
| 1202 | ||
| 1203 | lemma lemma_SReal_lub: | |
| 61070 | 1204 |      "(x::hypreal) \<in> \<real> ==> isLub \<real> {s. s \<in> \<real> & s < x} x"
 | 
| 27468 | 1205 | apply (auto intro!: isLubI2 lemma_SReal_ub setgeI) | 
| 1206 | apply (frule isUbD2a) | |
| 1207 | apply (rule_tac x = x and y = y in linorder_cases) | |
| 1208 | apply (auto intro!: order_less_imp_le) | |
| 1209 | apply (drule SReal_dense, assumption, assumption, safe) | |
| 1210 | apply (drule_tac y = r in isUbD) | |
| 1211 | apply (auto dest: order_less_le_trans) | |
| 1212 | done | |
| 1213 | ||
| 1214 | lemma lemma_st_part_not_eq1: | |
| 1215 | "[| (x::hypreal) \<in> HFinite; | |
| 61070 | 1216 |          isLub \<real> {s. s \<in> \<real> & s < x} t;
 | 
| 1217 | r \<in> \<real>; 0 < r |] | |
| 27468 | 1218 | ==> x + -t \<noteq> r" | 
| 1219 | apply auto | |
| 1220 | apply (frule isLubD1a [THEN Reals_minus]) | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
51521diff
changeset | 1221 | using Reals_add_cancel [of x "- t"] apply simp | 
| 27468 | 1222 | apply (drule_tac x = x in lemma_SReal_lub) | 
| 56225 | 1223 | apply (drule isLub_unique, assumption, auto) | 
| 27468 | 1224 | done | 
| 1225 | ||
| 1226 | lemma lemma_st_part_not_eq2: | |
| 1227 | "[| (x::hypreal) \<in> HFinite; | |
| 61070 | 1228 |          isLub \<real> {s. s \<in> \<real> & s < x} t;
 | 
| 1229 | r \<in> \<real>; 0 < r |] | |
| 27468 | 1230 | ==> -(x + -t) \<noteq> r" | 
| 1231 | apply (auto) | |
| 1232 | apply (frule isLubD1a) | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
51521diff
changeset | 1233 | using Reals_add_cancel [of "- x" t] apply simp | 
| 27468 | 1234 | apply (drule_tac x = x in lemma_SReal_lub) | 
| 56225 | 1235 | apply (drule isLub_unique, assumption, auto) | 
| 27468 | 1236 | done | 
| 1237 | ||
| 1238 | lemma lemma_st_part_major: | |
| 1239 | "[| (x::hypreal) \<in> HFinite; | |
| 61070 | 1240 |          isLub \<real> {s. s \<in> \<real> & s < x} t;
 | 
| 1241 | r \<in> \<real>; 0 < r |] | |
| 27468 | 1242 | ==> abs (x - t) < r" | 
| 1243 | apply (frule lemma_st_part1a) | |
| 1244 | apply (frule_tac [4] lemma_st_part2a, auto) | |
| 1245 | apply (drule order_le_imp_less_or_eq)+ | |
| 1246 | apply (auto dest: lemma_st_part_not_eq1 lemma_st_part_not_eq2 simp add: abs_less_iff) | |
| 1247 | done | |
| 1248 | ||
| 1249 | lemma lemma_st_part_major2: | |
| 61070 | 1250 |      "[| (x::hypreal) \<in> HFinite; isLub \<real> {s. s \<in> \<real> & s < x} t |]
 | 
| 27468 | 1251 | ==> \<forall>r \<in> Reals. 0 < r --> abs (x - t) < r" | 
| 1252 | by (blast dest!: lemma_st_part_major) | |
| 1253 | ||
| 1254 | ||
| 1255 | text{*Existence of real and Standard Part Theorem*}
 | |
| 1256 | lemma lemma_st_part_Ex: | |
| 1257 | "(x::hypreal) \<in> HFinite | |
| 1258 | ==> \<exists>t \<in> Reals. \<forall>r \<in> Reals. 0 < r --> abs (x - t) < r" | |
| 1259 | apply (frule lemma_st_part_lub, safe) | |
| 1260 | apply (frule isLubD1a) | |
| 1261 | apply (blast dest: lemma_st_part_major2) | |
| 1262 | done | |
| 1263 | ||
| 1264 | lemma st_part_Ex: | |
| 1265 | "(x::hypreal) \<in> HFinite ==> \<exists>t \<in> Reals. x @= t" | |
| 1266 | apply (simp add: approx_def Infinitesimal_def) | |
| 1267 | apply (drule lemma_st_part_Ex, auto) | |
| 1268 | done | |
| 1269 | ||
| 1270 | text{*There is a unique real infinitely close*}
 | |
| 61070 | 1271 | lemma st_part_Ex1: "x \<in> HFinite ==> EX! t::hypreal. t \<in> \<real> & x @= t" | 
| 27468 | 1272 | apply (drule st_part_Ex, safe) | 
| 1273 | apply (drule_tac [2] approx_sym, drule_tac [2] approx_sym, drule_tac [2] approx_sym) | |
| 1274 | apply (auto intro!: approx_unique_real) | |
| 1275 | done | |
| 1276 | ||
| 1277 | subsection{* Finite, Infinite and Infinitesimal*}
 | |
| 1278 | ||
| 1279 | lemma HFinite_Int_HInfinite_empty [simp]: "HFinite Int HInfinite = {}"
 | |
| 1280 | apply (simp add: HFinite_def HInfinite_def) | |
| 1281 | apply (auto dest: order_less_trans) | |
| 1282 | done | |
| 1283 | ||
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1284 | lemma HFinite_not_HInfinite: | 
| 27468 | 1285 | assumes x: "x \<in> HFinite" shows "x \<notin> HInfinite" | 
| 1286 | proof | |
| 1287 | assume x': "x \<in> HInfinite" | |
| 1288 | with x have "x \<in> HFinite \<inter> HInfinite" by blast | |
| 1289 | thus False by auto | |
| 1290 | qed | |
| 1291 | ||
| 1292 | lemma not_HFinite_HInfinite: "x\<notin> HFinite ==> x \<in> HInfinite" | |
| 1293 | apply (simp add: HInfinite_def HFinite_def, auto) | |
| 1294 | apply (drule_tac x = "r + 1" in bspec) | |
| 1295 | apply (auto) | |
| 1296 | done | |
| 1297 | ||
| 1298 | lemma HInfinite_HFinite_disj: "x \<in> HInfinite | x \<in> HFinite" | |
| 1299 | by (blast intro: not_HFinite_HInfinite) | |
| 1300 | ||
| 1301 | lemma HInfinite_HFinite_iff: "(x \<in> HInfinite) = (x \<notin> HFinite)" | |
| 1302 | by (blast dest: HFinite_not_HInfinite not_HFinite_HInfinite) | |
| 1303 | ||
| 1304 | lemma HFinite_HInfinite_iff: "(x \<in> HFinite) = (x \<notin> HInfinite)" | |
| 1305 | by (simp add: HInfinite_HFinite_iff) | |
| 1306 | ||
| 1307 | ||
| 1308 | lemma HInfinite_diff_HFinite_Infinitesimal_disj: | |
| 1309 | "x \<notin> Infinitesimal ==> x \<in> HInfinite | x \<in> HFinite - Infinitesimal" | |
| 1310 | by (fast intro: not_HFinite_HInfinite) | |
| 1311 | ||
| 1312 | lemma HFinite_inverse: | |
| 1313 | fixes x :: "'a::real_normed_div_algebra star" | |
| 1314 | shows "[| x \<in> HFinite; x \<notin> Infinitesimal |] ==> inverse x \<in> HFinite" | |
| 1315 | apply (subgoal_tac "x \<noteq> 0") | |
| 1316 | apply (cut_tac x = "inverse x" in HInfinite_HFinite_disj) | |
| 1317 | apply (auto dest!: HInfinite_inverse_Infinitesimal | |
| 1318 | simp add: nonzero_inverse_inverse_eq) | |
| 1319 | done | |
| 1320 | ||
| 1321 | lemma HFinite_inverse2: | |
| 1322 | fixes x :: "'a::real_normed_div_algebra star" | |
| 1323 | shows "x \<in> HFinite - Infinitesimal ==> inverse x \<in> HFinite" | |
| 1324 | by (blast intro: HFinite_inverse) | |
| 1325 | ||
| 1326 | (* stronger statement possible in fact *) | |
| 1327 | lemma Infinitesimal_inverse_HFinite: | |
| 1328 | fixes x :: "'a::real_normed_div_algebra star" | |
| 1329 | shows "x \<notin> Infinitesimal ==> inverse(x) \<in> HFinite" | |
| 1330 | apply (drule HInfinite_diff_HFinite_Infinitesimal_disj) | |
| 1331 | apply (blast intro: HFinite_inverse HInfinite_inverse_Infinitesimal Infinitesimal_subset_HFinite [THEN subsetD]) | |
| 1332 | done | |
| 1333 | ||
| 1334 | lemma HFinite_not_Infinitesimal_inverse: | |
| 1335 | fixes x :: "'a::real_normed_div_algebra star" | |
| 1336 | shows "x \<in> HFinite - Infinitesimal ==> inverse x \<in> HFinite - Infinitesimal" | |
| 1337 | apply (auto intro: Infinitesimal_inverse_HFinite) | |
| 1338 | apply (drule Infinitesimal_HFinite_mult2, assumption) | |
| 56225 | 1339 | apply (simp add: not_Infinitesimal_not_zero) | 
| 27468 | 1340 | done | 
| 1341 | ||
| 1342 | lemma approx_inverse: | |
| 1343 | fixes x y :: "'a::real_normed_div_algebra star" | |
| 1344 | shows | |
| 1345 | "[| x @= y; y \<in> HFinite - Infinitesimal |] | |
| 1346 | ==> inverse x @= inverse y" | |
| 1347 | apply (frule HFinite_diff_Infinitesimal_approx, assumption) | |
| 1348 | apply (frule not_Infinitesimal_not_zero2) | |
| 1349 | apply (frule_tac x = x in not_Infinitesimal_not_zero2) | |
| 1350 | apply (drule HFinite_inverse2)+ | |
| 1351 | apply (drule approx_mult2, assumption, auto) | |
| 1352 | apply (drule_tac c = "inverse x" in approx_mult1, assumption) | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 1353 | apply (auto intro: approx_sym simp add: mult.assoc) | 
| 27468 | 1354 | done | 
| 1355 | ||
| 1356 | (*Used for NSLIM_inverse, NSLIMSEQ_inverse*) | |
| 1357 | lemmas star_of_approx_inverse = star_of_HFinite_diff_Infinitesimal [THEN [2] approx_inverse] | |
| 1358 | lemmas hypreal_of_real_approx_inverse = hypreal_of_real_HFinite_diff_Infinitesimal [THEN [2] approx_inverse] | |
| 1359 | ||
| 1360 | lemma inverse_add_Infinitesimal_approx: | |
| 1361 | fixes x h :: "'a::real_normed_div_algebra star" | |
| 1362 | shows | |
| 1363 | "[| x \<in> HFinite - Infinitesimal; | |
| 1364 | h \<in> Infinitesimal |] ==> inverse(x + h) @= inverse x" | |
| 1365 | apply (auto intro: approx_inverse approx_sym Infinitesimal_add_approx_self) | |
| 1366 | done | |
| 1367 | ||
| 1368 | lemma inverse_add_Infinitesimal_approx2: | |
| 1369 | fixes x h :: "'a::real_normed_div_algebra star" | |
| 1370 | shows | |
| 1371 | "[| x \<in> HFinite - Infinitesimal; | |
| 1372 | h \<in> Infinitesimal |] ==> inverse(h + x) @= inverse x" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 1373 | apply (rule add.commute [THEN subst]) | 
| 27468 | 1374 | apply (blast intro: inverse_add_Infinitesimal_approx) | 
| 1375 | done | |
| 1376 | ||
| 1377 | lemma inverse_add_Infinitesimal_approx_Infinitesimal: | |
| 1378 | fixes x h :: "'a::real_normed_div_algebra star" | |
| 1379 | shows | |
| 1380 | "[| x \<in> HFinite - Infinitesimal; | |
| 1381 | h \<in> Infinitesimal |] ==> inverse(x + h) - inverse x @= h" | |
| 1382 | apply (rule approx_trans2) | |
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1383 | apply (auto intro: inverse_add_Infinitesimal_approx | 
| 27468 | 1384 | simp add: mem_infmal_iff approx_minus_iff [symmetric]) | 
| 1385 | done | |
| 1386 | ||
| 1387 | lemma Infinitesimal_square_iff: | |
| 1388 | fixes x :: "'a::real_normed_div_algebra star" | |
| 1389 | shows "(x \<in> Infinitesimal) = (x*x \<in> Infinitesimal)" | |
| 1390 | apply (auto intro: Infinitesimal_mult) | |
| 1391 | apply (rule ccontr, frule Infinitesimal_inverse_HFinite) | |
| 1392 | apply (frule not_Infinitesimal_not_zero) | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 1393 | apply (auto dest: Infinitesimal_HFinite_mult simp add: mult.assoc) | 
| 27468 | 1394 | done | 
| 1395 | declare Infinitesimal_square_iff [symmetric, simp] | |
| 1396 | ||
| 1397 | lemma HFinite_square_iff [simp]: | |
| 1398 | fixes x :: "'a::real_normed_div_algebra star" | |
| 1399 | shows "(x*x \<in> HFinite) = (x \<in> HFinite)" | |
| 1400 | apply (auto intro: HFinite_mult) | |
| 1401 | apply (auto dest: HInfinite_mult simp add: HFinite_HInfinite_iff) | |
| 1402 | done | |
| 1403 | ||
| 1404 | lemma HInfinite_square_iff [simp]: | |
| 1405 | fixes x :: "'a::real_normed_div_algebra star" | |
| 1406 | shows "(x*x \<in> HInfinite) = (x \<in> HInfinite)" | |
| 1407 | by (auto simp add: HInfinite_HFinite_iff) | |
| 1408 | ||
| 1409 | lemma approx_HFinite_mult_cancel: | |
| 1410 | fixes a w z :: "'a::real_normed_div_algebra star" | |
| 1411 | shows "[| a: HFinite-Infinitesimal; a* w @= a*z |] ==> w @= z" | |
| 1412 | apply safe | |
| 1413 | apply (frule HFinite_inverse, assumption) | |
| 1414 | apply (drule not_Infinitesimal_not_zero) | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 1415 | apply (auto dest: approx_mult2 simp add: mult.assoc [symmetric]) | 
| 27468 | 1416 | done | 
| 1417 | ||
| 1418 | lemma approx_HFinite_mult_cancel_iff1: | |
| 1419 | fixes a w z :: "'a::real_normed_div_algebra star" | |
| 1420 | shows "a: HFinite-Infinitesimal ==> (a * w @= a * z) = (w @= z)" | |
| 1421 | by (auto intro: approx_mult2 approx_HFinite_mult_cancel) | |
| 1422 | ||
| 1423 | lemma HInfinite_HFinite_add_cancel: | |
| 1424 | "[| x + y \<in> HInfinite; y \<in> HFinite |] ==> x \<in> HInfinite" | |
| 1425 | apply (rule ccontr) | |
| 1426 | apply (drule HFinite_HInfinite_iff [THEN iffD2]) | |
| 1427 | apply (auto dest: HFinite_add simp add: HInfinite_HFinite_iff) | |
| 1428 | done | |
| 1429 | ||
| 1430 | lemma HInfinite_HFinite_add: | |
| 1431 | "[| x \<in> HInfinite; y \<in> HFinite |] ==> x + y \<in> HInfinite" | |
| 1432 | apply (rule_tac y = "-y" in HInfinite_HFinite_add_cancel) | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 1433 | apply (auto simp add: add.assoc HFinite_minus_iff) | 
| 27468 | 1434 | done | 
| 1435 | ||
| 1436 | lemma HInfinite_ge_HInfinite: | |
| 1437 | "[| (x::hypreal) \<in> HInfinite; x \<le> y; 0 \<le> x |] ==> y \<in> HInfinite" | |
| 1438 | by (auto intro: HFinite_bounded simp add: HInfinite_HFinite_iff) | |
| 1439 | ||
| 1440 | lemma Infinitesimal_inverse_HInfinite: | |
| 1441 | fixes x :: "'a::real_normed_div_algebra star" | |
| 1442 | shows "[| x \<in> Infinitesimal; x \<noteq> 0 |] ==> inverse x \<in> HInfinite" | |
| 1443 | apply (rule ccontr, drule HFinite_HInfinite_iff [THEN iffD2]) | |
| 1444 | apply (auto dest: Infinitesimal_HFinite_mult2) | |
| 1445 | done | |
| 1446 | ||
| 1447 | lemma HInfinite_HFinite_not_Infinitesimal_mult: | |
| 1448 | fixes x y :: "'a::real_normed_div_algebra star" | |
| 1449 | shows "[| x \<in> HInfinite; y \<in> HFinite - Infinitesimal |] | |
| 1450 | ==> x * y \<in> HInfinite" | |
| 1451 | apply (rule ccontr, drule HFinite_HInfinite_iff [THEN iffD2]) | |
| 1452 | apply (frule HFinite_Infinitesimal_not_zero) | |
| 1453 | apply (drule HFinite_not_Infinitesimal_inverse) | |
| 1454 | apply (safe, drule HFinite_mult) | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 1455 | apply (auto simp add: mult.assoc HFinite_HInfinite_iff) | 
| 27468 | 1456 | done | 
| 1457 | ||
| 1458 | lemma HInfinite_HFinite_not_Infinitesimal_mult2: | |
| 1459 | fixes x y :: "'a::real_normed_div_algebra star" | |
| 1460 | shows "[| x \<in> HInfinite; y \<in> HFinite - Infinitesimal |] | |
| 1461 | ==> y * x \<in> HInfinite" | |
| 1462 | apply (rule ccontr, drule HFinite_HInfinite_iff [THEN iffD2]) | |
| 1463 | apply (frule HFinite_Infinitesimal_not_zero) | |
| 1464 | apply (drule HFinite_not_Infinitesimal_inverse) | |
| 1465 | apply (safe, drule_tac x="inverse y" in HFinite_mult) | |
| 1466 | apply assumption | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 1467 | apply (auto simp add: mult.assoc [symmetric] HFinite_HInfinite_iff) | 
| 27468 | 1468 | done | 
| 1469 | ||
| 1470 | lemma HInfinite_gt_SReal: | |
| 61070 | 1471 | "[| (x::hypreal) \<in> HInfinite; 0 < x; y \<in> \<real> |] ==> y < x" | 
| 27468 | 1472 | by (auto dest!: bspec simp add: HInfinite_def abs_if order_less_imp_le) | 
| 1473 | ||
| 1474 | lemma HInfinite_gt_zero_gt_one: | |
| 1475 | "[| (x::hypreal) \<in> HInfinite; 0 < x |] ==> 1 < x" | |
| 1476 | by (auto intro: HInfinite_gt_SReal) | |
| 1477 | ||
| 1478 | ||
| 1479 | lemma not_HInfinite_one [simp]: "1 \<notin> HInfinite" | |
| 1480 | apply (simp (no_asm) add: HInfinite_HFinite_iff) | |
| 1481 | done | |
| 1482 | ||
| 1483 | lemma approx_hrabs_disj: "abs (x::hypreal) @= x | abs x @= -x" | |
| 1484 | by (cut_tac x = x in hrabs_disj, auto) | |
| 1485 | ||
| 1486 | ||
| 1487 | subsection{*Theorems about Monads*}
 | |
| 1488 | ||
| 1489 | lemma monad_hrabs_Un_subset: "monad (abs x) \<le> monad(x::hypreal) Un monad(-x)" | |
| 1490 | by (rule_tac x1 = x in hrabs_disj [THEN disjE], auto) | |
| 1491 | ||
| 1492 | lemma Infinitesimal_monad_eq: "e \<in> Infinitesimal ==> monad (x+e) = monad x" | |
| 1493 | by (fast intro!: Infinitesimal_add_approx_self [THEN approx_sym] approx_monad_iff [THEN iffD1]) | |
| 1494 | ||
| 1495 | lemma mem_monad_iff: "(u \<in> monad x) = (-u \<in> monad (-x))" | |
| 1496 | by (simp add: monad_def) | |
| 1497 | ||
| 1498 | lemma Infinitesimal_monad_zero_iff: "(x \<in> Infinitesimal) = (x \<in> monad 0)" | |
| 1499 | by (auto intro: approx_sym simp add: monad_def mem_infmal_iff) | |
| 1500 | ||
| 1501 | lemma monad_zero_minus_iff: "(x \<in> monad 0) = (-x \<in> monad 0)" | |
| 1502 | apply (simp (no_asm) add: Infinitesimal_monad_zero_iff [symmetric]) | |
| 1503 | done | |
| 1504 | ||
| 1505 | lemma monad_zero_hrabs_iff: "((x::hypreal) \<in> monad 0) = (abs x \<in> monad 0)" | |
| 1506 | apply (rule_tac x1 = x in hrabs_disj [THEN disjE]) | |
| 1507 | apply (auto simp add: monad_zero_minus_iff [symmetric]) | |
| 1508 | done | |
| 1509 | ||
| 1510 | lemma mem_monad_self [simp]: "x \<in> monad x" | |
| 1511 | by (simp add: monad_def) | |
| 1512 | ||
| 1513 | ||
| 1514 | subsection{*Proof that @{term "x @= y"} implies @{term"\<bar>x\<bar> @= \<bar>y\<bar>"}*}
 | |
| 1515 | ||
| 1516 | lemma approx_subset_monad: "x @= y ==> {x,y} \<le> monad x"
 | |
| 1517 | apply (simp (no_asm)) | |
| 1518 | apply (simp add: approx_monad_iff) | |
| 1519 | done | |
| 1520 | ||
| 1521 | lemma approx_subset_monad2: "x @= y ==> {x,y} \<le> monad y"
 | |
| 1522 | apply (drule approx_sym) | |
| 1523 | apply (fast dest: approx_subset_monad) | |
| 1524 | done | |
| 1525 | ||
| 1526 | lemma mem_monad_approx: "u \<in> monad x ==> x @= u" | |
| 1527 | by (simp add: monad_def) | |
| 1528 | ||
| 1529 | lemma approx_mem_monad: "x @= u ==> u \<in> monad x" | |
| 1530 | by (simp add: monad_def) | |
| 1531 | ||
| 1532 | lemma approx_mem_monad2: "x @= u ==> x \<in> monad u" | |
| 1533 | apply (simp add: monad_def) | |
| 1534 | apply (blast intro!: approx_sym) | |
| 1535 | done | |
| 1536 | ||
| 1537 | lemma approx_mem_monad_zero: "[| x @= y;x \<in> monad 0 |] ==> y \<in> monad 0" | |
| 1538 | apply (drule mem_monad_approx) | |
| 1539 | apply (fast intro: approx_mem_monad approx_trans) | |
| 1540 | done | |
| 1541 | ||
| 1542 | lemma Infinitesimal_approx_hrabs: | |
| 1543 | "[| x @= y; (x::hypreal) \<in> Infinitesimal |] ==> abs x @= abs y" | |
| 1544 | apply (drule Infinitesimal_monad_zero_iff [THEN iffD1]) | |
| 1545 | apply (blast intro: approx_mem_monad_zero monad_zero_hrabs_iff [THEN iffD1] mem_monad_approx approx_trans3) | |
| 1546 | done | |
| 1547 | ||
| 1548 | lemma less_Infinitesimal_less: | |
| 1549 | "[| 0 < x; (x::hypreal) \<notin>Infinitesimal; e :Infinitesimal |] ==> e < x" | |
| 1550 | apply (rule ccontr) | |
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1551 | apply (auto intro: Infinitesimal_zero [THEN [2] Infinitesimal_interval] | 
| 27468 | 1552 | dest!: order_le_imp_less_or_eq simp add: linorder_not_less) | 
| 1553 | done | |
| 1554 | ||
| 1555 | lemma Ball_mem_monad_gt_zero: | |
| 1556 | "[| 0 < (x::hypreal); x \<notin> Infinitesimal; u \<in> monad x |] ==> 0 < u" | |
| 1557 | apply (drule mem_monad_approx [THEN approx_sym]) | |
| 1558 | apply (erule bex_Infinitesimal_iff2 [THEN iffD2, THEN bexE]) | |
| 1559 | apply (drule_tac e = "-xa" in less_Infinitesimal_less, auto) | |
| 1560 | done | |
| 1561 | ||
| 1562 | lemma Ball_mem_monad_less_zero: | |
| 1563 | "[| (x::hypreal) < 0; x \<notin> Infinitesimal; u \<in> monad x |] ==> u < 0" | |
| 1564 | apply (drule mem_monad_approx [THEN approx_sym]) | |
| 1565 | apply (erule bex_Infinitesimal_iff [THEN iffD2, THEN bexE]) | |
| 1566 | apply (cut_tac x = "-x" and e = xa in less_Infinitesimal_less, auto) | |
| 1567 | done | |
| 1568 | ||
| 1569 | lemma lemma_approx_gt_zero: | |
| 1570 | "[|0 < (x::hypreal); x \<notin> Infinitesimal; x @= y|] ==> 0 < y" | |
| 1571 | by (blast dest: Ball_mem_monad_gt_zero approx_subset_monad) | |
| 1572 | ||
| 1573 | lemma lemma_approx_less_zero: | |
| 1574 | "[|(x::hypreal) < 0; x \<notin> Infinitesimal; x @= y|] ==> y < 0" | |
| 1575 | by (blast dest: Ball_mem_monad_less_zero approx_subset_monad) | |
| 1576 | ||
| 1577 | theorem approx_hrabs: "(x::hypreal) @= y ==> abs x @= abs y" | |
| 1578 | by (drule approx_hnorm, simp) | |
| 1579 | ||
| 1580 | lemma approx_hrabs_zero_cancel: "abs(x::hypreal) @= 0 ==> x @= 0" | |
| 1581 | apply (cut_tac x = x in hrabs_disj) | |
| 1582 | apply (auto dest: approx_minus) | |
| 1583 | done | |
| 1584 | ||
| 1585 | lemma approx_hrabs_add_Infinitesimal: | |
| 1586 | "(e::hypreal) \<in> Infinitesimal ==> abs x @= abs(x+e)" | |
| 1587 | by (fast intro: approx_hrabs Infinitesimal_add_approx_self) | |
| 1588 | ||
| 1589 | lemma approx_hrabs_add_minus_Infinitesimal: | |
| 1590 | "(e::hypreal) \<in> Infinitesimal ==> abs x @= abs(x + -e)" | |
| 1591 | by (fast intro: approx_hrabs Infinitesimal_add_minus_approx_self) | |
| 1592 | ||
| 1593 | lemma hrabs_add_Infinitesimal_cancel: | |
| 1594 | "[| (e::hypreal) \<in> Infinitesimal; e' \<in> Infinitesimal; | |
| 1595 | abs(x+e) = abs(y+e')|] ==> abs x @= abs y" | |
| 1596 | apply (drule_tac x = x in approx_hrabs_add_Infinitesimal) | |
| 1597 | apply (drule_tac x = y in approx_hrabs_add_Infinitesimal) | |
| 1598 | apply (auto intro: approx_trans2) | |
| 1599 | done | |
| 1600 | ||
| 1601 | lemma hrabs_add_minus_Infinitesimal_cancel: | |
| 1602 | "[| (e::hypreal) \<in> Infinitesimal; e' \<in> Infinitesimal; | |
| 1603 | abs(x + -e) = abs(y + -e')|] ==> abs x @= abs y" | |
| 1604 | apply (drule_tac x = x in approx_hrabs_add_minus_Infinitesimal) | |
| 1605 | apply (drule_tac x = y in approx_hrabs_add_minus_Infinitesimal) | |
| 1606 | apply (auto intro: approx_trans2) | |
| 1607 | done | |
| 1608 | ||
| 1609 | subsection {* More @{term HFinite} and @{term Infinitesimal} Theorems *}
 | |
| 1610 | ||
| 1611 | (* interesting slightly counterintuitive theorem: necessary | |
| 1612 | for proving that an open interval is an NS open set | |
| 1613 | *) | |
| 1614 | lemma Infinitesimal_add_hypreal_of_real_less: | |
| 1615 | "[| x < y; u \<in> Infinitesimal |] | |
| 1616 | ==> hypreal_of_real x + u < hypreal_of_real y" | |
| 1617 | apply (simp add: Infinitesimal_def) | |
| 1618 | apply (drule_tac x = "hypreal_of_real y + -hypreal_of_real x" in bspec, simp) | |
| 1619 | apply (simp add: abs_less_iff) | |
| 1620 | done | |
| 1621 | ||
| 1622 | lemma Infinitesimal_add_hrabs_hypreal_of_real_less: | |
| 1623 | "[| x \<in> Infinitesimal; abs(hypreal_of_real r) < hypreal_of_real y |] | |
| 1624 | ==> abs (hypreal_of_real r + x) < hypreal_of_real y" | |
| 1625 | apply (drule_tac x = "hypreal_of_real r" in approx_hrabs_add_Infinitesimal) | |
| 1626 | apply (drule approx_sym [THEN bex_Infinitesimal_iff2 [THEN iffD2]]) | |
| 1627 | apply (auto intro!: Infinitesimal_add_hypreal_of_real_less | |
| 1628 | simp del: star_of_abs | |
| 1629 | simp add: star_of_abs [symmetric]) | |
| 1630 | done | |
| 1631 | ||
| 1632 | lemma Infinitesimal_add_hrabs_hypreal_of_real_less2: | |
| 1633 | "[| x \<in> Infinitesimal; abs(hypreal_of_real r) < hypreal_of_real y |] | |
| 1634 | ==> abs (x + hypreal_of_real r) < hypreal_of_real y" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 1635 | apply (rule add.commute [THEN subst]) | 
| 27468 | 1636 | apply (erule Infinitesimal_add_hrabs_hypreal_of_real_less, assumption) | 
| 1637 | done | |
| 1638 | ||
| 1639 | lemma hypreal_of_real_le_add_Infininitesimal_cancel: | |
| 1640 | "[| u \<in> Infinitesimal; v \<in> Infinitesimal; | |
| 1641 | hypreal_of_real x + u \<le> hypreal_of_real y + v |] | |
| 1642 | ==> hypreal_of_real x \<le> hypreal_of_real y" | |
| 1643 | apply (simp add: linorder_not_less [symmetric], auto) | |
| 1644 | apply (drule_tac u = "v-u" in Infinitesimal_add_hypreal_of_real_less) | |
| 1645 | apply (auto simp add: Infinitesimal_diff) | |
| 1646 | done | |
| 1647 | ||
| 1648 | lemma hypreal_of_real_le_add_Infininitesimal_cancel2: | |
| 1649 | "[| u \<in> Infinitesimal; v \<in> Infinitesimal; | |
| 1650 | hypreal_of_real x + u \<le> hypreal_of_real y + v |] | |
| 1651 | ==> x \<le> y" | |
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1652 | by (blast intro: star_of_le [THEN iffD1] | 
| 27468 | 1653 | intro!: hypreal_of_real_le_add_Infininitesimal_cancel) | 
| 1654 | ||
| 1655 | lemma hypreal_of_real_less_Infinitesimal_le_zero: | |
| 1656 | "[| hypreal_of_real x < e; e \<in> Infinitesimal |] ==> hypreal_of_real x \<le> 0" | |
| 1657 | apply (rule linorder_not_less [THEN iffD1], safe) | |
| 1658 | apply (drule Infinitesimal_interval) | |
| 1659 | apply (drule_tac [4] SReal_hypreal_of_real [THEN SReal_Infinitesimal_zero], auto) | |
| 1660 | done | |
| 1661 | ||
| 1662 | (*used once, in Lim/NSDERIV_inverse*) | |
| 1663 | lemma Infinitesimal_add_not_zero: | |
| 1664 | "[| h \<in> Infinitesimal; x \<noteq> 0 |] ==> star_of x + h \<noteq> 0" | |
| 1665 | apply auto | |
| 34146 
14595e0c27e8
rename equals_zero_I to minus_unique (keep old name too)
 huffman parents: 
32960diff
changeset | 1666 | apply (subgoal_tac "h = - star_of x", auto intro: minus_unique [symmetric]) | 
| 27468 | 1667 | done | 
| 1668 | ||
| 1669 | lemma Infinitesimal_square_cancel [simp]: | |
| 1670 | "(x::hypreal)*x + y*y \<in> Infinitesimal ==> x*x \<in> Infinitesimal" | |
| 1671 | apply (rule Infinitesimal_interval2) | |
| 1672 | apply (rule_tac [3] zero_le_square, assumption) | |
| 1673 | apply (auto) | |
| 1674 | done | |
| 1675 | ||
| 1676 | lemma HFinite_square_cancel [simp]: | |
| 1677 | "(x::hypreal)*x + y*y \<in> HFinite ==> x*x \<in> HFinite" | |
| 1678 | apply (rule HFinite_bounded, assumption) | |
| 1679 | apply (auto) | |
| 1680 | done | |
| 1681 | ||
| 1682 | lemma Infinitesimal_square_cancel2 [simp]: | |
| 1683 | "(x::hypreal)*x + y*y \<in> Infinitesimal ==> y*y \<in> Infinitesimal" | |
| 1684 | apply (rule Infinitesimal_square_cancel) | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 1685 | apply (rule add.commute [THEN subst]) | 
| 27468 | 1686 | apply (simp (no_asm)) | 
| 1687 | done | |
| 1688 | ||
| 1689 | lemma HFinite_square_cancel2 [simp]: | |
| 1690 | "(x::hypreal)*x + y*y \<in> HFinite ==> y*y \<in> HFinite" | |
| 1691 | apply (rule HFinite_square_cancel) | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 1692 | apply (rule add.commute [THEN subst]) | 
| 27468 | 1693 | apply (simp (no_asm)) | 
| 1694 | done | |
| 1695 | ||
| 1696 | lemma Infinitesimal_sum_square_cancel [simp]: | |
| 1697 | "(x::hypreal)*x + y*y + z*z \<in> Infinitesimal ==> x*x \<in> Infinitesimal" | |
| 1698 | apply (rule Infinitesimal_interval2, assumption) | |
| 1699 | apply (rule_tac [2] zero_le_square, simp) | |
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1700 | apply (insert zero_le_square [of y]) | 
| 27468 | 1701 | apply (insert zero_le_square [of z], simp del:zero_le_square) | 
| 1702 | done | |
| 1703 | ||
| 1704 | lemma HFinite_sum_square_cancel [simp]: | |
| 1705 | "(x::hypreal)*x + y*y + z*z \<in> HFinite ==> x*x \<in> HFinite" | |
| 1706 | apply (rule HFinite_bounded, assumption) | |
| 1707 | apply (rule_tac [2] zero_le_square) | |
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1708 | apply (insert zero_le_square [of y]) | 
| 27468 | 1709 | apply (insert zero_le_square [of z], simp del:zero_le_square) | 
| 1710 | done | |
| 1711 | ||
| 1712 | lemma Infinitesimal_sum_square_cancel2 [simp]: | |
| 1713 | "(y::hypreal)*y + x*x + z*z \<in> Infinitesimal ==> x*x \<in> Infinitesimal" | |
| 1714 | apply (rule Infinitesimal_sum_square_cancel) | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1715 | apply (simp add: ac_simps) | 
| 27468 | 1716 | done | 
| 1717 | ||
| 1718 | lemma HFinite_sum_square_cancel2 [simp]: | |
| 1719 | "(y::hypreal)*y + x*x + z*z \<in> HFinite ==> x*x \<in> HFinite" | |
| 1720 | apply (rule HFinite_sum_square_cancel) | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1721 | apply (simp add: ac_simps) | 
| 27468 | 1722 | done | 
| 1723 | ||
| 1724 | lemma Infinitesimal_sum_square_cancel3 [simp]: | |
| 1725 | "(z::hypreal)*z + y*y + x*x \<in> Infinitesimal ==> x*x \<in> Infinitesimal" | |
| 1726 | apply (rule Infinitesimal_sum_square_cancel) | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1727 | apply (simp add: ac_simps) | 
| 27468 | 1728 | done | 
| 1729 | ||
| 1730 | lemma HFinite_sum_square_cancel3 [simp]: | |
| 1731 | "(z::hypreal)*z + y*y + x*x \<in> HFinite ==> x*x \<in> HFinite" | |
| 1732 | apply (rule HFinite_sum_square_cancel) | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1733 | apply (simp add: ac_simps) | 
| 27468 | 1734 | done | 
| 1735 | ||
| 1736 | lemma monad_hrabs_less: | |
| 1737 | "[| y \<in> monad x; 0 < hypreal_of_real e |] | |
| 1738 | ==> abs (y - x) < hypreal_of_real e" | |
| 1739 | apply (drule mem_monad_approx [THEN approx_sym]) | |
| 1740 | apply (drule bex_Infinitesimal_iff [THEN iffD2]) | |
| 1741 | apply (auto dest!: InfinitesimalD) | |
| 1742 | done | |
| 1743 | ||
| 1744 | lemma mem_monad_SReal_HFinite: | |
| 1745 | "x \<in> monad (hypreal_of_real a) ==> x \<in> HFinite" | |
| 1746 | apply (drule mem_monad_approx [THEN approx_sym]) | |
| 1747 | apply (drule bex_Infinitesimal_iff2 [THEN iffD2]) | |
| 1748 | apply (safe dest!: Infinitesimal_subset_HFinite [THEN subsetD]) | |
| 1749 | apply (erule SReal_hypreal_of_real [THEN SReal_subset_HFinite [THEN subsetD], THEN HFinite_add]) | |
| 1750 | done | |
| 1751 | ||
| 1752 | ||
| 1753 | subsection{* Theorems about Standard Part*}
 | |
| 1754 | ||
| 1755 | lemma st_approx_self: "x \<in> HFinite ==> st x @= x" | |
| 1756 | apply (simp add: st_def) | |
| 1757 | apply (frule st_part_Ex, safe) | |
| 1758 | apply (rule someI2) | |
| 1759 | apply (auto intro: approx_sym) | |
| 1760 | done | |
| 1761 | ||
| 61070 | 1762 | lemma st_SReal: "x \<in> HFinite ==> st x \<in> \<real>" | 
| 27468 | 1763 | apply (simp add: st_def) | 
| 1764 | apply (frule st_part_Ex, safe) | |
| 1765 | apply (rule someI2) | |
| 1766 | apply (auto intro: approx_sym) | |
| 1767 | done | |
| 1768 | ||
| 1769 | lemma st_HFinite: "x \<in> HFinite ==> st x \<in> HFinite" | |
| 1770 | by (erule st_SReal [THEN SReal_subset_HFinite [THEN subsetD]]) | |
| 1771 | ||
| 1772 | lemma st_unique: "\<lbrakk>r \<in> \<real>; r \<approx> x\<rbrakk> \<Longrightarrow> st x = r" | |
| 1773 | apply (frule SReal_subset_HFinite [THEN subsetD]) | |
| 1774 | apply (drule (1) approx_HFinite) | |
| 1775 | apply (unfold st_def) | |
| 1776 | apply (rule some_equality) | |
| 1777 | apply (auto intro: approx_unique_real) | |
| 1778 | done | |
| 1779 | ||
| 61070 | 1780 | lemma st_SReal_eq: "x \<in> \<real> ==> st x = x" | 
| 56225 | 1781 | by (metis approx_refl st_unique) | 
| 27468 | 1782 | |
| 1783 | lemma st_hypreal_of_real [simp]: "st (hypreal_of_real x) = hypreal_of_real x" | |
| 1784 | by (rule SReal_hypreal_of_real [THEN st_SReal_eq]) | |
| 1785 | ||
| 1786 | lemma st_eq_approx: "[| x \<in> HFinite; y \<in> HFinite; st x = st y |] ==> x @= y" | |
| 1787 | by (auto dest!: st_approx_self elim!: approx_trans3) | |
| 1788 | ||
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1789 | lemma approx_st_eq: | 
| 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1790 | assumes x: "x \<in> HFinite" and y: "y \<in> HFinite" and xy: "x @= y" | 
| 27468 | 1791 | shows "st x = st y" | 
| 1792 | proof - | |
| 61070 | 1793 | have "st x @= x" "st y @= y" "st x \<in> \<real>" "st y \<in> \<real>" | 
| 41541 | 1794 | by (simp_all add: st_approx_self st_SReal x y) | 
| 1795 | with xy show ?thesis | |
| 27468 | 1796 | by (fast elim: approx_trans approx_trans2 SReal_approx_iff [THEN iffD1]) | 
| 1797 | qed | |
| 1798 | ||
| 1799 | lemma st_eq_approx_iff: | |
| 1800 | "[| x \<in> HFinite; y \<in> HFinite|] | |
| 1801 | ==> (x @= y) = (st x = st y)" | |
| 1802 | by (blast intro: approx_st_eq st_eq_approx) | |
| 1803 | ||
| 1804 | lemma st_Infinitesimal_add_SReal: | |
| 61070 | 1805 | "[| x \<in> \<real>; e \<in> Infinitesimal |] ==> st(x + e) = x" | 
| 27468 | 1806 | apply (erule st_unique) | 
| 1807 | apply (erule Infinitesimal_add_approx_self) | |
| 1808 | done | |
| 1809 | ||
| 1810 | lemma st_Infinitesimal_add_SReal2: | |
| 61070 | 1811 | "[| x \<in> \<real>; e \<in> Infinitesimal |] ==> st(e + x) = x" | 
| 27468 | 1812 | apply (erule st_unique) | 
| 1813 | apply (erule Infinitesimal_add_approx_self2) | |
| 1814 | done | |
| 1815 | ||
| 1816 | lemma HFinite_st_Infinitesimal_add: | |
| 1817 | "x \<in> HFinite ==> \<exists>e \<in> Infinitesimal. x = st(x) + e" | |
| 1818 | by (blast dest!: st_approx_self [THEN approx_sym] bex_Infinitesimal_iff2 [THEN iffD2]) | |
| 1819 | ||
| 1820 | lemma st_add: "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> st (x + y) = st x + st y" | |
| 1821 | by (simp add: st_unique st_SReal st_approx_self approx_add) | |
| 1822 | ||
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 1823 | lemma st_numeral [simp]: "st (numeral w) = numeral w" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 1824 | by (rule Reals_numeral [THEN st_SReal_eq]) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 1825 | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 1826 | lemma st_neg_numeral [simp]: "st (- numeral w) = - numeral w" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 1827 | proof - | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 1828 | from Reals_numeral have "numeral w \<in> \<real>" . | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 1829 | then have "- numeral w \<in> \<real>" by simp | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 1830 | with st_SReal_eq show ?thesis . | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 1831 | qed | 
| 27468 | 1832 | |
| 45540 | 1833 | lemma st_0 [simp]: "st 0 = 0" | 
| 1834 | by (simp add: st_SReal_eq) | |
| 1835 | ||
| 1836 | lemma st_1 [simp]: "st 1 = 1" | |
| 1837 | by (simp add: st_SReal_eq) | |
| 27468 | 1838 | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 1839 | lemma st_neg_1 [simp]: "st (- 1) = - 1" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 1840 | by (simp add: st_SReal_eq) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 1841 | |
| 27468 | 1842 | lemma st_minus: "x \<in> HFinite \<Longrightarrow> st (- x) = - st x" | 
| 1843 | by (simp add: st_unique st_SReal st_approx_self approx_minus) | |
| 1844 | ||
| 1845 | lemma st_diff: "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> st (x - y) = st x - st y" | |
| 1846 | by (simp add: st_unique st_SReal st_approx_self approx_diff) | |
| 1847 | ||
| 1848 | lemma st_mult: "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> st (x * y) = st x * st y" | |
| 1849 | by (simp add: st_unique st_SReal st_approx_self approx_mult_HFinite) | |
| 1850 | ||
| 1851 | lemma st_Infinitesimal: "x \<in> Infinitesimal ==> st x = 0" | |
| 1852 | by (simp add: st_unique mem_infmal_iff) | |
| 1853 | ||
| 1854 | lemma st_not_Infinitesimal: "st(x) \<noteq> 0 ==> x \<notin> Infinitesimal" | |
| 1855 | by (fast intro: st_Infinitesimal) | |
| 1856 | ||
| 1857 | lemma st_inverse: | |
| 1858 | "[| x \<in> HFinite; st x \<noteq> 0 |] | |
| 1859 | ==> st(inverse x) = inverse (st x)" | |
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1860 | apply (rule_tac c1 = "st x" in mult_left_cancel [THEN iffD1]) | 
| 27468 | 1861 | apply (auto simp add: st_mult [symmetric] st_not_Infinitesimal HFinite_inverse) | 
| 1862 | apply (subst right_inverse, auto) | |
| 1863 | done | |
| 1864 | ||
| 1865 | lemma st_divide [simp]: | |
| 1866 | "[| x \<in> HFinite; y \<in> HFinite; st y \<noteq> 0 |] | |
| 1867 | ==> st(x/y) = (st x) / (st y)" | |
| 1868 | by (simp add: divide_inverse st_mult st_not_Infinitesimal HFinite_inverse st_inverse) | |
| 1869 | ||
| 1870 | lemma st_idempotent [simp]: "x \<in> HFinite ==> st(st(x)) = st(x)" | |
| 1871 | by (blast intro: st_HFinite st_approx_self approx_st_eq) | |
| 1872 | ||
| 1873 | lemma Infinitesimal_add_st_less: | |
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1874 | "[| x \<in> HFinite; y \<in> HFinite; u \<in> Infinitesimal; st x < st y |] | 
| 27468 | 1875 | ==> st x + u < st y" | 
| 1876 | apply (drule st_SReal)+ | |
| 1877 | apply (auto intro!: Infinitesimal_add_hypreal_of_real_less simp add: SReal_iff) | |
| 1878 | done | |
| 1879 | ||
| 1880 | lemma Infinitesimal_add_st_le_cancel: | |
| 1881 | "[| x \<in> HFinite; y \<in> HFinite; | |
| 1882 | u \<in> Infinitesimal; st x \<le> st y + u | |
| 1883 | |] ==> st x \<le> st y" | |
| 1884 | apply (simp add: linorder_not_less [symmetric]) | |
| 1885 | apply (auto dest: Infinitesimal_add_st_less) | |
| 1886 | done | |
| 1887 | ||
| 1888 | lemma st_le: "[| x \<in> HFinite; y \<in> HFinite; x \<le> y |] ==> st(x) \<le> st(y)" | |
| 56225 | 1889 | by (metis approx_le_bound approx_sym linear st_SReal st_approx_self st_part_Ex1) | 
| 27468 | 1890 | |
| 1891 | lemma st_zero_le: "[| 0 \<le> x; x \<in> HFinite |] ==> 0 \<le> st x" | |
| 45540 | 1892 | apply (subst st_0 [symmetric]) | 
| 27468 | 1893 | apply (rule st_le, auto) | 
| 1894 | done | |
| 1895 | ||
| 1896 | lemma st_zero_ge: "[| x \<le> 0; x \<in> HFinite |] ==> st x \<le> 0" | |
| 45540 | 1897 | apply (subst st_0 [symmetric]) | 
| 27468 | 1898 | apply (rule st_le, auto) | 
| 1899 | done | |
| 1900 | ||
| 1901 | lemma st_hrabs: "x \<in> HFinite ==> abs(st x) = st(abs x)" | |
| 1902 | apply (simp add: linorder_not_le st_zero_le abs_if st_minus | |
| 1903 | linorder_not_less) | |
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1904 | apply (auto dest!: st_zero_ge [OF order_less_imp_le]) | 
| 27468 | 1905 | done | 
| 1906 | ||
| 1907 | ||
| 1908 | ||
| 1909 | subsection {* Alternative Definitions using Free Ultrafilter *}
 | |
| 1910 | ||
| 1911 | subsubsection {* @{term HFinite} *}
 | |
| 1912 | ||
| 1913 | lemma HFinite_FreeUltrafilterNat: | |
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1914 | "star_n X \<in> HFinite | 
| 60041 | 1915 | ==> \<exists>u. eventually (\<lambda>n. norm (X n) < u) FreeUltrafilterNat" | 
| 27468 | 1916 | apply (auto simp add: HFinite_def SReal_def) | 
| 1917 | apply (rule_tac x=r in exI) | |
| 1918 | apply (simp add: hnorm_def star_of_def starfun_star_n) | |
| 1919 | apply (simp add: star_less_def starP2_star_n) | |
| 1920 | done | |
| 1921 | ||
| 1922 | lemma FreeUltrafilterNat_HFinite: | |
| 60041 | 1923 | "\<exists>u. eventually (\<lambda>n. norm (X n) < u) FreeUltrafilterNat | 
| 27468 | 1924 | ==> star_n X \<in> HFinite" | 
| 1925 | apply (auto simp add: HFinite_def mem_Rep_star_iff) | |
| 1926 | apply (rule_tac x="star_of u" in bexI) | |
| 1927 | apply (simp add: hnorm_def starfun_star_n star_of_def) | |
| 1928 | apply (simp add: star_less_def starP2_star_n) | |
| 1929 | apply (simp add: SReal_def) | |
| 1930 | done | |
| 1931 | ||
| 1932 | lemma HFinite_FreeUltrafilterNat_iff: | |
| 60041 | 1933 | "(star_n X \<in> HFinite) = (\<exists>u. eventually (\<lambda>n. norm (X n) < u) FreeUltrafilterNat)" | 
| 27468 | 1934 | by (blast intro!: HFinite_FreeUltrafilterNat FreeUltrafilterNat_HFinite) | 
| 1935 | ||
| 1936 | subsubsection {* @{term HInfinite} *}
 | |
| 1937 | ||
| 56225 | 1938 | lemma lemma_Compl_eq: "- {n. u < norm (f n)} = {n. norm (f n) \<le> u}"
 | 
| 27468 | 1939 | by auto | 
| 1940 | ||
| 56225 | 1941 | lemma lemma_Compl_eq2: "- {n. norm (f n) < u} = {n. u \<le> norm (f n)}"
 | 
| 27468 | 1942 | by auto | 
| 1943 | ||
| 1944 | lemma lemma_Int_eq1: | |
| 56225 | 1945 |      "{n. norm (f n) \<le> u} Int {n. u \<le> norm (f n)} = {n. norm(f n) = u}"
 | 
| 27468 | 1946 | by auto | 
| 1947 | ||
| 1948 | lemma lemma_FreeUltrafilterNat_one: | |
| 56225 | 1949 |      "{n. norm (f n) = u} \<le> {n. norm (f n) < u + (1::real)}"
 | 
| 27468 | 1950 | by auto | 
| 1951 | ||
| 1952 | (*------------------------------------- | |
| 1953 | Exclude this type of sets from free | |
| 1954 | ultrafilter for Infinite numbers! | |
| 1955 | -------------------------------------*) | |
| 1956 | lemma FreeUltrafilterNat_const_Finite: | |
| 60041 | 1957 | "eventually (\<lambda>n. norm (X n) = u) FreeUltrafilterNat ==> star_n X \<in> HFinite" | 
| 27468 | 1958 | apply (rule FreeUltrafilterNat_HFinite) | 
| 1959 | apply (rule_tac x = "u + 1" in exI) | |
| 60041 | 1960 | apply (auto elim: eventually_elim1) | 
| 27468 | 1961 | done | 
| 1962 | ||
| 1963 | lemma HInfinite_FreeUltrafilterNat: | |
| 60041 | 1964 | "star_n X \<in> HInfinite ==> \<forall>u. eventually (\<lambda>n. u < norm (X n)) FreeUltrafilterNat" | 
| 27468 | 1965 | apply (drule HInfinite_HFinite_iff [THEN iffD1]) | 
| 1966 | apply (simp add: HFinite_FreeUltrafilterNat_iff) | |
| 1967 | apply (rule allI, drule_tac x="u + 1" in spec) | |
| 60041 | 1968 | apply (simp add: FreeUltrafilterNat.eventually_not_iff[symmetric]) | 
| 1969 | apply (auto elim: eventually_elim1) | |
| 27468 | 1970 | done | 
| 1971 | ||
| 1972 | lemma lemma_Int_HI: | |
| 1973 |      "{n. norm (Xa n) < u} Int {n. X n = Xa n} \<subseteq> {n. norm (X n) < (u::real)}"
 | |
| 1974 | by auto | |
| 1975 | ||
| 1976 | lemma lemma_Int_HIa: "{n. u < norm (X n)} Int {n. norm (X n) < u} = {}"
 | |
| 1977 | by (auto intro: order_less_asym) | |
| 1978 | ||
| 1979 | lemma FreeUltrafilterNat_HInfinite: | |
| 60041 | 1980 | "\<forall>u. eventually (\<lambda>n. u < norm (X n)) FreeUltrafilterNat ==> star_n X \<in> HInfinite" | 
| 27468 | 1981 | apply (rule HInfinite_HFinite_iff [THEN iffD2]) | 
| 1982 | apply (safe, drule HFinite_FreeUltrafilterNat, safe) | |
| 1983 | apply (drule_tac x = u in spec) | |
| 60041 | 1984 | proof - | 
| 1985 | fix u assume "\<forall>\<^sub>Fn in \<U>. norm (X n) < u" "\<forall>\<^sub>Fn in \<U>. u < norm (X n)" | |
| 1986 | then have "\<forall>\<^sub>F x in \<U>. False" | |
| 1987 | by eventually_elim auto | |
| 1988 | then show False | |
| 1989 | by (simp add: eventually_False FreeUltrafilterNat.proper) | |
| 1990 | qed | |
| 27468 | 1991 | |
| 1992 | lemma HInfinite_FreeUltrafilterNat_iff: | |
| 60041 | 1993 | "(star_n X \<in> HInfinite) = (\<forall>u. eventually (\<lambda>n. u < norm (X n)) FreeUltrafilterNat)" | 
| 27468 | 1994 | by (blast intro!: HInfinite_FreeUltrafilterNat FreeUltrafilterNat_HInfinite) | 
| 1995 | ||
| 1996 | subsubsection {* @{term Infinitesimal} *}
 | |
| 1997 | ||
| 1998 | lemma ball_SReal_eq: "(\<forall>x::hypreal \<in> Reals. P x) = (\<forall>x::real. P (star_of x))" | |
| 1999 | by (unfold SReal_def, auto) | |
| 2000 | ||
| 2001 | lemma Infinitesimal_FreeUltrafilterNat: | |
| 60041 | 2002 | "star_n X \<in> Infinitesimal ==> \<forall>u>0. eventually (\<lambda>n. norm (X n) < u) \<U>" | 
| 27468 | 2003 | apply (simp add: Infinitesimal_def ball_SReal_eq) | 
| 2004 | apply (simp add: hnorm_def starfun_star_n star_of_def) | |
| 2005 | apply (simp add: star_less_def starP2_star_n) | |
| 2006 | done | |
| 2007 | ||
| 2008 | lemma FreeUltrafilterNat_Infinitesimal: | |
| 60041 | 2009 | "\<forall>u>0. eventually (\<lambda>n. norm (X n) < u) \<U> ==> star_n X \<in> Infinitesimal" | 
| 27468 | 2010 | apply (simp add: Infinitesimal_def ball_SReal_eq) | 
| 2011 | apply (simp add: hnorm_def starfun_star_n star_of_def) | |
| 2012 | apply (simp add: star_less_def starP2_star_n) | |
| 2013 | done | |
| 2014 | ||
| 2015 | lemma Infinitesimal_FreeUltrafilterNat_iff: | |
| 60041 | 2016 | "(star_n X \<in> Infinitesimal) = (\<forall>u>0. eventually (\<lambda>n. norm (X n) < u) \<U>)" | 
| 27468 | 2017 | by (blast intro!: Infinitesimal_FreeUltrafilterNat FreeUltrafilterNat_Infinitesimal) | 
| 2018 | ||
| 2019 | (*------------------------------------------------------------------------ | |
| 2020 | Infinitesimals as smaller than 1/n for all n::nat (> 0) | |
| 2021 | ------------------------------------------------------------------------*) | |
| 2022 | ||
| 2023 | lemma lemma_Infinitesimal: | |
| 2024 | "(\<forall>r. 0 < r --> x < r) = (\<forall>n. x < inverse(real (Suc n)))" | |
| 61284 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61076diff
changeset | 2025 | apply (auto simp add: real_of_nat_Suc_gt_zero simp del: real_of_nat_Suc) | 
| 27468 | 2026 | apply (blast dest!: reals_Archimedean intro: order_less_trans) | 
| 2027 | done | |
| 2028 | ||
| 2029 | lemma lemma_Infinitesimal2: | |
| 2030 | "(\<forall>r \<in> Reals. 0 < r --> x < r) = | |
| 2031 | (\<forall>n. x < inverse(hypreal_of_nat (Suc n)))" | |
| 2032 | apply safe | |
| 61284 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61076diff
changeset | 2033 | apply (drule_tac x = "inverse (hypreal_of_real (real (Suc n))) " in bspec) | 
| 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61076diff
changeset | 2034 | apply (simp (no_asm_use)) | 
| 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61076diff
changeset | 2035 | apply (rule real_of_nat_Suc_gt_zero [THEN positive_imp_inverse_positive, THEN star_of_less [THEN iffD2], THEN [2] impE]) | 
| 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61076diff
changeset | 2036 | prefer 2 apply assumption | 
| 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61076diff
changeset | 2037 | apply (simp add: real_of_nat_def) | 
| 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61076diff
changeset | 2038 | apply (auto dest!: reals_Archimedean simp add: SReal_iff simp del: real_of_nat_Suc) | 
| 27468 | 2039 | apply (drule star_of_less [THEN iffD2]) | 
| 2040 | apply (simp add: real_of_nat_def) | |
| 2041 | apply (blast intro: order_less_trans) | |
| 2042 | done | |
| 2043 | ||
| 2044 | ||
| 2045 | lemma Infinitesimal_hypreal_of_nat_iff: | |
| 2046 |      "Infinitesimal = {x. \<forall>n. hnorm x < inverse (hypreal_of_nat (Suc n))}"
 | |
| 2047 | apply (simp add: Infinitesimal_def) | |
| 2048 | apply (auto simp add: lemma_Infinitesimal2) | |
| 2049 | done | |
| 2050 | ||
| 2051 | ||
| 2052 | subsection{*Proof that @{term omega} is an infinite number*}
 | |
| 2053 | ||
| 2054 | text{*It will follow that epsilon is an infinitesimal number.*}
 | |
| 2055 | ||
| 2056 | lemma Suc_Un_eq: "{n. n < Suc m} = {n. n < m} Un {n. n = m}"
 | |
| 2057 | by (auto simp add: less_Suc_eq) | |
| 2058 | ||
| 2059 | (*------------------------------------------- | |
| 2060 | Prove that any segment is finite and | |
| 2061 | hence cannot belong to FreeUltrafilterNat | |
| 2062 | -------------------------------------------*) | |
| 2063 | lemma finite_nat_segment: "finite {n::nat. n < m}"
 | |
| 2064 | apply (induct "m") | |
| 2065 | apply (auto simp add: Suc_Un_eq) | |
| 2066 | done | |
| 2067 | ||
| 2068 | lemma finite_real_of_nat_segment: "finite {n::nat. real n < real (m::nat)}"
 | |
| 2069 | by (auto intro: finite_nat_segment) | |
| 2070 | ||
| 2071 | lemma finite_real_of_nat_less_real: "finite {n::nat. real n < u}"
 | |
| 2072 | apply (cut_tac x = u in reals_Archimedean2, safe) | |
| 2073 | apply (rule finite_real_of_nat_segment [THEN [2] finite_subset]) | |
| 2074 | apply (auto dest: order_less_trans) | |
| 2075 | done | |
| 2076 | ||
| 2077 | lemma lemma_real_le_Un_eq: | |
| 2078 |      "{n. f n \<le> u} = {n. f n < u} Un {n. u = (f n :: real)}"
 | |
| 2079 | by (auto dest: order_le_imp_less_or_eq simp add: order_less_imp_le) | |
| 2080 | ||
| 2081 | lemma finite_real_of_nat_le_real: "finite {n::nat. real n \<le> u}"
 | |
| 2082 | by (auto simp add: lemma_real_le_Un_eq lemma_finite_omega_set finite_real_of_nat_less_real) | |
| 2083 | ||
| 2084 | lemma finite_rabs_real_of_nat_le_real: "finite {n::nat. abs(real n) \<le> u}"
 | |
| 2085 | apply (simp (no_asm) add: real_of_nat_Suc_gt_zero finite_real_of_nat_le_real) | |
| 2086 | done | |
| 2087 | ||
| 2088 | lemma rabs_real_of_nat_le_real_FreeUltrafilterNat: | |
| 60041 | 2089 | "\<not> eventually (\<lambda>n. abs(real n) \<le> u) FreeUltrafilterNat" | 
| 27468 | 2090 | by (blast intro!: FreeUltrafilterNat.finite finite_rabs_real_of_nat_le_real) | 
| 2091 | ||
| 60041 | 2092 | lemma FreeUltrafilterNat_nat_gt_real: "eventually (\<lambda>n. u < real n) FreeUltrafilterNat" | 
| 2093 | apply (rule FreeUltrafilterNat.finite') | |
| 2094 | apply (subgoal_tac "{n::nat. \<not> u < real n} = {n. real n \<le> u}")
 | |
| 2095 | apply (auto simp add: finite_real_of_nat_le_real) | |
| 27468 | 2096 | done | 
| 2097 | ||
| 2098 | (*-------------------------------------------------------------- | |
| 2099 |  The complement of {n. abs(real n) \<le> u} =
 | |
| 2100 |  {n. u < abs (real n)} is in FreeUltrafilterNat
 | |
| 2101 | by property of (free) ultrafilters | |
| 2102 | --------------------------------------------------------------*) | |
| 2103 | ||
| 2104 | lemma Compl_real_le_eq: "- {n::nat. real n \<le> u} = {n. u < real n}"
 | |
| 2105 | by (auto dest!: order_le_less_trans simp add: linorder_not_le) | |
| 2106 | ||
| 2107 | text{*@{term omega} is a member of @{term HInfinite}*}
 | |
| 2108 | ||
| 60041 | 2109 | lemma FreeUltrafilterNat_omega: "eventually (\<lambda>n. u < real n) FreeUltrafilterNat" | 
| 2110 | by (fact FreeUltrafilterNat_nat_gt_real) | |
| 27468 | 2111 | |
| 2112 | theorem HInfinite_omega [simp]: "omega \<in> HInfinite" | |
| 2113 | apply (simp add: omega_def) | |
| 2114 | apply (rule FreeUltrafilterNat_HInfinite) | |
| 56225 | 2115 | apply (simp add: real_of_nat_Suc diff_less_eq [symmetric] FreeUltrafilterNat_omega) | 
| 27468 | 2116 | done | 
| 2117 | ||
| 2118 | (*----------------------------------------------- | |
| 2119 | Epsilon is a member of Infinitesimal | |
| 2120 | -----------------------------------------------*) | |
| 2121 | ||
| 2122 | lemma Infinitesimal_epsilon [simp]: "epsilon \<in> Infinitesimal" | |
| 2123 | by (auto intro!: HInfinite_inverse_Infinitesimal HInfinite_omega simp add: hypreal_epsilon_inverse_omega) | |
| 2124 | ||
| 2125 | lemma HFinite_epsilon [simp]: "epsilon \<in> HFinite" | |
| 2126 | by (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]) | |
| 2127 | ||
| 2128 | lemma epsilon_approx_zero [simp]: "epsilon @= 0" | |
| 2129 | apply (simp (no_asm) add: mem_infmal_iff [symmetric]) | |
| 2130 | done | |
| 2131 | ||
| 2132 | (*------------------------------------------------------------------------ | |
| 2133 | Needed for proof that we define a hyperreal [<X(n)] @= hypreal_of_real a given | |
| 2134 | that \<forall>n. |X n - a| < 1/n. Used in proof of NSLIM => LIM. | |
| 2135 | -----------------------------------------------------------------------*) | |
| 2136 | ||
| 2137 | lemma real_of_nat_less_inverse_iff: | |
| 2138 | "0 < u ==> (u < inverse (real(Suc n))) = (real(Suc n) < inverse u)" | |
| 2139 | apply (simp add: inverse_eq_divide) | |
| 2140 | apply (subst pos_less_divide_eq, assumption) | |
| 2141 | apply (subst pos_less_divide_eq) | |
| 2142 | apply (simp add: real_of_nat_Suc_gt_zero) | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 2143 | apply (simp add: mult.commute) | 
| 27468 | 2144 | done | 
| 2145 | ||
| 2146 | lemma finite_inverse_real_of_posnat_gt_real: | |
| 2147 |      "0 < u ==> finite {n. u < inverse(real(Suc n))}"
 | |
| 61284 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61076diff
changeset | 2148 | apply (simp (no_asm_simp) add: real_of_nat_less_inverse_iff del: real_of_nat_Suc) | 
| 27468 | 2149 | apply (simp (no_asm_simp) add: real_of_nat_Suc less_diff_eq [symmetric]) | 
| 2150 | apply (rule finite_real_of_nat_less_real) | |
| 2151 | done | |
| 2152 | ||
| 2153 | lemma lemma_real_le_Un_eq2: | |
| 2154 |      "{n. u \<le> inverse(real(Suc n))} =
 | |
| 2155 |      {n. u < inverse(real(Suc n))} Un {n. u = inverse(real(Suc n))}"
 | |
| 2156 | apply (auto dest: order_le_imp_less_or_eq simp add: order_less_imp_le) | |
| 2157 | done | |
| 2158 | ||
| 2159 | lemma finite_inverse_real_of_posnat_ge_real: | |
| 2160 |      "0 < u ==> finite {n. u \<le> inverse(real(Suc n))}"
 | |
| 61284 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61076diff
changeset | 2161 | by (auto simp add: lemma_real_le_Un_eq2 lemma_finite_epsilon_set finite_inverse_real_of_posnat_gt_real | 
| 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61076diff
changeset | 2162 | simp del: real_of_nat_Suc) | 
| 27468 | 2163 | |
| 2164 | lemma inverse_real_of_posnat_ge_real_FreeUltrafilterNat: | |
| 60041 | 2165 | "0 < u ==> \<not> eventually (\<lambda>n. u \<le> inverse(real(Suc n))) FreeUltrafilterNat" | 
| 27468 | 2166 | by (blast intro!: FreeUltrafilterNat.finite finite_inverse_real_of_posnat_ge_real) | 
| 2167 | ||
| 2168 | (*-------------------------------------------------------------- | |
| 2169 |     The complement of  {n. u \<le> inverse(real(Suc n))} =
 | |
| 2170 |     {n. inverse(real(Suc n)) < u} is in FreeUltrafilterNat
 | |
| 2171 | by property of (free) ultrafilters | |
| 2172 | --------------------------------------------------------------*) | |
| 2173 | lemma Compl_le_inverse_eq: | |
| 56225 | 2174 |      "- {n. u \<le> inverse(real(Suc n))} = {n. inverse(real(Suc n)) < u}"
 | 
| 2175 | by (auto dest!: order_le_less_trans simp add: linorder_not_le) | |
| 2176 | ||
| 27468 | 2177 | |
| 2178 | lemma FreeUltrafilterNat_inverse_real_of_posnat: | |
| 60041 | 2179 | "0 < u ==> eventually (\<lambda>n. inverse(real(Suc n)) < u) FreeUltrafilterNat" | 
| 2180 | by (drule inverse_real_of_posnat_ge_real_FreeUltrafilterNat) | |
| 2181 | (simp add: FreeUltrafilterNat.eventually_not_iff not_le[symmetric]) | |
| 27468 | 2182 | |
| 2183 | text{* Example of an hypersequence (i.e. an extended standard sequence)
 | |
| 2184 | whose term with an hypernatural suffix is an infinitesimal i.e. | |
| 2185 | the whn'nth term of the hypersequence is a member of Infinitesimal*} | |
| 2186 | ||
| 2187 | lemma SEQ_Infinitesimal: | |
| 2188 | "( *f* (%n::nat. inverse(real(Suc n)))) whn : Infinitesimal" | |
| 61284 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61076diff
changeset | 2189 | by (simp add: hypnat_omega_def starfun_star_n star_n_inverse Infinitesimal_FreeUltrafilterNat_iff | 
| 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61076diff
changeset | 2190 | real_of_nat_Suc_gt_zero FreeUltrafilterNat_inverse_real_of_posnat del: real_of_nat_Suc) | 
| 27468 | 2191 | |
| 2192 | text{* Example where we get a hyperreal from a real sequence
 | |
| 2193 | for which a particular property holds. The theorem is | |
| 2194 | used in proofs about equivalence of nonstandard and | |
| 2195 | standard neighbourhoods. Also used for equivalence of | |
| 2196 | nonstandard ans standard definitions of pointwise | |
| 2197 | limit.*} | |
| 2198 | ||
| 2199 | (*----------------------------------------------------- | |
| 2200 | |X(n) - x| < 1/n ==> [<X n>] - hypreal_of_real x| \<in> Infinitesimal | |
| 2201 | -----------------------------------------------------*) | |
| 2202 | lemma real_seq_to_hypreal_Infinitesimal: | |
| 2203 | "\<forall>n. norm(X n - x) < inverse(real(Suc n)) | |
| 2204 | ==> star_n X - star_of x \<in> Infinitesimal" | |
| 56225 | 2205 | unfolding star_n_diff star_of_def Infinitesimal_FreeUltrafilterNat_iff star_n_inverse | 
| 60041 | 2206 | by (auto dest!: FreeUltrafilterNat_inverse_real_of_posnat | 
| 2207 | intro: order_less_trans elim!: eventually_elim1) | |
| 27468 | 2208 | |
| 2209 | lemma real_seq_to_hypreal_approx: | |
| 2210 | "\<forall>n. norm(X n - x) < inverse(real(Suc n)) | |
| 2211 | ==> star_n X @= star_of x" | |
| 56225 | 2212 | by (metis bex_Infinitesimal_iff real_seq_to_hypreal_Infinitesimal) | 
| 27468 | 2213 | |
| 2214 | lemma real_seq_to_hypreal_approx2: | |
| 2215 | "\<forall>n. norm(x - X n) < inverse(real(Suc n)) | |
| 2216 | ==> star_n X @= star_of x" | |
| 56225 | 2217 | by (metis norm_minus_commute real_seq_to_hypreal_approx) | 
| 27468 | 2218 | |
| 2219 | lemma real_seq_to_hypreal_Infinitesimal2: | |
| 2220 | "\<forall>n. norm(X n - Y n) < inverse(real(Suc n)) | |
| 2221 | ==> star_n X - star_n Y \<in> Infinitesimal" | |
| 56225 | 2222 | unfolding Infinitesimal_FreeUltrafilterNat_iff star_n_diff | 
| 60041 | 2223 | by (auto dest!: FreeUltrafilterNat_inverse_real_of_posnat | 
| 2224 | intro: order_less_trans elim!: eventually_elim1) | |
| 27468 | 2225 | |
| 2226 | end |